
Are You Safe Yet? Safety Mechanism Insertion and Validation

 Ping Yeung, Jin Hou, Vinayak Desai Jacob Wiltgen

 Mentor Graphics, Fremont Mentor Graphics, Longmont

Abstract
As functional safety becomes increasingly important in today's industrial and automotive designs, many legacy de-

signs have to be “upgraded” to meet the safety goal of the system. An efficient approach is to use safety synthesis

and formal verification to incorporate a safety architecture into the design. The flow can consist of these major steps:

1) explore areas of the design where better fault detections are required, 2) introduce the right safety mechanisms

into the design with safety synthesis, 3) validate the design changes with formal verification, and 4) perform formal

fault injection to measure the diagnostic coverage.

Introduction
FMEDA (Failure Mode Effect and Diagnostic Analysis) evaluates the safety architecture with its collection of safety

mechanisms and calculates the safety performance of the system. In Part 5 of the ISO 26262 [1] specification, a

hardware architecture needs to be evaluated against the requirements for fault handling. It requires that the probabili-

ties of random hardware failures are rigorously analyzed and quantified via a set of objective metrics [2]. If any of the

architectural metrics fail to meet the criteria defined for the product’s Automotive Safety Integrity Level (ASIL),

design teams will be mandated to re-evaluate the component’s safety concept, improve the existing safety mechanisms,

and if necessary introduce new safety mechanisms.

To improve diagnostic coverage, a practical approach is to incorporate a collection of safety mechanisms into the

design so that the number and types of faults detected can be improved. This is best to be done at the register transfer

level, where functional verification can be performed efficiently. The process can consist of these major steps:

1) explore areas of the design where better fault detections are needed [3],

2) introduce safety mechanisms that have the right tradeoff for the RTL structures

3) validate the design changes with sequential logic equivalence checking (SLEC)

4) perform fault injection with a formal-based methodology to measure the diagnostic coverage

Safety exploration
The goal of safety exploration [3] is to identify the optimal safety architecture and safety mechanisms. Safety mech-

anisms come in a variety of flavors, each with its own level of effectiveness in detecting random hardware faults.

During safety exploration, a series of “what-if” scenarios are performed to understand the impact of different safety

mechanisms on the design, especially with respect to power, area, performance, safety metrics, and diagnostic cov-

erage. This exploration is performed without modifying the design so that simultaneous analyses can be performed

quickly and efficiently. If it is done correctly, safety exploration will help design teams meeting the safety targets

successfully after safety insertion and safety verification are completed.

Safety Mechanisms Insertion
Modifying a legacy design to introduce safety mechanisms can be an error-prone process. The situation becomes

worse if the initial safe mechanism does not meet the safety goal, and a different mechanism has to be used. Hence,

safety synthesis is a new approach to augment design structures to improve fault tolerance. To create a safety archi-

tecture for legacy designs, safety synthesis introduces two types of safety mechanism automatically. One is used at

the register-level, and the other is used at the module level.

Register-level insertion is more surgical and inserts safety mechanisms at the flip-flop level, such as register duplica-

tion and parity. This approach is commonly used to protect control and state machine structures. Some Register-

level safety mechanisms include:

1. Parity generation and checking for critical control elements.

2. Double modular redundancy for a selected list of registers.

3. Triple modular redundancy for a selected list of registers.

4. Error correction, and single-error correction with double-error detection for banks of registers.

5. Protocol checking ensures valid state transitions for finite state machines

Figure 1, Parity generation and checking for control registers

Safety synthesis can add parity checking to all or a list of special registers in a module, Figure 1. Error-correction

code (ECC), single-error correct with double-error detect (SECDED), can also be used for a bank of registers. In this

mode, safety synthesis groups the registers by name and adds ECC by creating a syndrome. Later, the syndrome is

used to determine whether there is an error and to recover the error from it. For finite state machines, safety synthe-

sis will elaborate the valid state space and the state transition matrix to build a protocol checking safety mechanism.

Module-level insertion creates redundancy-based safety mechanisms at the instance level. Some module-level safety

mechanisms include:

1. Double modular redundancy along with lockstep checker.

2. Triple modular redundancy along with lockstep checker and majority voting

3. Input and output parity checking on groups of interface signals

4. Memory parity generation and checking

Figure 2, Double modular redundancy along with lockstep checker.

In Figure 2, safety synthesis creates a second instance of the module, and makes appropriate connections for all the

outputs and inputs between the first and second instance, along with the lockstep checker.

For each safety mechanism, there are tradeoffs concerning efficiency, fault detection latency, and area overhead.

Figure 3 shows where safety mechanisms can be used in a safety-critical design.

Figure 3, Example Safety Mechanisms for a Safety-Critical Design

A high-level architecture is shown in Figure 3. For the design interfaces, parity checks can be performed to ensure

accurate data transmission between the interface modules and the interface controllers inside the design. Once the

data are inside the design, they can be protected with data parity on the buses and error-correction code (ECC) in

storage elements. On-chip bus transactions can be observed by dedicated bus monitors. Critical control components

such as FSMs and arbitration logic will best be protected with triple module redundancy and majority voting. Cen-

tral and embedded processors can be protected with double modular redundancy along with lockstep checkers.

Sequential Logic Equivalence Checking (SLEC)

Figure 4, Sequential Logic Equivalence Checking

Sequential Logic Equivalence Checking (SLEC) formally verifies that two designs are functionally equivalent using

formal verification technology, Figure 4. The implementation of the two designs can be different as long as the out-

puts are always the same. When SLEC proves the equivalence of two signals, one from each design, the two signals

are equivalent for all inputs and for all times. If any signal pair are not equivalent, SLEC automatically generates an

error trace using waveforms to show the cause-and-effect of the problem. When all outputs of the two designs are

proven equivalent, we can be confident that the two designs are functionally equivalent.

with safety mechanisms

Hence, SLEC can be used to verify:

 Safety Mechanism Insertion, ensuring that the functionality of the original design is not changed by the addition

of the safety mechanisms (SMs)

 Safety Mechanism Operation, ensuring that the inserted functional safety mechanisms are working as designed.

Safety Mechanism Insertion Verification
After the insertion of safety mechanisms, it is important to ensure that the designs before & after insertion are func-

tionally equivalent. Instead of verifying the functionality of the safety mechanism instrumented design using simu-

lation regression, sequential logic equivalence checking (SLEC) is a more direct and comprehensive approach.

Figure 5, Safety Mechanism Insertion Verification with SLEC

In Figure 5, triple modular redundancy (TMR) is used as the safety mechanism to protect the design. By comparing

Design A (without safety mechanism) and Design B (with TMR), SLEC can mathematically prove that the TMR has

been correctly inserted into the design. This approach gives us better confidence as functional simulation can only

simulate limited numbers of input sequences to verify the operation of the TMR.

Safety Mechanism Operation Verification

Figure 6, Safety Mechanism Operation Verification with Formal-based Fault Injection

Is the safety mechanism working? After the safety mechanisms have been introduced correctly, fault injection can

be performed with a formal-based methodology [4][5]. Failure Mode and Effects Analysis (FMEA) can determine

whether the safety mechanism is sufficient. The formal methodology is set up to inject both stuck-at and transient

faults into a design, clock the fault through the design’s state space, and see if the fault is propagated, masked, or

detected by the safety mechanisms.

As depicted in Figure 6, a golden (no-fault) model and a fault injected model are used to perform on-the-fly fault

injection and result analysis. By instantiating a design with a copy of itself, all legal input values are automatically

specified for SLEC, just as a golden reference model in simulation predicts all expected outputs for any input stimu-

lus. By comparing a fault injected design with a copy of itself without faults, the formal tool checks if there is any

possible way for the fault to either escape to the outputs or go undetected by the safety mechanism.

The steps of the fault injection with SLECFS can be summarized as:

1. Specify two copies of the original design for SLEC. The input ports will be constrained together, and the output

comparison will be checked automatically.

2. Run SLEC to identify any design elements — such as memory black boxes, unconnected wires, un-resettable

registers, etc. — that will cause the outputs to be different. Constraints are added to synchronize them.

3. Use the fault list to automatically specify possible injection points in the faulty design. Normally, we focus on

the single point faults; i.e., one fault is injected to check for equivalency.

4. Based on the fault list and the comparison points, SLEC automatically identifies and remove any redundant

blocks and logic.

5. Run SLEC concurrently on multiple servers. The multi-core approach has significant performance advantage

as multiple outputs can be checked on multiple cores concurrently.

6. If an injected fault has caused a failure at the comparison point, a waveform of the counter-example that

captures the fault injection and propagation sequence can be generated for debugging.

Results
This methodology has been used to incorporate a safety architecture in the memory sub-system of an AMBA-based

design. After safety exploration, safety synthesis is performed to insert a safety mechanism, double modular redun-

dancy, into the memory sub-system. SLEC is used to verify the equivalence between the original design and the

“safe” design to make sure the functionality of the “safe” design was not altered.

The tool, Austemper Annealer [7], was used to perform safety synthesis by duplicating part of the design for double

modular redundancy. Figure 7 shows the “safe” design and the setup of verifying the double modular redundancy

safety mechanism using SLEC. We not only compare the outputs of the original design and the “safe” design but

also compare the outputs of the original design and the outputs of the two instances in the “safe’ design to make sure

that the two instances behavior the same as the original design.

Figure 7. The flow of verifying double module redundancy with SLEC

The tool, Questa SLEC [8], was used for SLEC verification. The script to run Questa SLEC for verifying the safe

design with double module redundancy is shown in Figure 8. From the script, we can see that to run Questa SLEC is

simple: first compile the two designs, then configure the original design as specification and the safe design as im-

plementation. Questa automatically maps the inputs of the two designs as assumptions and drives the inputs the

same; it also automatically maps the outputs of the two designs as target for formal engines to verify their equiva-

lence. To verify the equivalence between the original design and the two instances in the safe design, we need to add

the two “slec map” commands in the script that map the outputs of the original design and the outputs of instance1

or instance2 as target respectively.

Figure 8. The script to run SLEC to verify the safe design

Safety SLEC result

Mechanism Proven Fired CPU time

AMBA Block A module duplication 24 4 1s

AMBA Block B register duplication 19 0 1s

AMBA Block C ECC logic 16 0 36s

OpenRISC subsystem module duplication 42 0 1s

Ethmac design
(design bug)

module duplication and
register duplication 31 23 2s

Ethmac design
(bug fixed)

after bug fixed in safety
mechanism 54 0 2s

Table 1. Results of safety mechanism verification for various designs

Table 1 summarized the many design blocks that have been “upgraded” with different safety mechanisms. For

AMBA-based design block A and block B with duplication insertions, we have verified the equivalence between the

outputs of the original block and the modified (original+safety mechanism) block. For block C with ECC insertion,

we have verified the equivalency between the outputs of the original design and the modified design with ECC in-

sertion.

We had also applied this methodology to a sub-system of OpenRISC 1200 design and ethmac design. For example,

the first run of comparing the original Ethmac design and the updated version with injected safety mechanism found

23 firings, including output non-equivalence and instance duplication non-equivalence. The results from Questa

SLEC is shown in Figure 9 below.

Figure 9. SLEC output non-equivalence violations in the Ethmac design

Since the firings were marked with warnings (symbol), we checked the design schematic and found floating

signals (empty, cnt, etc.) in the updated design, depicted in Figure 10. We debugged the source code and found the

errors in the module instantiations. After the bug was fixed, and rerun SLEC using the new injected safety mecha-

nism, all equivalence targets were proven.

Figure 10, Safety Mechanisms with floating signals in the Ethmac design

After verifying that the safety mechanisms have been inserted correctly, faults were injected to test the operation of

the safety mechanism. We were focusing on single-point faults (where one fault is injected at a time). Based on the

fault list and the output comparison points, Questa SLEC will derive their dependency. Then, for each of the output

comparison points, it will determine whether any fault can be introduced to cause the outputs to be different.

Figure 11. Fault injection that had caused errors in the design

In Figure 11, “spec” of the original design while “impl” is the “upgraded” design with safety mechanisms. We can

see that even though a fault had been injected into the design, the output of the design was still correct (impl dout the

same as the spec dout). The ECC safety mechanism had recovered the data from the fault correctly. The error

detection signal, error_detected, was asserted to alert the user of this situation. One the other hand, if an injected

fault had caused a failure at the comparison point, a waveform of the counter-example that captures the fault

injection and propagation sequence is generated for debugging.

References
[1] ISO 26262-5:2011 Road vehicles Functional safety, Part 5: Product development at the hardware level,

https://www.iso.org/standard/51360.html
[2] Andrew Hopkins, Silicon evolution for the automotive revolution. ARM White Paper, 2019.
[3] Jacob Wiltgen, Reducing Your Fault Campaign Workload Through Effective Safety Analysis, Semi Engineering,

Aug 2019.
[4] Avidan Efody, Whose Fault Is It? Advanced Techniques for Optimizing ISO 26262 Fault Analysis. DVCon 2016.
[5] Ping Yeung, et al., Whose Fault Is It Formally? Formal Techniques for Optimizing ISO 26262 Fault Analysis.

DVCon 2018.
[6] Doug Smith, It’s Not My Fault! How to Run a Better Fault Campaign Using Formal. Verification Academy, Jun

2018.
[7] Austemper Annealer User Guide, Mentor, A Siemens Business, 2019.
[8] Questa SLEC User Guide, Mentor, A Siemens Business, 2019.

https://www.iso.org/standard/51360.html

