
ASIC-Strength Verification in a Fast-Moving FPGA
World

Bryan Murdock
Fusion-io

February 7, 2013

Abstract—FPGA design and verification have some key dif-
ferences from the typical ASIC project. FPGA designs are fast-
moving, ever changing, and can have very short release cycles.
Techniques that help keep code quality high and verification
effective are explained and discussed including: General Au-
tomation, the benefits of the Python programming language for
use in automation, Continuous Integration, Distributed Version
Control, Strategies for organizing, building, and testing a highly
configurable code base, Web-based Code Reviews, and Register
Generation.

I. INTRODUCTION: FPGA VS. ASIC

Over the last few years Fusion-io’s small, fast-moving
FPGA team has moved away from the typical ad-hoc style
of FPGA testing and towards full ASIC-strength verification.
Here are some of the characteristics of the fast moving FPGA
world that make traditional ASIC-style verification challeng-
ing:

A. Short release cycles

New features are defined, implemented, and released to
customers all in a matter of a few months. Verification has to
be able to quickly go from feature-definition to feature-fully-
verified during that same short time period. Long drawn-out
verification planning, verification environment bring-up and
verification environment debug for each new feature is not
an option. The verification team has to be nimble and quick
to react.

B. Features are mixed and matched

Various sets of features are combined together into various
FPGA builds for various products that are all released at about
the same time. In other words, there isn’t a single ASIC to fo-
cus verification efforts on. Instead there are many FPGA builds
to verify, all concurrently. The design is configurable and our
verification code-base has to be flexible and configurable as
well.

C. Very small team

Though it has grown rapidly, the team started out micro-
scopically small compared to other well-known ASIC shops.
There isn’t an endless supply of people to get all this done so
we have to find ways to multiply our efforts.

Solid design verification is critical, and to accomplish that
the realities of the fast-paced FPGA world need to be addressed
head on. The approaches and tools discussed in this paper
helped our small team to rapidly increase the quality of our

design verification while meeting the demands of our business.
They should be helpful to any FPGA team looking to better
their verification, as well as to ASIC teams looking to become
more agile and adaptable.

II. GENERAL AUTOMATION

The first thing we did at Fusion-io to improve our verifica-
tion was to automate critical processes and make them easily
repeatable. Usually at the start of an FPGA design, especially
if the design targets a new FPGA or requires a new version
of the tools, engineers spend a lot of time clicking around the
GUI. That’s great for exploring and learning the capabilities
of the tools, but once we settle into a routine and start doing
the same sequence of clicks over and over to get things done,
we recognize we are well into the time when we should be
automating those actions with scripts. We live by the adage
that anything in the design and verification process that you
do over and over can and should be automated. Automation
reduces the chance for human error, makes critical processes
easily repeatable, and saves a lot of time over the long run.

Automation should go all the way, don’t automate just part
of the process and leave manual steps for humans to carry out.
At a bare minimum you should have three scripts that allow
you to do each of these by issuing a single simple command:

• run a test and get a pass/fail report at the end

• run a suite of tests and get a pass/fail report at the end
for each test

• produce a bitstream for your target FPGA

If you have those three things automated then you are well
on your way towards ASIC-strength verification. All of those
operations should be easy to do over and over. Given the same
version of code and command-line arguments, they should
produce the same results every time, for anybody that runs
them. If Alice runs the foo test with seed 1234 on revision
5678 of the code and it fails, she should be able to give that
information to Bob and it should be no problem for him to re-
run the test on his workstation and get the exact same result.
This helped us a lot as our team grew rapidly. The processes
to get basic stuff done that new team members had to learn
were simple.

Once we had that bare minimum automated we started
looking for more to automate1. Some of the questions you

1See [1] for a lot of insights into what you should shoot for in your
automation. It’s software centric, but there are some good universal principles
in there.

can ask yourself to help with this are, once you produce a
bitstream, do you load it onto a board and test it? Can the
steps to do that be automated? When you run a suite of
simulations do you manually open log files and classify test
failures into groups? Could that be automated? When you run
those test suites, do you collect code coverage? Do you merge
coverage from multiple test runs together? Can all that be
automated? What about debugging tasks? Are there repetitive
steps that can be automated? When you build bitstreams or
run simulations, do you ever look at how long each step
takes or how much memory it used? Can a report of that be
automatically generated?

It takes time to write scripts for all of that, but it also takes
time to manually do everything. The time it takes to manually
click GUI’s or generate reports is time that could be spent
writing better tests and finding more bugs. Automating critical
processes is the first step we took to improving our design
verification, and it’s hard to envision working any other way
now.

III. PYTHON

Once we decided to automate repetitive tasks our team
needed to choose a scripting language. As we thought it
through we considered past experience with other languages
(Perl and shell-scripts, mainly) and the characteristics of the
scripts we knew we’d be writing. Considering what slowed us
down in the past we realized some things. We don’t work on
automation scripts every day. The code doesn’t stay in active
memory in our brains. We’d often spend a day or two updating
a particular script and then not look at it again for weeks.
Our brains would page that script out of active memory and
page in our testbench or design code in its place. The second
characteristic of these scripts is that they are never done. As
with all software, we would need to continually make little
changes and updates to our scripts here and there, forever. We
would need to be able to quickly read and re-understand the
code for these scripts and make changes to them, over and
over. Of course any scripting language would also need to
be high-level and ideally have a multitude of libraries so we
don’t have to re-invent solutions for common problems. As
we considered these requirements, spoke with the experienced
software developers at our company, and looked at various
scripting language options we realized that the features of
Python met all these challenges well.

Python is the most readable scripting language out there.
It reads like the pseudo-code examples you see in textbooks.
Unlike Perl or Bash, it eschews symbols and uses plain English
words wherever possible2. English stays in your working
memory, abbreviations using $%&*(#@) do not.

Here are just some basic examples of Python to prove my
point, there are many more examples online:

get the length of a list, and a string
some_list = [’a’, ’b’, ’c’]
list_length = len(some_list)

some_string = ’foobarbaz’
string_length = len(some_string)

2Yet Python only has about 30 reserved words, unlike, say, SystemVerilog’s
220 or so.

define and call a function:
def print_list(list_input):

for l in list_input:
print l

it can handle lists of varying types:
print_list([’one’, ’two’, ’three’])
print_list([1, 1, 2, 3, 5])

The other advantage of Python is that it is natively object
oriented. Many of the same coding patterns that we use in
verification languages like SystemVerilog and C++ work just
as well (or better) in Python. This leads to less cognitive load
when switching between writing your testbenches and writing
your scripts. One way to illustrate this is with a Function
Object Design Pattern example, also known as the Functor
Design Pattern [2]. Just the name scares some people, but if
you are familiar with the Universal Verification Methodology
(UVM), a uvm_sequence is a functor [3]. Here is code for a
Functor that produces incrementing integers, starting with the
integer you seed it with. First in SystemVerilog:

class count_from;
int count;

function new(int n);
count = n;

endfunction

function int body();
return count++;

endfunction
endclass

module top;
initial begin

count_from cf1;
count_from cf2;
cf1 = new(5);
cf2 = new(100);
repeat(5) begin

$display("cf 1: %0d", cf1.body());
$display("cf 2: %0d", cf2.body());

end
end

endmodule

And that gives you this output:

cf 1: 5
cf 2: 100
cf 1: 6
cf 2: 101
cf 1: 7
cf 2: 102
cf 1: 8
cf 2: 103
cf 1: 9
cf 2: 104

SystemVerilog has no syntax to make a class object callable
like a function, so I used the same convention that the
uvm_sequence does and just gave it a function named body.

Here is a Python example that gives the same output:

class CountFrom:
constructor:
def __init__(self, count):

self.count = count

makes this class callable like
a function:
def __call__(self):

current_count = self.count
self.count += 1
return current_count

cf1 = CountFrom(5)
cf2 = CountFrom(100)
for i in range(5):

print "cf 1: {0}".format(cf1())
print "cf 2: {0}".format(cf2())

Pretty similar to the SystemVerilog, but like a good script-
ing language it’s 10 lines shorter with no need to declare
variables ahead of time. Now, this might seem like an obscure
example, but it shows that even doing this somewhat rare
object-oriented thing can translate well between your verifica-
tion language and your scripting language. We have found that
we really use many of the same design skills in both languages
and that reinforces those skills in both languages. We have
gained insight while solving problems with Python that have
helped us to better solve problems with SystemVerilog or C++,
and our Python scripts have benefited from our various team
members’ SystemVerilog and C++ experience as well.

The core language of Python is great, but what about
libraries? One motto of Python is, “batteries included.” The
standard library that comes with your Python installation has
already solved many of the problems we have encountered
while writing scripts. There are modules for parsing command-
line arguments and options (optparse, or argparse in newer
version of Python), interacting with the shell (system, os,
shutil, subprocess), for handling temporary files (tempfile),
for logging stuff while your script runs (logging), regular
expressions (re), sending mail (smtplib), interfacing a database
(psycopg2), and so on. Finally, outside of the standard library
there are libraries and frameworks that makes it easy to write
simple web applications, which we have used with great
success in order to generate and publish reports (django, flask,
or bottle). More information about all of these libraries can by
found with your favorite Internet search engine.

Using Python has made our scripts very readable and easily
maintainable. A wide number of people have been able to
understand the code in our scripts and to continually edit,
upgrade, and add features to them as needed.

IV. CONTINUOUS INTEGRATION

With new features being added to design and verification
code at a rapid pace, many different configurations to test, and
a release looming just around the corner (especially if there is
always a release just around the corner) how could we make
sure the code base stayed stable? Continuous integration is the
answer at Fusion-io. Continuous Integration (often shortened
to, CI) is a term software engineers use to describe systems
that monitor your code repository and automatically run a suite
of tests whenever new changes are added. If it sounds simple
that’s because it is, but it has been very effective at keeping

our code base free of bugs. Once we automated the running
of tests and builds as described above, it was trivial to have a
CI system run those for us.

Fusion-io’s software department already had a CI system
up and running when us hardware people were ready to start
doing our own automated testing and builds. It was easy for
them to allocate a part of the system for us to use. That is
probably the case at many companies and it gives you an
instant benefit when you bring it up. I won’t say too much more
on CI because there is a great paper on the subject from last
year titled, A 30 Minute Project Makeover Using Continuous
Integration, that gives more details than a single section of this
paper can [4]. Continuous Integration is a simple way to catch
bugs early and keep them out of your design.

V. DISTRIBUTED VERSION CONTROL

One challenge we had at Fusion-io as the team grew was
that we started to have many lines of development going on at
once including maintenance of old FPGA bitstream releases,
multiple new features for future releases, and multiple releases
in progress simultaneously. Just having more engineers work-
ing on the same codebase creates more possibility for conflicts
and integration pains. While developing complicated features
engineers like being able to check in their incremental work
and not wait until everything is done and tested, but checking
unfinished work into mainline causes problems for others on
the team. Branches help with that, of course, but existing free
version control tools like CVS and Subversion just didn’t sup-
port branching and merging smoothly and seamlessly. These
issues were starting to slow us down and cause us to spend
time solving problems with communication and coordinating
work. Solving those problems are not where we wanted to be
spending our time on a day-to-day basis.

Better branch and merge support seemed to be issue
number one. Expensive commercial tools exist that support
those operations more robustly than CVS and Subversion,
however at the time there were some new free and open-source
tools that also reportedly handled branching and merging very
well. These tools take a different approach from the likes
of CVS, Subversion, Clearcase, Perforce, etc., which all use
a centralized source code repository and server. The new
tools use a distributed model and are referred to collectively
as Distributed Version Control Systems (DVCS’s). Git and
Mercurial are the two most well known of these newer open-
source DVCS’s. As we investigated DVCS’s we learned that
they have other benefits that arise from their distributed nature.
The licensing cost of these tools (there is none) is great too.

To understand the benefits of a DVCS and use it success-
fully we have found that it helps to know some details of
how it works. With distributed version control every developer
gets a copy of the whole repository, called a clone. There
is no centralized repository required, but our team designates
one clone of the repository to be the central one used for
collaboration. When you make code changes you commit them
to the repository just like with centralized systems, but the
commit is local and only exists in your clone of the repository.
That means you don’t need a network connection at all to do
basic version control operations like committing code, viewing
the log, and diffing your files against the history. To share

changes with others you “push” or “pull” them from one
repository clone to another. At this point, some diagrams might
help. To start, you’ll see the designated central repository and
your clone with your working copy. The version numbers are
a cryptographic hash to make sure every version is unique
amongst all clones in the universe (abbreviated to a 3-digit
hex number for brevity). More recent versions refer (or point)
back to their parent (older) versions. Here’s how it looks:

clone

origin

bf4 08a
working
copy

bf4 08a

With a busy team, while you are working on your changes
usually someone else will commit and push their own changes
to the original repository, creating a new version there:

clone

origin

bf4 08a
working
copy

bf4 08a 46f

When you are satisfied with your own changes you commit
them to your repository creating a new version there:

clone

origin

bf4 08a a87
working
copy

bf4 08a 46f

Note that at this point your changes are a commit in your
repository but nobody else has a copy of that commit. You

are free to delete or edit that commit before making it public.
Our team has found this to be infinitely useful. You can easily
try out new changes or experiments and take full advantage
of version control to checkpoint your work and go back to
previous checkpoints while testing and experimenting. You can
then edit, re-arrange, or combine those checkpoint commits
however you like before sharing them with the team (if you
decide to share them at all). It’s very liberating.

Continuing with our example, once you are happy with
your changes you will want to share them with the team.
Before you push them to the original repository, you should
merge your co-workers changes with yours. Do a pull (or
fetch, in some DVCS’s) to bring the change from the original
repository into yours:

clone

origin

bf4 08a

a87

46f

working
copy

bf4 08a 46f

Note that your original changes (version a87) are un-
touched. Now you can merge your changes together with your
co-worker’s in your working copy:

clone

origin

bf4 08a

a87

46f
working
copy

bf4 08a 46f

If things don’t look good you can abort the merge and your
working copy will go back to being based on version a87. If
it does look good you can commit the merge:

clone

origin

bf4 08a

a87

46f

ef9
working
copy

bf4 08a 46f

Now you can push your commits (a87 and ef9) back to
the original repository where your teammates can pull them.
Here’s how it looks after the push:

clone

origin

bf4 08a

a87

46f

ef9
working
copy

bf4 08a

a87

46f

ef9

One big benefit to this workflow is that you never have to
merge other engineers’ changes with yours before you commit.
That is different from centralized tools that often require you
to merge others changes into your working copy before you
can commit it. They don’t provide a way for you to checkpoint
your work before doing that merge.

Note also that the branches in the repository history that
are shown in the examples above can be given descriptive
names and can be used for much more than one changeset.
We regularly use new feature development branches, release
branches, and bugfix branches to do our development.

As mentioned above, the two most popular and high-
quality open source DVCS’s are Git and Mercurial3. We chose
Mercurial because we found it to be much more user friendly
than Git, and because it and its plugins are written in Python,
which we are already familiar with (not that we have needed to
edit the source code, but reading it has provided some insights).
Git runs slightly faster than Mercurial, but not enough to
outweigh the advantages we saw with Mercurial. Both Git and
Mercurial borrow ideas heavily from each other and they are
looking more and more alike as the two projects progress.
Both are well documented, have lots of enthusiastic users, and
have free code hosting and bug-tracking available online for
small teams [5], [6]. There are free tools to easily convert your
whole repository history from just about any version control
system to either Git or Mercurial. It’s hard to go wrong with
either one.

3Others DVCS’s include bzr, fossil, and veracity.

The ability to make and edit local commits and the ex-
cellent branching and merging that these tools provide makes
sharing changes among many engineers much more safe and
easy. Using a DVCS, our team spends less time worrying
about revision control and collaboration issues and more time
developing and verifying great hardware.

VI. A CONFIGURATION-DRIVEN BUILD SYSTEM

When designing and developing for FPGA targets it be-
came advantageous for our team to have one code base from
which we could build many unique bitstreams. Reasons for
this included the desire to target more than one FPGA part,
vendor, and speed-grade, and the desire to create builds with
different sets of features4. When the amount of options that
had to be selected to produce the various bitstreams grew
large, it became quite a challenge to manage. Maintaining
configurations wasn’t too difficult at first. We’ve all heard
of ‘ifdef, and the UVM has its configuration database
for configurable testbenches, but when using those techniques
alone things quickly got out of hand.

You might, as we did at Fusion-io, see this evolve slowly.
Maybe first the desire for two different clock speeds comes
up so that you can use the low clock speed to get a bitstream
produced more quickly for functional testing. You add a simple
‘ifdef to the code and a command-line switch to the build
script and you are good to go. Then someone points out that
you should be simulating the two clock speeds as well, so
you add the same command-line switch to your simulation
script. Next someone wants a build that supports software ecc
instead of a hardware corrector. You add another ‘ifdef to
your code and another switch to your build and simulation
scripts. Then a request for shallower on-chip buffers comes
in. Another ‘ifdef and another switch are added. If you are
careful the default simulation and build script invocations don’t
change, and still look simple like this:

$ sim-script testname
$ build-script

Maybe those invocation still produce the high-speed, hard-
ware ecc, deep buffer build since it was the original configura-
tion, but suddenly you have a lot more possible command-line
invocations:

$ build-script --slow-clock
$ build-script --soft-ecc
$ build-script --small-buffers --slow-clock
$ build-script --soft-ecc --small-buffers
$ # and so on

Not to mention the similar simulation script invocations
as well. Things are getting out of hand with only three
options, and our codebase quickly accumulated many more
than three. With all those possible combinations of options a
question quickly arose for us in verification, are those all valid
combinations that need to be supported and tested? Maybe no
product will ever ship with shallow buffers and software ecc.
Where is that recorded so that all parties that need it, including
your scripts, have access to that information?

4This can also happen with ASIC projects where you have the ASIC build
target and an FPGA emulation build target.

We found that what really needed to happen was to some-
how encapsulate all these options into some sort of collection
that has a name. We call these collections of options, Builds.
An easy way to implement Builds is with simple verilog files
in a special directory of your codebase. For example, here are
three Builds (three files) for three of the possible configurations
mentioned above (with a configurable bus-width thrown in too,
for good measure):

// build: functional
‘define FUNCTIONAL_BUILD 1
‘define CLOCK_FREQUENCEY_MHz 100
‘define BUS_WIDTH 32
‘define BUFFER_DEPTH 16
// hardware ecc

// build: small
‘define SMALL_BUILD 1
‘define CLOCK_FREQUENCEY_MHz 700
‘define BUS_WIDTH 16
‘define BUFFER_DEPTH 4
‘define SOFT_ECC 1

// build: full
‘define FULL_BUILD
‘define CLOCK_FREQUENCEY_MHz 700
‘define BUS_WIDTH 32
‘define BUFFER_DEPTH 16
// hardware ecc

Notice that we didn’t just have true/false for each of those
(or defined and not defined), we used actual numbers where the
design could be parameterized. That would open up all kinds
of unconstrained build combinations if you just passed a clock
frequency (for example) on the command-line of your script,
but we have encapsulated the clock frequencies, bus widths,
etc. that we plan to test and ship in these Build definitions.
With Builds defined and in place, your build and sim script
invocations become:

$ sim-script functional testname
$ build-script functional

or:

$ sim-script small testname
$ build-script small

or:

$ sim-script full testname
$ build-script full

Simple and clear. The scripts can do the magic of supplying
the Build file specified on the command-line to the simulation
and build tools.

The Builds don’t have to be simple verilog files. The
number of build options we were dealing with got so large
that we actually wrote a fairly sophisticated web-based tool
with a SQL database back-end to manage them all. How you
structure it depends on how many Builds you are managing,
whether you want Builds to be able to inherit from each other,
whether Builds should support multiple names/aliases per
Build, collaboration needs with other teams in the company,
and so forth. However you do it, once it’s set up and working

you should have one place to specify valid Builds and your
script invocations will become much simpler.

Now that specifying the possible configurations has been
cleaned up it’s time to look at the design code. If you
proliferate ‘ifdef constructs or generate blocks in your
design code to implement the various options the code will
get very messy and hard to read. Fortunately, there are other
ways to make design code configurable.

The two best ways to make design code configurable
while preserving readability is to use parameters and modules.
Parameters are nothing new and I won’t go into detail here.
They are what you would use for something like the buffer size
and bus width options mentioned above. The use of modules
could apply to the ecc example above. To switch between ecc
features you create two different modules with the same name,
each in their own file. Maybe you call the module, ecc. If you
follow the common rules of One Module Per File and Give
The File The Same Name As The Module then you’ll need
to keep the two ecc.v files in two different directories. Now
each Build consists of one of the above verilog files (with the
SOFT_ECC define no longer necessary) plus a file list. The
file lists would look something like this:

// file list for build: functional
top.v
fifo.v
bus.v
ecc/ecc.v

// file list for build: small
top.v
fifo.v
bus.v
software_ecc/ecc.v

// file list for build: full
top.v
fifo.v
bus.v
ecc/ecc.v

Again, your simulation and build scripts supply the correct
file list according to the Build specified on the command-line.
Now, in a higher-level module you simply instantiate the ecc
module, with no ‘ifdef needed. This keeps the code very
clean and readable. With parameters, modules, and careful
creation of the file list your code can be very configurable
and largely ‘ifdef free.

When you do find that you need to use ‘ifdefs or
generate blocks to configure your design code it is important to
use good naming for the ‘define’s or parameters that drive
these. Once you have Builds with names for your collection
of features it will become very tempting to use Build names
for ‘define’s. This happened to us when a new Build was
defined that used a new feature for the first time. Let’s say the
Build was called Napoleon. If the new feature that Napoleon
uses is software ecc, you might be tempted to write code like
this:

module top;
input pin1;

‘ifdef NAPOLEON_BUILD
input special_soft_ecc_pin;

‘endif
input pin2;
output pin3;
// etc.

endmodule

That works fine until some other Build is defined that also
uses software ecc. What you really want is to make sure and
use the feature name for your ‘define, so the above code
looks like this instead:

module top;
input pin1;

‘ifdef SOFTWARE_ECC
input special_soft_ecc_pin;

‘endif
input pin2;
output pin3;
// etc.

endmodule

Then both Builds can reference the SOFTWARE_ECC
feature and the code will read more clearly.

We’ve seen that Builds can map collections of options
to ‘define’s, parameters, and a file list. What do Builds
mean for verification? Testbench code obviously needs to
be informed of the same ‘define’s and parameters and
the same file list. Even though a Build specifies the design
code configuration, which is all compile-time stuff, a single
Build might support various run-time options that also need
to be tracked and tested. You probably want to keep Builds
focused on compile-time stuff only (stuff that ultimately affects
synthesis output). Run-time options that affect test stimulus,
prediction, and responses need to be dealt with in addition to
Builds in the world of verification. Going into more detail on
that is beyond the scope of this paper, but be aware that similar
methods of encapsulation can be used. Also keep in mind that
verification code can use facilities for run-time configuration of
the code5 and clumsier compile-time constructs like ‘ifdef
and parameters can often be avoided altogether.

It’s easy to not think very hard about how to approach
the task of making your code configurable because it is
usually a need that grows little by little. Using the power
of encapsulation helped our team deal with the complexities
without falling into the pit of hard to maintain code and
scripts with an endless number of command-line arguments.
Encapsulating and simplifying build configurations allows us
to easily manage multiple FPGA targets and use a single code
base to develop and verify them all.

VII. WEB-BASED CODE REVIEWS

The best way to get bugs out of your design is to catch
them before they ever get in. One of the best ways to do that
is to make sure all code gets looked over by more than just the
person that wrote it. Code reviews are a great idea in theory,

5$test$plusargs and $value$plusargs which, incidentally, the UVM makes
use of for things like UVM_TESTNAME and uvm_set_config_int

but can seem difficult and impractical for a fast-moving FPGA
team. At Fusion-io, once we had more than a couple people
on the team we really wanted to do code reviews but found it
hard to get two or more engineers in the same room together
to go over source code. Individuals didn’t want to interrupt
their co-workers every time they had code to check-in. Even
when we did schedule code review meetings, it was difficult in
a meeting setting for reviewers to concentrate and understand
the code they were being asked to review. Also, engineers had
to manually take notes of what the reviewers suggested during
the meeting, and then go back and implement any changes they
had suggested. After those changes were made, then what?
Should we schedule yet another review meeting to review
the updates? Web-based code reviews alleviated all of those
problems for us.

We use a tool named Review Board for web-based code
reviews [7]. It is free and open source and runs on a web server
inside your company. When you have code ready for review
you create a review request on the Review Board server. To
do this there is a simple command-line tool that automatically
takes a diff from your working copy and uploads it to the
Review Board server. You then go to the resulting web page for
your review request and select who you would like to review
your code (and you can set up groups to make this simpler).
Review Board then sends each invitee a simple email with a
link to the review request web page. Now they can all review
the code on their own computer, at their own desk, at a time
that is convenient for them.

Fig. 1. Review Request Example

On the review request web page each reviewer will see

a nice side-by-side diff of the code changes. Figure 1 shows
what this looks like. Reviewers can click on the line numbers
in the middle of the diff and a text entry box will appear.
They can type in comments they have about that line of code
right there. When they are happy with the comments they have
entered they click the Publish Review button and an email is
sent to the review request submitter and to the other reviewers.
Everyone can then reply to their comments right on the review
request page (we have had many productive conversations on
Review Board). If you make more changes to your code in
response to the helpful review comments you can update the
diff on the review request with the same command-line tool
and the reviewers will again be notified. Once reviewers are
satisfied with the code under review they can click on the “Ship
It!” link to let you know. It always feels good to get a “Ship
It!” email from Review Board.

Code reviews with an online code review tool have made
a big difference for our team. Before we started using Review
Board nobody was sure if they had time to stop work and
review someone else’s code. We are very interested in what
our teammates are committing to our repository and now that
it’s convenient for us we spend quality time reviewing code
changes. Code reviews have helped us catch bugs before they
even made it to our main code repository.

VIII. FUTURE WORK: REGISTERS

There are other areas of the design and verification process
that our team is in the process of automating and improving.
Control and Status Registers (CSRs, or just, registers) are the
next time sink that we are tackling. Currently everything we
do with registers is done manually by hand. We code all the
verilog by hand, we choose addresses and make sure they
don’t conflict manually, decoding logic is written by hand,
documentation is manually created and maintained, software
header files, verification, you get the idea. Our talented engi-
neers can handle all this work and we haven’t had any major
problems with registers, but it does take up time that could be
better spent on other things.

We have been eyeing and evaluating software tools to
automate all the chores related to registers for a while and
we recently adopted one, CSRCompiler from Semifore, Inc.
Now we can write a register specification in a formal language
and from this spec, CSRCompiler will generate register verilog
code, register decode verilog code, documentation in various
formats, header files that define constants for register addresses
and fields within registers in both the verilog and c languages,
verification code (uvm_reg), and so forth. This will make
creating, changing, and verifying registers much quicker and
easier. Another benefit we are noticing is that it will make
it easier for us to improve our registers (that’s the changing
part mentioned in the previous sentence). With everything
automatically synchronized, using this tool will make it much
easier to experiment with different hierarchies and groupings
of registers, different addresses and address spaces, and even
different names for registers and fields, all so we can find what
works best. Instead of needing to manually edit everything
from verilog to software header files in order to make a change
you can simply make the change in the source specification
and re-run CSRCompiler.

All of this automation reduces the chances for bugs to get
into the FPGA design and into the software interacting with
the FPGA. It also gives our verification efforts a huge boost.
We will be able to spend a lot less time manually dealing with
register and field addresses and more time creating better tests.

IX. CONCLUSION

Keeping up with a fast-moving, ever changing design can
be hard for a verification team. Using the tools, processes,
and techniques introduced in this paper my team has been
able to increase the quality of our design verification and
continue to react quickly and effectively to the needs of our
most demanding, fast-paced customers, as well as win new
high-value deals for us and our shareholders. These same tools,
processes, and techniques will be a benefit to any team that is
facing the same challenges.

ACKNOWLEDGMENT

I’d like to thank Eric Decker, who was definitely the biggest
supporter of the movement towards ASIC-strength verification
and is co-innovator in some key areas presented above as well.

ABOUT THE AUTHOR

Bryan Murdock is a Senior Verification Engineer at
Fusion-io. He has over 10 years of experience working on
ASIC and FPGA verification and writing embedded software.
Bryan has a Bachelor of Science in Computer Engineer-
ing from Brigham Young University. He blogs occasionally
at http://bryan-murdock.blogspot.com, enjoys skiing on the
Greatest Snow on Earth 20 minutes away from the Fusion-
io Salt Lake City, UT office. He can be reached by email at
bmurdock@fusionio.com.

REFERENCES

[1] R. Hymas. (2013) Build and Release Management Series.
[Online]. Available: http://thoughts.rockhymas.com/post/12014744973/
build-and-release-management-series

[2] Wikipedia. (2012) Function object — wikipedia, the free encyclopedia.
[Online]. Available: http://en.wikipedia.org/w/index.php?title=Function_
object&oldid=521332561

[3] M. Graphics. (2012) Tour/Sequences — Demo Tour of the
UVM/OVM Cookbook. [Online]. Available: https://verificationacademy.
com/cookbook/Tour/Sequences

[4] J. Gray and G. McGregor, “A 30 Minute Project Makeover Using
Continuous Integration,” in DVCon 2012 Proceedings, 2012.

[5] Atlassian. (2013) Bitbucket. [Online]. Available: https://bitbucket.org/
[6] GitHub Inc. (2013) Github. [Online]. Available: https://github.com/
[7] Beanbag, Inc. (2013) Review Board. [Online]. Available: http:

//www.reviewboard.org/

http://bryan-murdock.blogspot.com
mailto:bmurdock@fusionio.com
http://thoughts.rockhymas.com/post/12014744973/build-and-release-management-series
http://thoughts.rockhymas.com/post/12014744973/build-and-release-management-series
http://en.wikipedia.org/w/index.php?title=Function_object&oldid=521332561
http://en.wikipedia.org/w/index.php?title=Function_object&oldid=521332561
https://verificationacademy.com/cookbook/Tour/Sequences
https://verificationacademy.com/cookbook/Tour/Sequences
https://bitbucket.org/
https://github.com/
http://www.reviewboard.org/
http://www.reviewboard.org/

	Introduction: FPGA vs. ASIC
	Short release cycles
	Features are mixed and matched
	Very small team

	General Automation
	Python
	Continuous Integration
	Distributed Version Control
	A Configuration-Driven Build System
	Web-based Code Reviews
	Future Work: Registers
	Conclusion
	References

