
Are you really confident that you are getting the very

best from your verification resources?

Darron May

Design Verification Technology Division

Mentor Graphics Inc

Newbury, UK

darron_may@mentor.com

Fritz Ferstl

CTO

Univa

Regensburg, Germany

fferstl@univa.com

Abstract — Getting the very best from your verification resources

requires a regression system that understands the verification

process and is tightly integrated with Workload Management

and Distributed Resource Management software. Both

requirements depend on visibility into available software and

hardware resources, and by combining their strengths, users can

massively improve productivity by reducing unnecessary

verification cycles.

I. INTRODUCTION

Your last project had your compute grid running constantly
at 100 percent capacity and your simulation licenses were
maxed out most of the time. The next chip is twice as large so
you must have to double or treble your resources.

Or maybe there is another way based on smart combination
of the grid and regression management systems to ensure that
every verification cycle is a valid cycle. This paper will show
how adding control and visibility to these systems, and then
better integrating them, will help your organization get the very
best from every verification dollar. The paper will also explain
how a regression system can be developed with the
infrastructure to control and monitor exactly what is
happening. This addition of intelligent automation allows
dynamic reaction to the current status and create the maximum
throughput and capacity. The diagram in Figure 1 shows the
major parts of the complete system that will be explained in
this paper.

Not getting the most from technical infrastructure used in a
product development cycle can be expensive. The cost, which
include software licenses, fixed assets, and wasted time, often
can exceed that of the original investment in the infrastructure.
This is why it’s essential to monitor usage on a job-by-job
basis, which requires integration between the license and grid
scheduling software to provide for complete visibility.
Accounting for metrics such as code churn, bug status as a sign
of completion, and performance criteria for bus fabrics or
bandwidth within communications applications while
integrating the grid, regression and simulation software can
paint an even more complete picture of what is happening in
the verification environment. This paper will also describe how
to combine these metrics to better track both verification
resources and overall verification progress, and how to do so

within the tight timescales required to produce right-first-time
silicon.

Figure 1 - Block Diagram of Compete System

II. THE REGRESSION SYSTEM

Twin demands increased quality and shortened design
cycles put pressure on IP and SoC houses to leverage
automation throughout their design and verification processes.
In the verification space, these pressures require verification
engineers to get more efficient contending with tasks such as
coverage closure, bug hunting, smoke and soak testing, all of
which are done through running lots of regressions. Regression
systems can be heavily scripted, and are often developed and
understood by just a small handful of people within a larger
organization. Historical baggage is carried over from project to
project, and sometimes the majority of users don’t even know
why they have to run a particular script. It just works until it
doesn’t.

To get the full benefits of automation, a regression system
needs to be able to automate management of seeds for
constrained random tests; rerun failed tests automatically,
perhaps with more debug visibility; merge coverage across
multiple runs; manage tool timeouts; and interface to compute
resources. Complexity and capabilities grow over time, a major
downfall of regression systems based on scripting alone.

Having the capture, control, automation and status of the
regression system wrapped up within one complex script or a
series of scripts that call each other can lead to
maintenance nightmares. An organization’s verification
resources should be focused on verifying designs not
debugging environment infrastructure.

Using a purpose-built regression system can give
verification engineers maximum productivity
the maintenance burden. User productivity
most aspects of verification management including capacity,
performance, resource usage, turnaround time, preparation,
maintenance, results and coverage analysis.

A regression system can be broken down into the
and configuration, the control of when and how the actions are
run, automation of the tedious tasks of gathering data such as
coverage data and acting upon results, and finally the
into the regression status and results.

A. Capture

Capturing regression complexity requires abstract
the running a script with a sequence of commands. To be able
to control a regression system and produce actionable data for
further actions, a method of separating the control
actions from their configuration data is required.
between actions — the tasks of building, optimizing and
running simulations — must be defined. The
complete and an optimization performed before the
are run. Defining sequential and non-sequential dependences
allows multiple parts of the build or multiple simulations to be
run in parallel. Parameterization, key to global and local
settings, allows actions to be configured to run in different
ways. An action could have a setting for
optimized, coverage versus no coverage, or even
to run multiple versions of a particular tool. A system that is
based on inheritance can save valuable time capturing the same
settings over and over, with only small changes

The main building block within Questa Verification Run
Manager is called the runnable. It can be a group, base type or
task. A group runnable allows hierarchy to be constructed
inheriting dependencies and parameters from their p
Groups can have pre and post actions executed once per group
and allowing tasks such as setup and clean-
can also come from a base runnable, thus allowing inheritance
to be injected at any level of the hierarchy. The task runnable i
the leaf-level action. The commands executed at this leaf level
can be launched using any type of shell, the default being the
simulator interpreter.

Runnables can be defined as sequential or non
allowing for either serial or parallel actions. Their execution
can also be conditional and repeated using either a count or a
list of parameter values. The execution area is a managed
directory structure. It is possible to define local files that are
either copied or linked into this area so that all paths and
references can be relative and used by multiple users. This
architecture means multiple regressions of the same design
be in flight simultaneously without each regression stepping on
the other.

Having the capture, control, automation and status of the
regression system wrapped up within one complex script or a
series of scripts that call each other can lead to execution and
maintenance nightmares. An organization’s verification
resources should be focused on verifying designs not

built regression system can give
productivity while reducing

the maintenance burden. User productivity can be boosted in
aspects of verification management including capacity,

performance, resource usage, turnaround time, preparation,

em can be broken down into the capture
of when and how the actions are

of the tedious tasks of gathering data such as
coverage data and acting upon results, and finally the visibility

complexity requires abstracting away
running a script with a sequence of commands. To be able

to control a regression system and produce actionable data for
further actions, a method of separating the control of individual
actions from their configuration data is required. Dependences

the tasks of building, optimizing and
The build needs to

performed before the simulations
sequential dependences

multiple parts of the build or multiple simulations to be
, key to global and local

actions to be configured to run in different
setting for debug versus

coverage versus no coverage, or even just the ability
to run multiple versions of a particular tool. A system that is
based on inheritance can save valuable time capturing the same

, with only small changes.

The main building block within Questa Verification Run
can be a group, base type or

task. A group runnable allows hierarchy to be constructed,
and parameters from their parent.

Groups can have pre and post actions executed once per group
-down. Inheritance

allowing inheritance
to be injected at any level of the hierarchy. The task runnable is

he commands executed at this leaf level
can be launched using any type of shell, the default being the

Runnables can be defined as sequential or non-sequential,
allowing for either serial or parallel actions. Their execution
can also be conditional and repeated using either a count or a
list of parameter values. The execution area is a managed

is possible to define local files that are
her copied or linked into this area so that all paths and

references can be relative and used by multiple users. This
multiple regressions of the same design can

without each regression stepping on

The runnable configuration allows
runtime graph of all the actions
dependencies. Figure 2 shows the runnables and how to
the hierarchy within the XML configuration file.

Figure 2 - Runnable Configuration

 User questions or overrides can be applied to adjust the
parameters, which in turn can completely change the graph.
This provides a solid infrastructure for
on or between multiple projects
capture gives maximum flexibility.

Figure 3 - Execution Graph

Figure 3 shows how the different parts of the defined flow
in the XML in Figure 1 become an execution graph. Here we
see directed tests colored cream, register tests in cyan, random
tests in yellow, good and bad seed tests in orange
formal proof runs in green. Note
a dependency graph so that the underlying execution can
control them as separate actions, running them in parallel or
applying other restrictions so
ready.

B. Control

Separating capture and execution
control over how and when the actions are executed. The
runnable configures how the action is executed, the default
being to run the action locally
using ‘rsh,’ ‘ssh’ or grid software. Methods can be conditional
(based on parameters) and inherited
making switching execution method very flexible. The method
holds information about how to intera
resource (for example, the grid submission commands
how to suspend, resume or kill jobs. This layer provides the

configuration allows for constructing a
runtime graph of all the actions, and their scheduling and

shows the runnables and how to define
configuration file.

Runnable Configuration

overrides can be applied to adjust the
which in turn can completely change the graph.

infrastructure for reusing any setup, either
on or between multiple projects. And separating control from

maximum flexibility.

shows how the different parts of the defined flow
become an execution graph. Here we
cream, register tests in cyan, random

ood and bad seed tests in orange, and finally
Note how the actions are built into

a dependency graph so that the underlying execution can
control them as separate actions, running them in parallel or

 the actions are run only when

and execution of actions gives complete
control over how and when the actions are executed. The
runnable configures how the action is executed, the default
being to run the action locally though it could also be to run

’ ‘ssh’ or grid software. Methods can be conditional
and inherited (from a parent or a base),

making switching execution method very flexible. The method
holds information about how to interact with the execution

the grid submission commands); and
how to suspend, resume or kill jobs. This layer provides the

user with a simple grid interface making it easy to
automatically kill all the submitted jobs for a regression
automatically if the regression is stopped. It also allows for
array jobs, in which actions are packaged into arrays and
passed to the grid in a single command. The grid software can
then efficiently unpack and manage the jobs. Job grouping is
also available in which actions are grouped together and
executed at once. This is extremely useful when job latency
and start-up are expensive for short actions, allowing the
overhead to be consumed across multiple jobs. All of this is
achievable by adjusting a couple of parameters to enable the
packing of jobs by the regression system.

Methods have associated queues with a variable maximum
running parameter, which allows pre-balancing and scheduling
between actions. This allows extra scheduling and job
management even before the actions reach the grid or can
allow load balancing between machines than are not part of a
grid. Time-out’s can be set for both queuing and run time of
actions via parameters. This automatically manages jobs that
hang and jobs that never get started.

A state machine manages each action and the running of all
actions as a complete flow. Routines are called at certain times
during the life of the regression and action; for example, when
an action is scheduled, when an action has started or before the
next action is started. Routines have default implementations
but can be overridden by the user. So a regression might be set
to stop when an event occurs, at a certain wall clock time, at a
certain level of coverage or when more than a certain number
of actions have failed.

Figure 4 - Execution of actions via queues

C. Automation

Automating a system that separates capture and control is
straightforward. The regression system needs to find the correct
data and enable customized triggering of new verification tasks
based off the results of earlier runs. Either the status returned
from an action’s execution or the UCIS UCDB (Unified
Coverage DataBase) test record can be used to indicate the
pass/fail status of a completed job. The test record has a
TESTSTATUS attribute automatically set to the worst severity
that occurred during simulation. Setting the value of an in-built
parameter to the resulting UCDB file location will cause the

status to be used. Setting an in-built parameter to point to a
triage database will cause the failing actions to automatically
generate a triage action to extract and store the relevant failure
information. The failure can also trigger a re-run of the action
with modified parameters that might, for example, enable full
visibility and waveform capture for the test. The re-run can be
further configured either to run immediately after the failure
occurred or later as part of a global re-run at the end of the
regression, after automatic analysis on which failures should be
re-run. Set up properly, all data necessary to debug and analyze
a nightly regression could be available when you come into the
office in the morning.

Setting an in-built parameter to point to a merge coverage
database file location automatically adds individual test results
to a merge queue list. A queue is managed and actions are
added, which merge the coverage from the passing tests into
the merge UCDB, which in turn makes the incremental results
available. If a testplan is being used to drive the verification
process, then setting a built-in parameter to define the testplan
file will ensure that the testplan is imported and merged with
the merged coverage database.

With a constrained random methodology, seed management
is required. Using a built-in parameter for the seed allows the
seed to be random, then, if a re-run is needed, the seed
generated the last time the action was run will be used again.
Lists of seeds that caused good and bad behavior can be used to
run new regression runs. The output from each action can also
be managed automatically using auto-delete to clean up
temporary files or output files that are not needed when tests
pass, optimizing valuable storage capacity.

D. Visibility

Visibility is required to see which actions have completed,
which ones are still running, and which actions can be run.
User preferences differ, so it’s good to provide the verification
engineer flexibility in how he looks at regression status. The
user interface allows for starting, monitoring and analyzing all
of the actions within the regression. A command line is also
available to allow the same status information to be visible
directly from the shell. This command line can also be used to
query the regression configuration to figure out what actions
and parameters are available to guild their use of the tool.
Regression results are also available in HTML to allow
viewing within an external viewer.

Having a regression system that separates the control from
the configuration data improves its overall maintenance and
user productivity. Major features can be coded into the system
itself instead of added as a series of scripts with multiple
calling levels, which often lead to a debug nightmare.

III. WORKLOAD MANAGEMENT AND DISTRIBUTED

RESOURCE MANAGEMENT

Software for Workload Management (WLM) and
Distributed Resource Management (DRM) has become a
fundamental building block of compute farms or grids and
large-scale technical computing data centers. It is as crucial as
the networking infrastructure or file sharing services and
provides a similar type of service (and potential bottleneck) to
data centers that a conveyor provides to the assembly line in an

industrial manufacturing factory: if it slows down, the
production gets severely impeded, and if it stops, then
everything comes to a screeching halt. This potential risk is
amplified by several major IT trends:

• Technical computing (i.e. computer aided design,
simulation, verification and testing) has become the
base-line of innovation across all industry sectors, and
Electronic Design Automation (EDA) has been on the
forefront of this process for significantly more than a
decade.

• Technical computing data centers never shrink. They
only grow, particularly when it comes to core counts.
With that comes growth in job throughputs and number
of projects, departments, users or applications being
serviced. That, in turn, requires policies ensuring all
entities receive their fair share of resources.

• The managed resources comprise an ever more
complex microcosm. Servers have heterogeneous
architecture (CPU type and core counts, bus and
memory architecture, performance data) and may have
special purpose devices attached, such as accelerator
hardware (NVidia® GPUs or Intel® Xeon Phi™). The
network topology and the file storage architecture need
to be taken into account to enable optimal performance
of applications. And besides CPU, memory and I/O,
resources such as software licenses must be managed,
a factor of specific importance in the EDA industry.

The key requirements of any data-center-based
WLM/DRM system can be summarized with a few key words:
It needs to be dependable to avoid costly downtimes. It needs
to be responsive and scalable to meet throughput requirements
and keep utilization near the optimum. And it has to be flexible
to adapt to the changing infrastructure complexities and allow
for implementation of policies reflecting the operational goals
of an organization. The following subsections will discuss each
of these attributes in more detail and through data points and
experiences gathered from typical installations of Univa® Grid
Engine™, which is a proven WLM/DRM system widely used
across leading organizations in all industry sectors including
EDA.

A. Dependability

Uptime of 99.9% or even more is a pre-requisite to getting
the most out of a technical computing infrastructure. The
system is up not only when its daemon hierarchy (see Figure 5
for an example of a typical WLM/DRM architecture) is
running, but also when it is actually ready to accept, schedule,
dispatch and execute jobs. The following describes what is
required to ensure these sorts of high uptimes:

• Continuous uptime and service even during
reconfiguration.

• Fail safety in case of partial system failure: If, for
example, the scheduling component has an issue
(failure or slowness) then it still needs to be possible to
accept new jobs or process already running jobs.

• Rapid service readiness in case of system restart: If
central controller components of the system are being
restarted (e.g. for an upgrade of the software) then
service readiness needs to be reached as quickly as
possible. A system being restarted with hundreds of
thousands of jobs in its queues should provide service
within a few minutes.

Figure 5 - Grid architecture diagram

B. Responsiveness

Responsiveness affects two dimensions in the operation of
a central computing infrastructure. One is “to feed the beast” so
it can deliver results at the expected rate. The other is to
provide good end user and administrator experience. Engineers
interacting with the system as well as its system administrator
have a job to do and it isn’t waiting for responses from the
system.

When it comes to injecting workloads at a rate required by
state-of-the-art high throughput-clusters, consider that
submission rates reach 200 jobs per second from the command-
line and can exceed 1,200 jobs per second through an API. It is
important to note that one such job may potentially represent
millions of tasks when organized as a so called array job (see
Scalability below). With such rates, it is possible to feed the
system for days or even weeks worth of execution quite
literally within a few seconds.

Features like multi-threaded request processing, tailored
handling for status queries, and easy configuration changes or
job submissions are crucially important to end user experience.
Status queries (on particular jobs, parts of the jobs or all jobs)
are very common operations and must perform well while
having minimal impact on job submission, scheduling and
dispatching, accounting gathering or operations changing the
configuration of the system.

C. Scalability

Core counts in today’s commercial production clusters can
exceed 150,000, some companies have dozens of clusters, each
with tens of thousands of cores. In either case, the system needs
to be capable of providing close to 100% utilization. At the top
range, a moderately sized cluster might handle 100,000,000
jobs per month. This means between 50 to 60 jobs per second
that need to run through the full job life-cycle from start to end,
24x7. Life-cycle steps include: job submission with

verification, scheduling of workflows while considering
policies and load metrics, dispatching to execution servers,
accounting and reporting while a job executes, as well as post-
mortem and persisting out each of the above steps to enable
restoring status in case of failures.

Maintaining such throughput numbers is only possible with
some key architectural provisions. One aspect is that multi-
threading needs to be utilized inside the system for parallel
processing of activities and to take advantage of multi-core
architectures of modern server infrastructure. Another crucial
point is the persistent store for status data which needs to meet
high performance and dependability requirements. Ideally, sites
need to have a choice of approaches like in-memory databases,
transactional databases or flat file storage

It’s also important to take advantage of intrinsic workload
efficiencies. If large numbers of workloads operate on different
parts of a design’s data but otherwise are exactly identical, then
it should be possible to group them into a so called array job.
This array job should then only represent a single job in the
DRM/WLM system, which gets instantiated for every piece of
data being processed. This ensures minimal memory footprint
or impact on scheduling times allowing millions of such array
tasks to coexist at the same time without overloading the
system.

D. Flexibility

A system needs to be able to adequately represent the
heterogeneous computing infrastructure of a site, from various
hardware components to services like file sharing. Especially
for the latter, the system needs to be extensible and flexible in
the resource pool description, while providing a high degree of
out-of-the-box information and metric gathering to simplify
configuration.

The cluster configuration and status information (on the one
hand) and the workload request profiles (on the other) need to
be tied together by a rich set of policies reflecting operational
and business goals. Examples for what should be possible to
express in such policies are:

• Which type of job fits where and how much resource
can it use?

• When can jobs run concurrently on a server and when
are they exclusive?

• Which project or department or user or category of
workload is entitled to how much of the cluster
resources and to which resources in particular?

• Are these soft limits which can be exceeded or
undercut but should average out over time (so called
fair-share) or are these fixed quotas which must not be
violated?

It’s no exaggeration to state that all investments in a
technical computing data center are a potential waste of money
if the drid hasn’t been optimized. Not that even running 5%
below the optimum on a 24x7 basis equates to 18 days of
downtime. So every tenth of a percent counts. Sites using
unsuitable and badly tuned WLM/DRM software are known to
often reach only 60% of what they could accomplish, and

many don’t have the ability to even measure what their
utilization numbers look like. (See Section VI: Monitoring
Metrics.)

IV. MANAGING SOFTWARE LICENSING

Spending on software licenses can exceed tens of millions
of dollars matching or exceeding the investments in the
hardware infrastructure. Organizations struggle to get a grip on
license utilization. Many organizations have subsidiaries across
the world, each with their own pool of licensed software. All
these subsidiaries can have different working hours and usage
patterns for the licenses they own. Asking questions like
“Where is excess capacity?” or “Where is insatiable demand?”
is a key benefit using license orchestration software in
conjunction with the grid system.

Still, licenses inevitably sit idle. Detecting these cases and
letting workloads in one part of the company borrow unused
licenses from another is the second key functionality that
license orchestration software has to solve and where it has to
work tightly with the workload management system. Policies
representing the operational goals of organizations have to
guide this process because more than one job usually will
compete for a free license at any given point in time and some
projects are more important than others. The license
orchestration software needs to have the flexibility to setup
corresponding policies that answer questions like:

• Which type of job has access to particular licensed
applications and licenses features?

• Which department, project or user has access to how
many licenses?

• Is the license entitlement of an entity (e.g. a project or
a user) a hard limit or is it a target value to be
approximated on average over time (fair-sharing)?

• What is the priority order through which jobs get
access to licenses and what are the influence factors?

• What is the desired behavior if a pending, high priority
job requires a license which a running, low priority job
currently occupies (pre-empt or not and if then how)?

Figure 6 - license reporting showing impact of license usage

orchestration

Tackling such challenges could be seen as a requirement
for a WLM/DRM system but in practice it is a task which has
to stretch across the clusters which a company operates around
the globe, each of which runs its own instance of a WLM/DRM
system. Hence license orchestration becomes a standalone task
and products exist which are addressing it. An example is
Univa® License Orchestrator, which is tightly integrated with
the grid software and thereby provides solutions for all of the
use cases discussed above. With such a combined solution
companies have been able to realize immediate cost savings of
20% and often much more. (See Figure 6.)

V. INTEGRATION BETWEEN REGRESSIONS AND

EXECUTION

The regression system separates execution from capture
with a particular method describing transparent ways to
execute the actions or jobs. A runnable can have several
methods defined with parameters, each conditionally selecting
which method is used. Methods can be written to execute the
actions locally, via ssh or rsh commands or via WLM/DRM
software. The default method causes actions to be run locally.
Below in Figure 7 we see the example of a conditional method
used to run actions using the ssh command on a remote host.
The if attribute holds a test for when the method is enabled, in
this case the parameter MODE has to equal “homegrid” for the
method to be used.

Figure 7 - Method for run actions via ssh

Special attributes and parameters built into the method
control how to interface with the grid software. The gridtype
defines the grid system being used so that the regression
system knows how to pause, continue and delete jobs. The
GRIDOPTS parameter contains all the default switches
required to submit a job for a particular grid type and allows
the regression system to adjust the switches to make use of
other features within the grid for example array jobs. The
method used to interface with UGE is shown below in Figure
8; again it has an if attribute. The method in Figure 7 and
Figure 8 could be put into a single runnable and the setting of
the MODE parameter to the required value would switch the
execution between the ssh and grid execution.

Figure 8 - Method for grid integration

The ‘qsub’ command is the executable used to submit
actions to the grid and by setting the ‘maxarray’ attribute to
more than one will cause the regression system to pack the
actions into arrays for submission to the grid. One of the most
important aspects of submitting to the grid is the rate at which
actions can be sent. With array jobs, 1000s of actions can be
packed into a single submission command, and therefore
allowing 10,000s of jobs to be submitted at a very fast rate.
This is possible by simply adjusting the value of a single
attribute called the maxarray value.

VI. MONITORING METRICS

Having pertinent reporting and monitoring tooling entails
three aspects: gathering comprehensive metrics, providing
analytics to distil useful reports from that data, and having a
user interface allowing for easy navigation. We’ll discuss these
in the following three subsections.

A. Data Gathering

The most commonly used metrics should be reported by the
WLM/DRM system by default and the monitoring and
reporting analytics software should provide default reports
extracting valuable information from that standard data. Key
metrics of an infrastructure are the utilization of servers and the
embedded resources such as the CPUs and cores or main
memory and virtual memory utilization. These and other
common metrics are available in most workload and resource
management systems or license orchestration software.

In addition there is often a case for site-specific data. Or
there can be a need to extend the set of reported metrics by
integrating a regression system and the WLM/DRM software.
Accomplishing such metric extensions requires that the
WLM/DRM system provides plug-in interfaces allowing for
inserting any data that might be desired to track. An example of
how easy it can be to expand metrics reporting was shown in
Figure 1 with a metric or load sensor interface. Those load
sensors can report metrics data relative to the host they are
running on or any host in the cluster and for the cluster globally
as well. Below is a simple example for such a load sensor
written in Bourne shell:

Load reporting will be triggered periodically by sending
carriage return characters. The above example will report static
values for two metrics every time, one for the local host and the
other for the cluster globally. The only other required step is
registering the metrics inside the grid configuration.

#!/bin/sh

end=false

while [$end = false]; do

read input

read anything from stdin and stop if it

says “quit”

if ["$input" = "quit"]; then

 end=true

break

fi

else report a metric for this host

echo $HOST:mymetric:5

and one for the cluster globally

echo global:clustermetric:100

done

B. Analytics

Beyond comprehensive reporting data
accurately analyze all usage data as it is associated with the
concrete workloads, projects, departments or users having
utilized resources. Usage reporting needs to be held against
policies defining resource access in the workload management
or license orchestration system to check on correct
implementation of the policies or to analyze the reasons for
deviation and take corrective actions.

Another angle to be represented in reporting is to highlight
underutilized resources or, conversely, overbooked resources
which lead to long waiting times for jobs and thus delays in
producing the results the site is expecting to gain from the
computing infrastructure. Figure 9 and Figure
embedded UniSight™ analytics and reporting system
be used to report on policies such as fair
resources..

Figure 9 - Reporting on meeting the fair-share policy in the

cluster

Figure 10 - Reporting idle resources

Another crucial point is that the amount of data collected by
a large throughput cluster can be huge within just hours and it
is not uncommon for cluster administrators to want to look
back for weeks or even months. In addition
discussed that companies often have several of these clusters in
operation and they may have license orches
employed in parallel. So the reporting and analytics framework
needs to be capable of aggregating all that data consistently
into a data warehouse and then provide efficient means to mine
the data for pertinent reports. Careful database and a
design is required in order to enable reporting based on clusters
that service 100,000,000 jobs per month or more.

comprehensive reporting data it’s necessary to
all usage data as it is associated with the

concrete workloads, projects, departments or users having
utilized resources. Usage reporting needs to be held against
policies defining resource access in the workload management
or license orchestration system to check on correct
implementation of the policies or to analyze the reasons for

Another angle to be represented in reporting is to highlight
rbooked resources

which lead to long waiting times for jobs and thus delays in
is expecting to gain from the

Figure 10 show the
UniSight™ analytics and reporting system that can

fair-share or on idle

share policy in the

Another crucial point is that the amount of data collected by
huge within just hours and it

is not uncommon for cluster administrators to want to look
back for weeks or even months. In addition, we have already
discussed that companies often have several of these clusters in
operation and they may have license orchestration being
employed in parallel. So the reporting and analytics framework
needs to be capable of aggregating all that data consistently
into a data warehouse and then provide efficient means to mine
the data for pertinent reports. Careful database and analytics
design is required in order to enable reporting based on clusters

more.

C. Reporting and Analytics Interface

With the vast amount of data being collected and the
versatile sets of metrics being represented
reporting and analytics interface provides various avenue
how to approach dissecting the data and turning it into reports.
Examples for useful analytics schema as employed by users of
UniSight™ are:

• A comprehensive set of effici
most important cluster characteristics, e.g.

o Host inventory

o Job list, memory usage and run/wait times

o Queue utilization

• Variations of ad-hoc analytics which allow to create
custom reports, such as:

o Job, host and license usage analyse

o “Top Down” for all of the above, i.e. starting
with all data in the multi
space and filtering out what’s not of interest

o “Bottom Up –
above, i.e. starting with an empty report and
adding data from the multi
space being of interest

All variations of reporting should be easily accessible and
customizable via a single sign-on web interface such as the one
shown in the screen shot in Figure

Figure 11 - Reporting and analytics screen shot

With such infrastructure it is easy to see how it is possible
to add application specific metrics to the list of data that is
gathered automatically. In the case of verification there are
many metrics that can be gathered and reported next to data
such as hardware machine and soft
fuller picture of the compete process. Trending such data over
the period of the verification process and having it available in
one place allows all the stakeholders to be able to make the
right decisions dynamically.

For example a job run successfully on the grid doesn’t
mean that the results of the application are successful. With the
regression system and grid software integrated it is possible to
transfer information about tests
information, number of good/ba
directed or constrained random. All of this information can be

Reporting and Analytics Interface

With the vast amount of data being collected and the
versatile sets of metrics being represented, it is crucial that the
reporting and analytics interface provides various avenues for
how to approach dissecting the data and turning it into reports.
Examples for useful analytics schema as employed by users of

A comprehensive set of efficient default reports for the
most important cluster characteristics, e.g.

nventory and usage

, memory usage and run/wait times

tilization

hoc analytics which allow to create
custom reports, such as:

license usage analyses

“Top Down” for all of the above, i.e. starting
with all data in the multi-dimensional data
space and filtering out what’s not of interest

– Saiku” analysis for all of the
above, i.e. starting with an empty report and

ng data from the multi-dimensional data
space being of interest

All variations of reporting should be easily accessible and
on web interface such as the one

Figure 11.

eporting and analytics screen shot

it is easy to see how it is possible
to add application specific metrics to the list of data that is
gathered automatically. In the case of verification there are
many metrics that can be gathered and reported next to data
such as hardware machine and software license usage to give a
fuller picture of the compete process. Trending such data over
the period of the verification process and having it available in
one place allows all the stakeholders to be able to make the

ample a job run successfully on the grid doesn’t
mean that the results of the application are successful. With the
regression system and grid software integrated it is possible to
transfer information about tests that are run, pass/fail

of good/bad seeds, types of test i.e
directed or constrained random. All of this information can be

transferred to the analytics and reporting system using the load
sensors explained above allowing higher level job metrics to be
viewed with the grid information over time. Further metrics not
associated with the jobs but with the project can also be
transferred like the number of lines of HDL code, the number
of lines of code that have changed (code stability) and
open/closed bug count numbers. Viewing all of these metrics
together over time gives a complete picture of the verification
process as it progresses as described in the 2012 DVCon paper
“Metrics in SoC Verification” [1].

VII. CASE STUDIES

The following section details case studies of implemented
systems similar to the ones explained in this paper utilizing a
regression system with its integration to grid software. These
are all summarized in the table in Figure 12.

Figure 12 - Real examples of productivity improvements

The first three examples are from an IP developer, the
automotive and memory industries. Each of these examples
saw regression throughputs increase from between 5X and 9X
due to the fact that their new regression set-up allowed them
complete control on each and every test that was run, the
architecture of their old system was restrictive and limited their
ability to run some tests in parallel. Introducing a structured
approach to capturing regressions not only allowed them
improve verification throughput but also improved turn-around
time on tasks such as test setup time, test maintenance, test
clean-up by between 6X and 15X. Regression clean-up being
one such task that was time consuming and automation
achieved a 30X improvement. In the other example non-
effective management of disk space was causing some
incomplete overnight regressions, this resulted in no data to
analyze in the morning and tests having to be run again.

The fourth and fifth examples are from the gaming and
semiconductor industries; these are examples of how
automation and visibility of the effectiveness of each test can
allow new regressions to be selective in what is run in future.
The 3X improvement was achieved by the ability to analyze
quickly and easily the runtime variation introduced by
constrained random tests. Initially a variation of between 2X to
10X was seen across the same test with different seeds, being
presented with this information allowed the regression system
to automatically pick seeds from the quicker higher achieving
coverage tests to provide the improvements. More than a 4X

improvement in regression times where gained by a user in the
semiconductor industry by the automation of optimization. In
this case test ranking or grading was carried out to find tests
that where redundant so that new regressions could be run to
achieve the same coverage but with fewer tests.

The last example shows the effectiveness of job clubbing
within the micro-processor industry where large numbers of
shorter jobs need to be run. The latency and start-up of a job
use to take five minutes and 1000 two-minute simulations
needed to be run on a 20 CPU farm. Without clubbing this
required 50 runs in batches of 20 on the 20 CPUs at 7 minutes
each totaling 350 minutes in runtime. By grouping the
simulations into batches of 10, each new job took 10 times two
minutes simulation minutes, plus the five-minute start-up, a
total of 25 minutes. With clubbing this resulted in 100 jobs of
25 minutes over the 20 CPUs therefore requiring five runs and
a total run time of 125 minutes, close to a 3X improvement in
throughput just by changing a parameter in the regression
system.

VIII. CONCLUSION

This paper has shown how important it is to have full
control over what tests run within your regression, making sure
that each test is run with the goal of improving overall
verification. Once the regression system has the knowledge of
what needs to be verified, a grid system is required to ensure
that the compute and software resources are being utilized to
their full. Integration between the regression and grid systems
is important to ensure that there are no inefficiencies in
transferring what needs to be done to the execution engines.
Regression systems need to separate capture from control to
allow verification to be carried out in a manner ensuring that
every verification cycle is being executed to improve the
progress towards completion and there is no redundancy. This
paper has detailed how this can make massive improvements to
the throughput of regressions with some real examples shown
in the table below.

A grid system is also required to get the best from the
compute resources and to ensure that they are fully utilized and
used in a fair way between the teams that need to use them.
Just a very small percentage down time can lead to days of
verification being lost. Software license utilization is just as
important as hardware utilization and having a system that can
monitor and feedback the usage numbers across the
organization can lead to better utilization. The integration
between the grid and regression system is important to allow
jobs to be queued as quick as possible. The use of job arrays
and the ability of the regression system to bundle smaller jobs
in larger jobs can lead to massive throughput gains.

Finally a system that allows the gathering of metrics from
regression, grid, software and user metrics, and then displaying
them in a single system, allows a full picture of what is
happening within the verification environment. This visibility
allows correct decisions to be made dynamically to ensure that
silicon is delivered right first time and on time.

IX. REFERENCES

[1] Metrics in SoC Verification, DVcon 2012, Andreas
Meyer and Harry Foster.

