
ASIC-Strength Verification
in a Fast-Moving FPGA World
Bryan Murdock
Fusion-io

FPGA vs. ASIC FPGA World:

Short release cycles

Features are mixed and
matched

Very small team

ASIC-strength verification in the
FPGA world requires addressing
these head on.

We have had great success doing
so with the below tools and
techniques.

Automation with Python Challenge:
Don’t do things manually
that can be scripted
Scripts aren’t your
primary job
Scripts need to be easy to
read and maintain

Saved time with Python
Very readable: like
pseudo-code
No $%&*(#@) line-noise
“Batteries Included.”
There are lots of helpful
Python libraries

See How Pretty:
get the length of a list,
and a string
a_list = [’a’, ’b’, ’c’]
list_length = len(a_list)

a_string = ’foobarbaz’
string_length = len(a_string)

Distributed Version Control
(DVC)

Challenge:
Many concurrent lines of
development:

Multiple big features
Support for old bitstream
releases
Stabilizing and testing
multiple releases

CVS, SVN don’t handle
branches and merges well

DVC Met the Challenge:
Branching and merging
are handled beautifully
Commits are local: edit,
re-arrange, or combine
them before sharing
Free, Open Source, and
high quality DVC tools:
Mercurial, Git

clone

origin

bf4 08a a87
working
copy

bf4 08a 46f

clone

origin

bf4 08a
a87

46f

working
copy

bf4 08a 46f

clone

origin

bf4 08a
a87

46f
ef9

working
copy

bf4 08a 46f

A Configuration-Driven
Build System Challenge:

With a single codebase:
Create bitstreams for
multiple FPGA’s
Create multiple bitstreams
with different feature sets

Collected compile-time options and file lists into Builds
// build: functional
‘define FUNCTIONAL_BUILD 1
‘define CLOCK_FREQUENCEY_MHz 100
‘define BUS_WIDTH 32
‘define BUFFER_DEPTH 16
// hardware ecc

// file list for build: functional
top.v
fifo.v
bus.v
ecc/ecc.v

// build: small
‘define SMALL_BUILD 1
‘define CLOCK_FREQUENCEY_MHz 700
‘define BUS_WIDTH 16
‘define BUFFER_DEPTH 4
‘define SOFT_ECC 1

// file list for build: small
top.v
fifo.v
bus.v
software_ecc/ecc.v

Web-Based Code Reviews Challenge:
In-person Code Reviews are:

Inconvenient
Hard to concentrate on
the code
No written record of the
review

Review Board to the rescue

Future Work: Registers
Challenge:
Registers are tedious to
maintain manually

Commercial register tools
automate the process
One definitive source turns
into code and
documentation.

Register Spec register tool

Verilog RTL code

SystemVerilog (UVM)

C or C++ header files

verilog header files

documentation (HTML)

documentation (MS Word)

documentation (PDF)

ASIC-Strength Verification in a Fast-Moving FPGA World http://www.fusionio.com bmurdock@fusionio.com

http://www.fusionio.com

