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FPGA vs. ASIC FPGA World:

Short release cycles

Features are mixed and
matched

Very small team

ASIC-strength verification in the
FPGA world requires addressing
these head on.

We have had great success doing
so with the below tools and
techniques.

Automation with Python Challenge:
Don’t do things manually
that can be scripted
Scripts aren’t your
primary job
Scripts need to be easy to
read and maintain

Saved time with Python
Very readable: like
pseudo-code
No $%&*(#@) line-noise
“Batteries Included.”
There are lots of helpful
Python libraries

See How Pretty:
# get the length of a list,
# and a string
a_list = [’a’, ’b’, ’c’]
list_length = len(a_list)

a_string = ’foobarbaz’
string_length = len(a_string)

Distributed Version Control
(DVC)

Challenge:
Many concurrent lines of
development:

Multiple big features
Support for old bitstream
releases
Stabilizing and testing
multiple releases

CVS, SVN don’t handle
branches and merges well

DVC Met the Challenge:
Branching and merging
are handled beautifully
Commits are local: edit,
re-arrange, or combine
them before sharing
Free, Open Source, and
high quality DVC tools:
Mercurial, Git
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A Configuration-Driven
Build System Challenge:

With a single codebase:
Create bitstreams for
multiple FPGA’s
Create multiple bitstreams
with different feature sets

Collected compile-time options and file lists into Builds
// build: functional
‘define FUNCTIONAL_BUILD 1
‘define CLOCK_FREQUENCEY_MHz 100
‘define BUS_WIDTH 32
‘define BUFFER_DEPTH 16
// hardware ecc

// file list for build: functional
top.v
fifo.v
bus.v
ecc/ecc.v

// build: small
‘define SMALL_BUILD 1
‘define CLOCK_FREQUENCEY_MHz 700
‘define BUS_WIDTH 16
‘define BUFFER_DEPTH 4
‘define SOFT_ECC 1

// file list for build: small
top.v
fifo.v
bus.v
software_ecc/ecc.v

Web-Based Code Reviews Challenge:
In-person Code Reviews are:

Inconvenient
Hard to concentrate on
the code
No written record of the
review

Review Board to the rescue

Future Work: Registers
Challenge:
Registers are tedious to
maintain manually

Commercial register tools
automate the process
One definitive source turns
into code and
documentation.

Register Spec register tool

Verilog RTL code

SystemVerilog (UVM)

C or C++ header files

verilog header files

documentation (HTML)

documentation (MS Word)

documentation (PDF)
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