
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Are You Safe Yet? Safety Mechanism Insertion and Validation

Ping Yeung, Jin Hou, Vinayak Desai, Jacob Wiltgen
Mentor, A Siemens Business

Abstract

As functional safety becomes increasingly important in 

today's industrial and automotive designs, many legacy 

designs have to be “upgraded” to meet the safety goal of the 

system. An efficient approach is to use safety synthesis and 

formal verification to incorporate a safety architecture into the 

design. The flow can consist of these major steps: 1) explore 

areas of the design where better fault detections are 

required, 2) introduce the right safety mechanisms into the 

design with safety synthesis, 3) validate the design changes 

with formal verification, and 4) perform formal fault injection 

to measure the diagnostic coverage.

Safety Mechanisms Insertion

Safety Mechanisms for a Safety-Critical Design

Sequential Logic Equivalence Checking (SLEC)

Safety Mechanism Insertion Verification

Safety Mechanism Operation Verification

Implementation Environment

Results

References

[1] ISO 26262-5:2011 Road vehicles Functional safety, Part 5: Product 

development at the hardware level, https://www.iso.org/standard/51360.html

[2] Andrew Hopkins, Silicon evolution for the automotive revolution. ARM White 

Paper, 2019.

[3] Jacob Wiltgen, Reducing Your Fault Campaign Workload Through Effective 

Safety Analysis, Semi Engineering, Aug 2019.

[4] Avidan Efody, Whose Fault Is It? Advanced Techniques for Optimizing ISO 

26262 Fault Analysis. DVCon 2016.

[5] Ping Yeung, et al., Whose Fault Is It Formally? Formal Techniques for 

Optimizing ISO 26262 Fault Analysis. DVCon 2018. 

[6] Doug Smith, It’s Not My Fault! How to Run a Better Fault Campaign Using 

Formal. Verification Academy, Jun 2018.

[7] Austemper Annealer User Guide, Mentor, A Siemens Business, 2019.

[8] Questa SLEC User Guide, Mentor, A Siemens Business, 2019.

A golden (no-fault) model and a fault injected model are 

used to perform on-the-fly fault injection and result analysis. 

By instantiating a design with a copy of itself, all legal input 

values are automatically specified for SLEC, just as a golden 

reference model in simulation predicts all expected outputs 

for any input stimulus. By comparing a fault injected design 

with a copy of itself without faults, the formal tool checks if 

there is any possible way for the fault to either escape to the 

outputs or go undetected by the safety mechanism. 

The tool, Austemper Annealer [7], was used to perform safety 

synthesis by duplicating part of the design for double modular 

redundancy. The figure above shows the “safe” design and 

the setup of verifying the double modular redundancy safety 

mechanism using SLEC. 

The tool, Questa SLEC [8], was used for SLEC verification. 

We not only compare the outputs of the original design and 

the “safe” design but also compare the outputs of the original 

design and the outputs of the two instances in the “safe’ 

design to make sure that the two instances behavior the 

same as the original design. 

A high-level architecture is shown. For the design interfaces, 

parity checks can be performed to ensure accurate data 

transmission between the interface modules and the interface 

controllers inside the design. Once the data are inside the 

design, they can be protected with data parity on the buses 

and error-correction code (ECC) in storage elements. Critical 

control components such as FSMs and arbitration logic will 

best be protected with triple module redundancy and majority 

voting. Central and embedded processors can be protected 

with double modular redundancy along with lockstep 

checkers.

SLEC can be used to verify:

• Safety Mechanism Insertion, ensuring that the functionality 

of the original design is not changed by the addition of the 

safety mechanisms (SMs)

• Safety Mechanism Operation, ensuring that the inserted 

functional safety mechanisms are working as designed.

Register-level safety mechanisms include:

• Parity generation and checking for critical control elements.

• Double modular redundancy for a selected list of registers.

• Triple modular redundancy for a selected list of registers.

• Error correction, and single-error correction with double-

error detection for banks of registers. 

• Protocol checking ensures valid state transitions for finite 

state machines

Module-level safety mechanisms include:

• Double modular redundancy along with lockstep checker.

• Triple modular redundancy along with lockstep checker and 

majority voting

• Input and output parity checking on groups of interface 

signals 

• Memory parity generation and checking

A triple modular redundancy (TMR) is used as the safety 

mechanism to protect the design. By comparing Design A 

(without safety mechanism) and Design B (with TMR), SLEC 

can mathematically prove that the TMR has been correctly 

inserted into the design. 

This table summarized the many design blocks that have been 

“upgraded” with different safety mechanisms. For AMBA-based 

design block A and block B with duplication insertions, we 

have verified the equivalence between the outputs of the 

original block and the modified (original+safety mechanism) 

block. For block C with ECC insertion, we have verified the 

equivalency between the outputs of the original design and the 

modified design with ECC insertion. 

Safety SLEC result

Mechanism Proven Fired CPU time

AMBA Block A module duplication 24 4 1s

AMBA Block B register duplication 19 0 1s

AMBA Block C ECC logic 16 0 36s

OpenRISC subsystem module duplication 42 0 1s

Ethmac design

(design bug)

module duplication and 

register duplication 
31 23 2s

Ethmac design

(bug fixed)

after bug fixed in safety 

mechanism
54 0 2s

“spec” of the original design while “impl” is the “upgraded” 

design with safety mechanisms. Even though a fault had been 

injected into the design, the output of the design was still 

correct (impl dout the same as the spec dout). The ECC safety 

mechanism had recovered the data from the fault correctly. 

The error detection signal, error_detected, was asserted to 

alert the user of this situation. One the other hand, if an 

injected fault had caused a failure at the comparison point, a 

waveform of the counter-example that captures the fault 

injection and propagation sequence is generated for 

debugging.

https://www.iso.org/standard/51360.html

