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Abstract: Assertion-based verification approaches have been making great strides into mixed signal verification 
environments. As the design complexity increases so does the means to verify it. Verification engineers have been 
using assertion-based approach in the analog domain as well. Most of the effort in this domain has been to code as-
sertions on analog models which are abstract representation of a real circuit. This paper shows a methodology of 
coding assertions directly on electrical ports of a schematic sub circuit and hence can be bound to a sub circuit, 
thereby greatly increasing modularization and facilitating re-use.   

 
Introduction:  We are very familiar with the concept of coding checkers without touching the design by binding the 
code to it using verification units in the digital domain. This methodology is gaining traction in the analog and mixed 
signal domains. By using vunit, verification engineers can bind assertions to abstract models of analog or interactions 
between digital and models of analog.  There are scenarios where an analog block is not modelled and is run in 
schematic form and verification checks needs to be performed in a complete analog domain.  We should be able to 
apply the same techniques to effectively verify the design without slowing down the simulation speed. The work 
shown in this paper specifically targets such scenarios and shows how assertion techniques can be used for verifying 
analog parameters. 
 
Binding Assertions: Fig.1 shows the block diagram of mixed signal DUT. Assertions can be bound as below for the 
shown mixed signal design. 
 

  
Fig 1: Block diagram showing Assertions bound to sub-circuits in Mixed signal DUT 

 



a. Bind assertions to digital modules and instances 
b. Bind assertions to behavioral modules of analog blocks 
c. Bind assertions to top level so that you can write mixed signal assertions by accessing signals from both 

analog and digital domain 
d. Bind assertions directly to analog module (not model).  

 
The code below shows module name based assertion binding on analog module mentioned in (d) above. Vunit and 
relevant declarations of electrical ports on which checking needs to be performed are shown. 
 
Example Code- I:   
 
The snippets of code below shows some important steps followed while using this methodology 
 

a. Ports of the sub-circuit on which assertions are to be coded using vunit needs to be explicity declared as 
electrical as shown in fig.2. 

b. Assertions can be written on hierarchial nets as well, but you need to use the name of the port which the net 
is connected to write an assertion, and that port needs to be declared as electrical. 
 

  
Fig 2: Code showing Vunit declaration and explicit port declaration on which assertions are planned. 

 
c. Before writing assertions on the analog domain signal, we need to convert them to digital, for speed and 

tool limitations. Fig.3 shows the required conversion on voltage and current signals. 
 

  
Fig 3: Code showing Vunit declaration and explicit port declaration on which assertions are planned. 

 



REF_1p2 which is an electrical signal is monitored and converted to an event driven signal by using a custom macro 
shown in fig.4. By using appropriate threshold and tolerances in voltage and time analog variations are converted to 
digital signal events, which is ref_1p2_in_range in this case. In the case of current, we cannot directly use the port 
name as in the case of voltage, but instead need to use $cgav system task. Below is the example 
 
 
 
 
 
 
Below is the detailed code of the macros used in the above code.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 4: Customized macro code used in converting continuos signals to discrete signals. 
 
After converting the analog signals to digital domain, we can use those signals and code psl assertions complete-
ly in the digital domain. Fig.5 shows an example of voltage and current checking assertions. The voltage asser-
tion in example-1 is checking for ref_1p2 voltage in range, if vddp5v is in expected range. This assertion is trig-
gered each time there is a change in ref_p12. In example-2 the assertion is checking for the dvdd_mon signal in 
the expected range, if ref1p2_hv, vdd5v_por and dvdd are in range. This assertion is triggered whenever an 
event is created by the absdelta function. In example-3 iptat_1u current is checked to see if it is in the expected 
range when vddp5v is in range. This assertion is triggered when there is a change in iptat current or if there is a 
change in vddp5v. 
 

 Fig 5: Example code showing assertions on analog parameters. 

`define V_IN_RANGE(Node,hthr,lthr,vdelta,ttol,vtol,enable,digout) \ always @(absdelta(V(Node),vdelta,ttol,vtol,enable)) begin \ if((V(Node) > hthr) || (V(Node) < lthr)) digout = 0; \ else digout = 1; \ end 
`define I_IN_RANGE(exp,hthr,lthr,edelta,ttol,etol,enable,digout) \ always @(absdelta(exp,edelta,ttol,etol,enable)) begin \ if((exp > hthr) || (exp < lthr)) digout = 0; \ else digout = 1; \ end 

`define curr_iztc_500n        `get_abs($cgav(“<Hierarchial_DUT_path>.IZTC_500n","flow")) 



Example code – II:  Input and Output Analog testmux is a very standard feature. Oftentimes these testmuxes have  
large number of inputs to select from and we can effectively verify the functionality using the assertion technique 
discussed above.  
 

a. For example lets say if a regulated voltage needs to be observed on testmux we can write an assertion 
shown in fig.6 to connect the source which in this case is the output of an LDO to output of the output ana-
log testmux, given that the mux is programmed with a specific selection. 

b. Similarly we can write an assertion to check input testmux functionality for a case where lets say we want to 
drive an analog value into the design through input testmux rather coming from another block in the design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6: Example code showing Analog Output Testmux Assertion. 
 
 
In the above example shown in fig.6, for every combination of testmux selection two assertions which are getting 
checked are shown. 

a. When the tmux out is valid, and if the mux selection is programmed to a specific value then check if the rel-
evant enable signal is activated. 

b. When the tmux out is valid, and if the mux selection is programmed to a specific value then check if the 
mux output is equal to expected value. 

 
Similar approach can be taken to check for the input testmux functionality.  

// Checking Decode Test mux control signal is Asserted and is in required voltage range `V_IN_RANGE(EN_TOUT_2p5_BUF,top.vddp5v_hth,top.vddp5v_lth,(top.vddp5v_typ*`vdelta),`ttol,(top.vddp5v_typ*`vtol),enable_v_assert_trigger,tmux_out_en_1) // Create a tmux out valid signals based on condition relevant to the design always @(*) begin check_tmux_out_valid = vddp5v_in_range && porb_release && out_of_sd && tmux_out_en; end // Digitizing expected tmux out value  for specific mux selection which will be used in Assertion always (TOUT_MUX_CTRL) begin … … case(tmux_ctrl) 5'd0  : … 5'd16 : tmux_out_ref_2p5 =   `get_abs(V(TOUT_REF_2p5_BUF) - 2.5) < 0.01) ? 1:0; 5'd8  : …. endcase // TMUX out Assertion // CHECKER: when SD is released and TMUX_OUT is enabled with TMUX_OUT ctrl 10000 then TMUX_OUT gets REF_2p5_BUF with TMUX_OUT_EN<1> high // psl tmux_out_en_1_assert: assert always ((check_tmux_out_valid  && (tmux_ctrl == 5'd16)) -> (tmux_out_en_1)) @(posedge(mux_ctrl_change_dly)); // psl tmux_out_1_assert: assert always ((check_tmux_out_valid  && (tmux_ctrl == 5'd16) ) -> (tmux_out_1_ref_2p5)) @(posedge(mux_ctrl_change_dly)); 



PSL v/s  SVA Assertions :  
a. The above mentioned verification methodology can be used with SVA assertions, but it is not as straight 

forward as using PSL assertions.  
b. SystemVerilog standard does not allow the presence of continuos domain object. Therefore creating analog 

expressions is not possible. This capability is possible and comes native to PSL. 
c.  However SystemVerilog allows the usage of real valued variables and these can be used in the context of 

SystemVerilog assertions. This is possible with analog value fetch system functions like 
“cds_get_analog_value”. 

d. In PSL to obtain the potential of analog singal you can directly bind a vunit to a subckt and use access func-
tions like “V(signal)”. We can also use this function directly in the assertion. On contrary this is not possi-
ble in SystemVerilog and hence each we want to fetch an analog value we need to use analog fetch system 
functions and provide the entire design hierarchy path to the required signal. 

e. In case fetching current parameter of a signal of interest I(signal) access function does not work for both 
PSL and SVA. Only way to get this is to use analog fetch system function  $CGAV with “flow” as shown in 
fig.7. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.7 Example code showing analog value fetch and usage in PSL and SVA assertions 

 
Methodology and structure for SVA assertions:  Since SVA assertions has some limitations related to assertions 
on analog domain variables, the Vunit based structure explained for PSL is not applicable. If you have to go the SVA 
route, we need to use SV modules to write SVA assertions and use analog fetch functions to get analog parameters 
like voltage and current as shown in Fig.7 and assign them to real variables and use them in SVA assertions inside 
SV module. Fig.8 below shows the topology. 
 

  
Fig.8 Topology for using SVA assertions. 

ANALOG VALUE FETCH FOR PSL AND SVA PSL Voltage  ---  Bind Vunit to subckt and use voltage access functions V(). This can be used in PSL Assertions Current  --- `define curr_iztc_500n_0         `get_abs($cgav(“<Hierarchial_DUT_path>.IZTC_500n[0]","flow")) 
 SVA Analog domain not possible in SVA assertions, use analog fetch functions to get analog values into real variables and use them in assertions. 
 Voltage --- `define v_refgen_1p2   `get_abs($cgav(“<Hierarchial_DUT_path>.IZTC_500n[0]",“potential")) Current  --- `define curr_iztc_500n_0         `get_abs($cgav(“<Hierarchial_DUT_path>.IZTC_500n[0]","flow")) 



Integration of PSL Assertions into DV environment:  
 
In the incisive or command line flow, these assertions can be pulled in with irun option of “-assert -propfile_vlog” 
and file name with externsion of “.psl”.  In virtuoso flow, you can enter this option in the ADE state in the additional 
argument section. Fig.9 shows snapshot of how to pull in psl assertion file into the virtuoso environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 9: AMS option form in ADE showing arguments to pull in assertion files. 
 
 
 
Assertions can be arranged into various vunit files, as per design hierarchy, and since these assertions are bound to 
the sub-circuit/module, they can be portable along with the design. To pull in multiple assertion files, enter the below 
commands into a common file and pull in this file with irun or through ADE. 
 
 
 
 
 
 
 
 
 
Integration of SVA Assertions into ADE environment: In the incisive or command line flow, these assertions can 
be pulled in with irun –f top.vams and –top top.  In virtuoso flow, you can enter this option in the ADE state in the 
additional argument section. Fig.10 shows snapshot of how to pull in SVA assertion files into the virtuoso environ-
ment. In case you have any PSL assertions in the SVA module you activate them by using a “-assert” option to the 
irun or enter it in the additional arguments section of the AMS option form. 
 
 
 
 

// To pull in multiple assertion files with one common file -assert -propfile_vlog cell1.psl -assert -propfile_vlog cell2.psl -assert -propfile_vlog cell2.psl 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 10: AMS option form in ADE showing arguments to pull in SVA assertion files. 
 
 
Simulation Results:   
 
Fig10. Shows simulation results of current and voltage assertions along with assertion metrics which is useful in ob-
serving how many times each assertion is checked for any possible violation counts. 
 
Current Assertion : For the current assertion each time there is a certain specified change in the value of the IPTAT 
current, the assertion check triggers to check if the current is within the specified range. Current assertion check uses 
a layered approach, one to check for actual change which is what the curr_xxx_flag signal is doing, and the other 
which filters out the flag signal if the out of range duration is very small and acceptable, which is indicated by 
curr_xxxx_in_range. 
 
Voltage Assertion : For the voltage assertion, the assertion check is triggered whenever ref_1p2 signal undergoes a 
variation which is more than the specified tolerance which causes the state of ref_1p2_in_range to change, which in 
turn triggers the assertion and checks for the specification that ref_1p2 should be in expected range once vddp5v is 
in expected range and any variation later is an error condition. 
 
Also these assertions can be viewed in the assertion browser, which shows the list of all the assertions used, and their 
stats related pass/fail. Fig11. Shows the snapshot of assertion browser.  

Pulling top.vams which contains sva module 

Declaring parallel top level hierarchy 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11: Assertion browser showing assertion statistics. 
 
 

  
Fig. 11: Simulation results showing current and voltage assertion checks. 

 



Summary:  Using the above mentioned strategy, we can successfully implement assertion based verification of ana-
log parameters. This is useful even if the dut is completey an analog design or mixed signal design.Binding asser-
tions to the cell, makes assertions portable and can be effectively re-used along with saving design time in the verifi-
cation cycle. This implementation is advantageous, over traditional analog checkers where you have to write proce-
dural code using verilogA/Verilog-AMS or using ocean to do post process checking.  


