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Abstract 
As functional safety becomes increasingly important in today's industrial and automotive designs, many legacy de-

signs have to be “upgraded” to meet the safety goal of the system. An efficient approach is to use safety synthesis 

and formal verification to incorporate a safety architecture into the design. The flow can consist of these major steps: 

1) explore areas of the design where better fault detections are required, 2) introduce the right safety mechanisms 

into the design with safety synthesis, 3) validate the design changes with formal verification, and 4) perform formal 

fault injection to measure the diagnostic coverage. 

 

Introduction 
FMEDA (Failure Mode Effect and Diagnostic Analysis) evaluates the safety architecture with its collection of safety 

mechanisms and calculates the safety performance of the system. In Part 5 of the ISO 26262 [1] specification, a 

hardware architecture needs to be evaluated against the requirements for fault handling. It requires that the probabili-

ties of random hardware failures are rigorously analyzed and quantified via a set of objective metrics [2]. If any of the 

architectural metrics fail to meet the criteria defined for the product’s Automotive Safety Integrity Level (ASIL), 

design teams will be mandated to re-evaluate the component’s safety concept, improve the existing safety mechanisms, 

and if necessary introduce new safety mechanisms.  

To improve diagnostic coverage, a practical approach is to incorporate a collection of safety mechanisms into the 

design so that the number and types of faults detected can be improved. This is best to be done at the register transfer 

level, where functional verification can be performed efficiently. The process can consist of these major steps:  

1) explore areas of the design where better fault detections are needed [3],  

2) introduce safety mechanisms that have the right tradeoff for the RTL structures 

3) validate the design changes with sequential logic equivalence checking (SLEC) 

4) perform fault injection with a formal-based methodology to measure the diagnostic coverage 

 

Safety exploration 
The goal of safety exploration [3] is to identify the optimal safety architecture and safety mechanisms. Safety mech-

anisms come in a variety of flavors, each with its own level of effectiveness in detecting random hardware faults. 

During safety exploration, a series of “what-if” scenarios are performed to understand the impact of different safety 

mechanisms on the design, especially with respect to power, area, performance, safety metrics, and diagnostic cov-

erage. This exploration is performed without modifying the design so that simultaneous analyses can be performed 

quickly and efficiently. If it is done correctly, safety exploration will help design teams meeting the safety targets 

successfully after safety insertion and safety verification are completed. 

 

Safety Mechanisms Insertion 
Modifying a legacy design to introduce safety mechanisms can be an error-prone process. The situation becomes 

worse if the initial safe mechanism does not meet the safety goal, and a different mechanism has to be used. Hence, 

safety synthesis is a new approach to augment design structures to improve fault tolerance.  To create a safety archi-

tecture for legacy designs, safety synthesis introduces two types of safety mechanism automatically. One is used at 

the register-level, and the other is used at the module level.  

 



Register-level insertion is more surgical and inserts safety mechanisms at the flip-flop level, such as register duplica-

tion and parity. This approach is commonly used to protect control and state machine structures. Some Register-

level safety mechanisms include: 

 

1. Parity generation and checking for critical control elements. 

2. Double modular redundancy for a selected list of registers. 

3. Triple modular redundancy for a selected list of registers. 

4. Error correction, and single-error correction with double-error detection for banks of registers.  

5. Protocol checking ensures valid state transitions for finite state machines 

 

 
Figure 1, Parity generation and checking for control registers 

 

Safety synthesis can add parity checking to all or a list of special registers in a module, Figure 1. Error-correction 

code (ECC), single-error correct with double-error detect (SECDED), can also be used for a bank of registers. In this 

mode, safety synthesis groups the registers by name and adds ECC by creating a syndrome. Later, the syndrome is 

used to determine whether there is an error and to recover the error from it. For finite state machines, safety synthe-

sis will elaborate the valid state space and the state transition matrix to build a protocol checking safety mechanism. 

 

Module-level insertion creates redundancy-based safety mechanisms at the instance level. Some module-level safety 

mechanisms include: 

 

1. Double modular redundancy along with lockstep checker. 

2. Triple modular redundancy along with lockstep checker and majority voting 

3. Input and output parity checking on groups of interface signals  

4. Memory parity generation and checking 

 

 
Figure 2, Double modular redundancy along with lockstep checker. 

 

In Figure 2, safety synthesis creates a second instance of the module, and makes appropriate connections for all the 

outputs and inputs between the first and second instance, along with the lockstep checker. 

 



For each safety mechanism, there are tradeoffs concerning efficiency, fault detection latency, and area overhead. 

Figure 3 shows where safety mechanisms can be used in a safety-critical design. 

 

 

 
Figure 3, Example Safety Mechanisms for a Safety-Critical Design 

 

A high-level architecture is shown in Figure 3. For the design interfaces, parity checks can be performed to ensure 

accurate data transmission between the interface modules and the interface controllers inside the design. Once the 

data are inside the design, they can be protected with data parity on the buses and error-correction code (ECC) in 

storage elements. On-chip bus transactions can be observed by dedicated bus monitors. Critical control components 

such as FSMs and arbitration logic will best be protected with triple module redundancy and majority voting. Cen-

tral and embedded processors can be protected with double modular redundancy along with lockstep checkers. 

 

Sequential Logic Equivalence Checking (SLEC) 
 

 
 

Figure 4, Sequential Logic Equivalence Checking 

 

Sequential Logic Equivalence Checking (SLEC) formally verifies that two designs are functionally equivalent using 

formal verification technology, Figure 4. The implementation of the two designs can be different as long as the out-

puts are always the same. When SLEC proves the equivalence of two signals, one from each design, the two signals 

are equivalent for all inputs and for all times. If any signal pair are not equivalent, SLEC automatically generates an 

error trace using waveforms to show the cause-and-effect of the problem. When all outputs of the two designs are 

proven equivalent, we can be confident that the two designs are functionally equivalent. 

 

 

with safety mechanisms 



Hence, SLEC can be used to verify: 

 

 Safety Mechanism Insertion, ensuring that the functionality of the original design is not changed by the addition 

of the safety mechanisms (SMs) 

 Safety Mechanism Operation, ensuring that the inserted functional safety mechanisms are working as designed. 

 

Safety Mechanism Insertion Verification 
After the insertion of safety mechanisms, it is important to ensure that the designs before & after insertion are func-

tionally equivalent.  Instead of verifying the functionality of the safety mechanism instrumented design using simu-

lation regression, sequential logic equivalence checking (SLEC) is a more direct and comprehensive approach.  

 

 
Figure 5, Safety Mechanism Insertion Verification with SLEC  

 

In Figure 5, triple modular redundancy (TMR) is used as the safety mechanism to protect the design. By comparing 

Design A (without safety mechanism) and Design B (with TMR), SLEC can mathematically prove that the TMR has 

been correctly inserted into the design. This approach gives us better confidence as functional simulation can only 

simulate limited numbers of input sequences to verify the operation of the TMR.  

 

Safety Mechanism Operation Verification 
 

 
Figure 6, Safety Mechanism Operation Verification with Formal-based Fault Injection 

 

Is the safety mechanism working? After the safety mechanisms have been introduced correctly, fault injection can 

be performed with a formal-based methodology [4][5]. Failure Mode and Effects Analysis (FMEA) can determine 

whether the safety mechanism is sufficient. The formal methodology is set up to inject both stuck-at and transient 

faults into a design, clock the fault through the design’s state space, and see if the fault is propagated, masked, or 

detected by the safety mechanisms.  

 

 

 



As depicted in Figure 6, a golden (no-fault) model and a fault injected model are used to perform on-the-fly fault 

injection and result analysis. By instantiating a design with a copy of itself, all legal input values are automatically 

specified for SLEC, just as a golden reference model in simulation predicts all expected outputs for any input stimu-

lus. By comparing a fault injected design with a copy of itself without faults, the formal tool checks if there is any 

possible way for the fault to either escape to the outputs or go undetected by the safety mechanism.  

 

The steps of the fault injection with SLECFS can be summarized as: 

1. Specify two copies of the original design for SLEC. The input ports will be constrained together, and the output 

comparison will be checked automatically. 

2. Run SLEC to identify any design elements — such as memory black boxes, unconnected wires, un-resettable 

registers, etc. — that will cause the outputs to be different. Constraints are added to synchronize them. 

3. Use the fault list to automatically specify possible injection points in the faulty design. Normally, we focus on 

the single point faults; i.e., one fault is injected to check for equivalency. 

4. Based on the fault list and the comparison points, SLEC automatically identifies and remove any redundant 

blocks and logic. 

5. Run SLEC concurrently on multiple servers. The multi-core approach has significant performance advantage 

as multiple outputs can be checked on multiple cores concurrently. 

6. If an injected fault has caused a failure at the comparison point, a waveform of the counter-example that 

captures the fault injection and propagation sequence can be generated for debugging. 

Results 
This methodology has been used to incorporate a safety architecture in the memory sub-system of an AMBA-based 

design. After safety exploration, safety synthesis is performed to insert a safety mechanism, double modular redun-

dancy, into the memory sub-system. SLEC is used to verify the equivalence between the original design and the 

“safe” design to make sure the functionality of the “safe” design was not altered. 

 

The tool, Austemper Annealer [7], was used to perform safety synthesis by duplicating part of the design for double 

modular redundancy. Figure 7 shows the “safe” design and the setup of verifying the double modular redundancy 

safety mechanism using SLEC. We not only compare the outputs of the original design and the “safe” design but 

also compare the outputs of the original design and the outputs of the two instances in the “safe’ design to make sure 

that the two instances behavior the same as the original design.  

 
 

Figure 7. The flow of verifying double module redundancy with SLEC  

 

The tool, Questa SLEC [8], was used for SLEC verification. The script to run Questa SLEC for verifying the safe 

design with double module redundancy is shown in Figure 8. From the script, we can see that to run Questa SLEC is 

simple: first compile the two designs, then configure the original design as specification and the safe design as im-

plementation. Questa automatically maps the inputs of the two designs as assumptions and drives the inputs the 

same; it also automatically maps the outputs of the two designs as target for formal engines to verify their equiva-

lence. To verify the equivalence between the original design and the two instances in the safe design, we need to add 



the two “slec map” commands in the script that map the outputs of the original design and the outputs of instance1 

or instance2 as target respectively. 

 

 
Figure 8. The script to run SLEC to verify the safe design 

 

  
Safety SLEC result 

Mechanism Proven Fired CPU time 

AMBA Block A module duplication 24 4 1s 

AMBA Block B register duplication 19 0 1s 

AMBA Block C ECC logic 16 0 36s 

OpenRISC subsystem module duplication 42 0 1s 

Ethmac design 
(design bug) 

module duplication and  
register duplication  31 23 2s 

Ethmac design 
(bug fixed) 

after bug fixed in safety 
mechanism 54 0 2s 

Table 1. Results of safety mechanism verification for various designs 

 

Table 1 summarized the many design blocks that have been “upgraded” with different safety mechanisms. For 

AMBA-based design block A and block B with duplication insertions, we have verified the equivalence between the 

outputs of the original block and the modified (original+safety mechanism) block. For block C with ECC insertion, 

we have verified the equivalency between the outputs of the original design and the modified design with ECC in-

sertion.  

 

We had also applied this methodology to a sub-system of OpenRISC 1200 design and ethmac design. For example, 

the first run of comparing the original Ethmac design and the updated version with injected safety mechanism found 

23 firings, including output non-equivalence and instance duplication non-equivalence. The results from Questa 

SLEC is shown in Figure 9 below. 

 

 
Figure 9. SLEC output non-equivalence violations in the Ethmac design 

 



Since the firings were marked with warnings (symbol ), we checked the design schematic and found floating 

signals (empty, cnt, etc.) in the updated design, depicted in Figure 10. We debugged the source code and found the 

errors in the module instantiations. After the bug was fixed, and rerun SLEC using the new injected safety mecha-

nism, all equivalence targets were proven.  

 

  
Figure 10, Safety Mechanisms with floating signals in the Ethmac design 

 

After verifying that the safety mechanisms have been inserted correctly, faults were injected to test the operation of 

the safety mechanism. We were focusing on single-point faults (where one fault is injected at a time). Based on the 

fault list and the output comparison points, Questa SLEC will derive their dependency. Then, for each of the output 

comparison points, it will determine whether any fault can be introduced to cause the outputs to be different.  

 

 
Figure 11. Fault injection that had caused errors in the design 

 

In Figure 11, “spec” of the original design while “impl” is the “upgraded” design with safety mechanisms. We can 

see that even though a fault had been injected into the design, the output of the design was still correct (impl dout the 

same as the spec dout). The ECC safety mechanism had recovered the data from the fault correctly. The error 

detection signal, error_detected, was asserted to alert the user of this situation. One the other hand, if an injected 

fault had caused a failure at the comparison point, a waveform of the counter-example that captures the fault 

injection and propagation sequence is generated for debugging. 
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