

1

Are OVM & UVM Macros Evil? A Cost-Benefit Analysis

Adam Erickson
Mentor Graphics Corporation

890 Winter St.
Waltham, MA 02451

adam_erickson@mentor.com

ABSTRACT
Are macros evil? Well, yes and no. Macros are an unavoidable
and integral part of any piece of software, and the Open
Verification Methodology (OVM) and Universal Verification
Methodology (UVM) libraries are no exception. Macros should
be employed sparingly to ease repetitive typing of small bits of
code, to hide implementation differences or limitations among
the vendors’ simulators, or to ensure correct operation of critical
features. Although the benefits of the OVM and UVM macros
may be obvious and immediate, benchmarks and recurring
support issues have exposed their hidden costs. Some macros
expand into large blocks of complex code that end up hurting
performance and productivity, while others unnecessarily
obscure and limit usage of otherwise simple, flexible APIs.1
The ‘ovm_field macros in particular have long-term costs that
far exceed their short-term benefit. While they save you the one-
time cost of writing implementations, their run-time
performance and debug costs are incurred over and over again.
Consider the extent of reuse across thousands of simulation runs,
across projects, and, for VIP, across the industry. These costs
increase disproportionately with increased reuse, which runs
counter to the goals of reuse.
In most cases, it takes a short amount of time and far fewer lines
of code to replace a macro with a “direct” implementation.
Testbenches would be smaller and run faster with much less
code to learn and debug. The costs are fixed and up-front, and
the performance and productivity benefits increase with reuse.
This paper will:

• Contrast the OVM macros’ benefits (what they do for you)
with their costs (e.g. inflexibility, low performance, debug
difficulty, etc.) using benchmark results and code analysis.

• Identify which macros provide a good cost-benefit trade-
off, and which do not.

• Show how to replace high-cost macros with simple
SystemVerilog code.

• Provide insight into the work being done to reduce the costs
of using macros in the UVM, the OVM-based Accellera
standard verification library currently under development.

1 References to OVM macros shall also apply to UVM macros
unless otherwise stated.

1. Introduction
The hidden costs associated with using certain macros may not
be discovered until the economies of scale and reuse are
expected but not realized. A VIP defined with certain macros
incurs more overhead and may become more difficult to
integrate in large-scale system-level environments.

The following summarizes our recommendations on each class
of macros in the OVM.

Table 1. Summary Macro Usage Recommendations

‘ovm_*_utils Always use. These register the object or
component with the OVM factory. While not
a lot of code, registration can be hard to
debug if not done correctly.

‘ovm_info |
warning | error |

fatal

Always use. These can significantly improve
performance over their function counterparts
(e.g. ovm_report_info).

‘ovm_*_imp_decl OK to use. These enable a component to
implement more than one instance of a TLM
interface. Non-macro solutions don’t provide
significant advantage.

‘ovm_field_* Do not use. These inject lots of complex code
that substantially decreases performance,
limits flexibility, and hinders debug. Manual
implementations are significantly more
efficient, flexible, transparent, and
debuggable. In recognition of these faults, the
field macros have been substantially
improved in the UVM.

‘ovm_do_* Avoid. These unnecessarily obscure a simple
API and are best replaced by a user-defined
task, which affords far more flexibility and
transparency.

‘ovm_sequence-
related macros

Do not use. These macros build up a list
of sequences inside the sequencer class.
They also enable automatic starting of
sequences, which is almost always the
wrong thing to do. These macros are
deprecated in the UVM and thus are not
part of the standard.

Application of these recommendations can have a profound
effect. If the ‘ovm_field macros were avoided entirely, several
thousands of lines of code in the OVM library would not be
used, and many thousands more would not be generated (by the
macros).

2

The following section describes the cost-benefit of each macro
category in more detail.

2. Cost-Benefit Analyses
2.1 ‘ovm_*_utils
Always use.

The ‘ovm_*_utils macros expand into code that registers the
class with the OVM factory, defines the create() method, and, if
the type is not a parameterized class, the get_type_name()
methods. Because type registration with the factory must be
performed in a precise, consistent way, and the code involved is
small and relatively straightforward, these macros provide
convenience without significant downside.

2.2 ‘ovm_info | warning | error | fatal
Always use.

Issuing a report involves expensive string processing. If the
message would be filtered out based on the verbosity, or if it’s
configured action is OVM_ACTION, all the string processing
overhead would be wasted effort. These report macros improve
simulation performance by checking verbosity and action
settings before calling the respective ovm_report_* method and
incurring the cost of processing the report.

These macros also conveniently provide a report’s location of
invocation (file and line number). You can disable file and line
number by overriding the ovm_report_server or by defining
OVM_REPORT_DISABLE_FILELINE on the command line.

2.3 ‘ovm_*_imp_decl
OK to use.

These macros define special imp ports that allow components to
implement more than one instance of a TLM interface. For
example, the ovm_analysis_imp calls the host component’s
write method, of which there can be only one. Multiple such
ovm_analsys_imps would all call the same write method. To get
around this, you can invoke the ovm_*_imp_decl macro to
define an imp that calls a different method in the component.
For example:

‘ovm_analysis_imp_decl(_exp)

‘ovm_analysis_imp_decl(_act)

class scorebd extends ovm_component;

 ovm_analysis_imp_exp #(my_tr,scorebd) expect;

 ovm_analysis_imp_act #(my_tr,scorebd) actual;

 virtual function void write_exp(my_tr tr);

 ...

 endfunction

 virtual function void write_act(my_tr tr);

 ...

 endfunction

endclass

Writes to the expect_ap analysis imp will call write_expect, and
writes to the actual_ap analysis imp will call write_actual.

The imp_decl macros have a narrow use-model, and they
expand into a small bits of code. They are OK to use, as they
offer a convenience with little downside.

If you do not want to use the *_imp_decl macros, you could
implement the following. Define a generic analysis_imp that
takes a "policy" class as a type parameter. The imps’ write
method calls the static write method in the policy class, which
calls a uniquely-named method in the component. You will need
to define a separate policy class for each unique instance of the
analysis interface, much like what the ovm_*_ imp_decl macros
do for you.

class aimp #(type T=int, IMP=int, POLICY=int)

 extends ovm_port_base #(tlm_if_base #(T,T));

 `OVM_IMP_COMMON(`TLM_ANALYSIS_MASK,
 "ovm_analysis_imp",IMP)

 function void write (input T t);

 POLICY::write(m_imp , t);

 endfunction

endclass

class wr_to_A #(type T=int, IMP=int);

 static function void write(T tr, IMP comp);

 comp.write_A(tr);

 endfunction

endclass

class wr_to_B #(type T=int, IMP=int);

 static function void write(T tr, IMP comp);

 comp.write_B(tr);

 endfunction

endclass

class my_comp extends ovm_component;

 aimp #(my_tr, my_comp, wr_to_A) A_ap;

 aimp #(my_tr, my_comp, wr_to_B) B_ap;

 virtual function void write_A(my_tr tr);

 ...

 endfunction

 virtual function void write_B(my_tr tr);

 ...

 endfunction

endclass

2.4 ‘ovm_do_*
Avoid.

The ‘ovm_do_* macros comprise a set of 18 macros for
executing sequences and sequence items, each doing it a slightly
different way. Many such invocations in your sequence body()

3

method will expand into lots of inline code. The steps performed
by the macros are better relegated to a task.

The ‘ovm_do macros also obscure a very simple interface for
executing sequences and sequence items. Although 18 in
number, they are inflexible and provide a small subset of the
possible ways of executing. If none of the ‘ovm_do macro
flavors provide the functionality you need, you will need to
learn how to execute sequences without the macros. And once
you’ve learned that, you might as well code smartly and avoid
them all together.
virtual task parent_seq::body();

 my_item item;

 my_subseq seq;

 ‘ovm_do(item) <-- what do these do?

 ‘ovm_do(seq) <-- side effects? are you sure?

endtask

task parent_seq::do_item(ovm_sequence_item
item,...);

 start_item(item);

 randomize(item) [with { ... }];

 finish_item(item);

endtask

virtual task parent_seq::body();

 my_item item =
my_item::type_id::create("item",,get_full_name()
);

 my_seq seq =
my_seq::type_id::create("seq",,get_full_name());

 do_item(item);

 seq.start();
endtask

Most uses of the inline constraints seen by this author set the
address or data member to some constant. It would be more
efficient to simply turn off randomization for those members
and set them directly using ’=’. Encapsulating this procedure in
a task is also a good idea. A task for simple reads/writes:
task parent_seq::do_rw(int addr, int data);

 item= my_item::type_id::create

 ("item",,get_full_name());

 item.addr.rand_mode(0);

 item.data.rand_mode(0);

 item.addr = addr;

 item.data = data;

 item start_item(item);

 randomize(item);

 finish_item(item);

endtask

virtual task parent_seq::body();

 repeat (num_trans)

 do_rw($urandom(),$urandom());

endtask

2.5 ‘ovm_sequence macros
Do not use.

The macros, ‘ovm_sequence_utils, ‘ovm_sequencer_utils,
‘ovm_update_sequence_lib[_and_item] macros are used to build
up a sequencer’s "sequence library." Using these macros, each
sequence type is associated with a particular sequencer type,
whose sequence library becomes the list of the sequences that
can run on it. Each sequencer also has three built-in sequences:
simple, random, and exhaustive.

When a sequencer’s run task starts, it automatically executes the
default_sequence, which can be set by the user using set_config.
If a default sequence is not specified, the sequencer will execute
the built-in ovm_random_sequence, which randomly selects and
executes a sequence from the sequence library.

These macros hard-code sequence types to run on a single
sequencer type, do not support parameterized sequences, and
cause many debug issues related to random execution of
sequences. In practice, the sequencer can not start until, say, the
DUT is out of reset. When it does start, it typically executes a
specific sequence for DUT configuration or initialization, not
some random sequence.

Users often spend lots of time trying to figure out what
sequences are running and why, and they inevitably look for
ways to disable sequence library behavior. (Set the sequencer’s
count variable to 0, use ‘ovm_object_utils for sequences, and
use ‘ovm_component_utils for sequencers.)

The problems with the sequence library and related macros grow
when considering the UVM, which introduces multiple run-time
phases that can execute in parallel and in independently timed
domains. A single, statically-declared sequence library tied to a
single sequencer type cannot accommodate such environments.
Therefore, the Accellera VIP-TSC committee decided to
officially deprecate the sequence library and macros. The
committee is currently developing a replacement sequence
library feature that has none of the limitations of its
predecessor’s and adds new capabilities.

2.6 ‘ovm_field_*
Avoid.

The ‘ovm_field macros implement the class operations: copy,
compare, print, sprint, record, pack, and unpack for the indicated
fields. Because fields are specified as a series of consecutive
macros calls, the implementation of these operations cannot be
done in their like-named do_<operation> methods. Instead, the
macros expand into a single block of code contained in an
internal method, m_field_automation. Class designers can hand-
code field support by overriding the virtual methods— do_copy,
do_compare, etc.. Users of the class always call the non-virtual
methods—copy, compare, etc.— methods, regardless of whether
macros or do_* methods were used to implement them. For
example, consider the implementation of the ovm_object::copy
non-virtual method:

function void ovm_object::copy(...);

4

 m_field_automation(COPY,…); //‘ovm_field props

 do_copy(...); // user customizations

endfunction

The non-virtual copy first calls m_field_automation to take care
of the ‘ovm_field-declared properties, then calls the
corresponding virtual do_ copy to take care of the hand-coded
portion of the implementation.

Because of the way the ‘ovm_field macros are implemented and
the heavy use of policy classes (comparer, printer, recorder,
etc.), macro-based implementations of the class operations incur
high overhead. The next few sections provide details on this and
other costs..

2.6.1 Code bloat
Consider the simple UBUS transaction definition below.2
class ubus_transfer extends ovm_sequence_item;

 rand bit [15:0] addr;
 rand ubus_op op;
 rand int unsigned size;
 rand bit [7:0] data[];
 rand bit [3:0] wait_state[];
 rand int unsigned error_pos;
 rand int unsigned transmit_delay = 0;
 string master = "";
 string slave = "";

 `ovm_object_utils_begin(ubus_transfer)
 `ovm_field_int (addr, UVM_ALL_ON)
 `ovm_field_enum (ubus_op, op, UVM_ALL_ON)
 `ovm_field_int (size, UVM_ALL_ON)
 `ovm_field_array_int(data, UVM_ALL_ON)
 `ovm_field_array_int(wait_state, UVM_ALL_ON)
 `ovm_field_int (error_pos, UVM_ALL_ON)
 `ovm_field_int (transmit_delay, UVM_ALL_ON)
 `ovm_field_string(master,UVM_ALL_ON |
 UVM_NOCOMPARE)
 `ovm_field_string(slave,UVM_ALL_ON |

 UVM_NOCOMPARE)
 `ovm_object_utils_end

endclass

After macro expansion, this 22-line transaction definition
expands to 644 lines, a nearly 30-fold increase. Real-world
transaction definitions far exceed 1,000 lines of code. The
following table shows the number of new lines of code that each
of the ‘ovm_field macros expand into, for both OVM 2.1.1 and
UVM 1.0. In UVM 1.0, the macros underwent significant
refactoring to improvement performance and provide easier
means of manually implementing the do_* methods.

2The UBUS is a contrived bus protocol used in examples in the

UVM 1.0 User Guide. It’s predecessor in OVM was XBUS.

Table 1 Macro expansion – lines of code per macro

Macro Lines of
Code OVM3

Lines of
Code UVM2

`ovm_field_int|object|string|enum
‘ovm_field_sarray_*
‘ovm_field_array_*
‘ovm_field_queue_*

‘ovm_field_aa_*_string
‘ovm_field_aa_object_int

‘ovm_field_aa_int_*
‘ovm_field_event

51,72,17,41
75-100

127-191
110-187
76-87

97
85
16

50,75,43,45
117-128
131-150
133-152
75-102

111
85
29

In contrast, the manual implementation of the same UBUS
transaction consists of 92 lines of code that is more efficient and
human-readable.

2.6.2 Low performance
The lines of code produced by the expansion of the ‘ovm_field
macros do not actually do much of the actual work. That is
handled by nested calls to internal functions and policy classes
(e.g. ovm_comparer, ovm_printer, etc.).

Table 2 shows how many function calls are made by each
operation for the macro-based solution and the equivalent
manual implementation of the do_ methods. As a control, the
size of the data and wait_state members were fixed at 4.

 Table 2 Function calls per UBUS operation

Operation OVM
Macro/Manual

UVM
Macro/Manual

copy
compare

sprint - table
sprint - tree
sprint – line

pack / unpack
record (begin_tr / end_tr)

38 / 9
51 / 18

1957 / 1840
518 / 441
478 / 405
140 / 28
328 / 46

8 / 9
17 / 18

187 / 160
184 / 157
184 / 157
80 / 28

282 / 36

Compare these results with a theoretical minimum of one or two
calls, depending on whether the object has a base class. Calling
copy in a macro-based implementation incurs 38 function calls,
but only 9 in a do_compare implementation—a four-fold
difference. Compare incurs 51 method calls with macros versus
do_compare’s 18 calls. Sprinting (and printing) incur thousands
of calls for each operation.

Each function call involves argument allocation, copy, and
destruction, which affects overall performance. The results were
alarming enough that significant effort was taken to improve the
macro implementations in UVM. The UVM column shows this.

3‘ovm_field_aa_* macros do not implement record, pack, or

unpack; line counts would be much greater if they did.

5

Table 3 shows the run time to complete 500K operations for the
macro-based and manual implementations of the do_* methods.

Table 3 Performance – 500K transactions, in seconds4

Operation OVM
Macro/Manual

UVM
Macro/Manual

copy
compare

sprint - table
sprint - tree
sprint – line

pack / unpack
record (begin_tr/end_tr)

43 / 2
60 / 6

1345 / 1335
215 / 165
195 / 165
100 / 19
533 / 40

8 / 2
9 / 6

165 / 159
137 / 137
137 / 132
37 / 18

413 / 37

The poor performance results in OVM prompted a significant
effort to improve them in UVM. The results of this improvement
effort show that performance issues for most operations have
largely been mitigated.

Amdahl’s Law [5] states that testbench performance
improvements are limited by those portions of the testbench that
cannot be improved. Although this author still cannot
recommend field macro usage over manual implementation, the
macro performance improvements in UVM are very welcome
because they afford significant performance improvements
achievable in emulation and acceleration.

Note that the sprint times are comparable between the macro-
based and manual implementations. This is because there is no
equivalent manual replacement for the formatting capabilities of
the printer policy class, the primary source of overhead for this
method. The UVM provides an improved uvm_printer policy
class that makes performance less sensitive to output format.

2.6.3 Not all types supported
The ‘ovm_field macros do not support all the type combinations
you may need in your class definitions. The following are some
of the types that do not have ‘ovm_field macro support.

• Objects not derived from ovm_object

• Structs and unions

• Arrays (any kind) of events

• Assoc arrays of enums

• Assoc arrays of objects indexed by integrals > 64 bits

• Assoc arrays—no support for pack, unpack, and record

• Multi-dimensional packed bit vectors—For example,
bit [1:3][4:6] a[2]. The [1:3][4:6] dimensions will be
flattened, i.e. treated as a single bit vector, when printing
and recording.

 4 Simulation results depend on many factors: simulator,
CPU, memory, OS, network traffic, etc. Individual results
will differ, but relative performance should be consistent.

• Multi-dimensional unpacked bit vectors— For example,
bit a[2][4]

• Multi-dimensional dynamic arrays, such as arrays of
arrays, associative array of queues, etc.

2.6.4 Debugging difficulties
The ‘ovm_field (and, still, the `uvm_field) macros expand into
many lines of complex, uncommented code and many calls to
internal and policy-class methods.

If a scoreboard reports a miscompare, or the transcript results
don’t look quite right, or the packed transaction appears
corrupted, how is this debugged? Macros would have been
expanded, and extra time would be spent stepping through
machine generated code which was not meant to be human
readable.

The person debugging the code may not have had anything to do
with the transaction definition. A single debug session traced to
the misapplication, limitation, or undesirable side effect of an
`ovm_field macro invocation could negate the initial ease-of-
implementation benefit it was supposed to provide. Manually
implementing the field operations once will produce more
efficient, straight-forward transaction definitions.

As an exercise, have your compiler write out your component
and transaction definitions with all the macros expanded.5 Then,
contrast the macro-based implementations with code that uses
straight-forward SystemVerilog:
function bit my_obj::do_compare(ovm_object rhs,
 uvm_comparer comparer);

 do_compare =

 ($cast(rhs_,rhs) &&

 super.do_compare(rhs,comparer) &&

 cmd == rhs_cmd &&

 addr == rhs_.addr &&

 data == rhs_.data);
endfunction

2.6.5 Other limitations
The ‘ovm_field macros have other limitations:

• Integrals variables cannot exceed
‘OVM_MAX_STREAMBITS bits in size (default is
4096). Changing this global max affects efficiency for all
types.

• Integrals are recorded as 1K bit vectors, regardless of
size. Variables larger than 1K bits are truncated.

• The ovm_comparer is not used for any types other than
scalar integrals, reals, and arrays of objects. Strings,
enums, and arrays of integral, enum, and string types do
not use the ovm_comparer. Thus, if you were to define
and apply a custom comparer policy, your customizations

5For Questa, the vlog option is -Epretty <filename>.

6

• The ovm_packer limits the aggregate size of all packed
fields to not exceed OVM_MAX_PACKED_BITS. This
large, internal bit vector is bit-by-bit copied and iterated
over several times during the course of the pack and
unpack operations. If you need to increase the max vector
size to avoid truncation, you will affect efficiency for all
types.

2.6.6 Dead code
The ‘ovm_field macros’ primary purpose is to implement copy,
compare, print, record, pack, and unpack for transient objects.
None of these operations are particularly useful to OVM
components. Components cannot be copied or compared, and
pack and unpack doesn’t apply. Print for components are
occasionally useful for debugging component topology at start
of simulation, but you could get that and more from a GUI
debugger without having to modify the source. In most cases, a
simple $display("%p",component) would suffice.

The ‘ovm_field macros also implement a little-known feature
called auto-configuration, which performs an implicit get_config
for every property you declare with an ‘ovm_field macro inside
an ovm_component. While convenient sometimes, it presumes
all macro-declared fields are intended to be user-configurable,
and you sacrifice control over whether, when, and how often
configuration is retrieved. For ovm_objects, auto-config code is
never used. For ovm_components, this feature incurs significant
time to complete and is in many cases unwanted. To avoid this
overhead, users often disable auto-config by not calling
super.build() and simply call get_config explicitly for the
properties intended to be user-configurable.

Despite performance improvements in UVM, the field macros
still incur code bloat, performance degradation, debug issues,
and other limitations. The UVM also provides small
convenience macros for helping users manually implement the
do_* methods more easily. For these reasons, this author
continues to recommend against using the field macros.

3. Alternative to ‘ovm_field macros
The following sections describe how to write implementations
of copy, compare, etc. without resorting to the ‘ovm_field
macros. In all cases, you override the do_<method> counterpart.
For example, to manually implement copy, you override the
virtual do_copy method. For UVM, change the O’s to U’s.

3.1 do_copy
Implement the do_copy method as follows:
1 function void do_copy (ovm_object rhs);

2 my_type rhs_;

3 if (!$cast(rhs_,rhs))

4 ‘ovm_fatal("TypeMismatch","...");

5 super.do_copy(rhs);

6 addr = rhs_.addr;

7 if (obj == null && rhs_.obj != null)

8 obj = new(...);

9 if (obj!=null) obj.copy(rhs_.obj);
10 endfunction

Line 1—This is the signature of the do_copy method inherited
from ovm_object. Your signature must be identical.

Lines 2-4— Copy only works between two objects of the same
type. These lines check that the rhs argument is the same type. If
not, a FATAL report is issued and simulation will exit.

Line 5—Here, we call do_copy in the super class so any
inherited data members are copied. If you omit this statement,
the rhs object will not be fully copied.

Line 6—Use the built-in assignment operator (=) to copy each
of the built-in data types. For user-defined objects, assignment is
copy-by-reference, which means only the handle value is copied.
This leaves this object and the rhs object pointing to the same
underlying object instance.

Lines 7-9—To deep copy the rhs object’s contents into this
object, call its copy method. Make sure the obj handle is non-
null before attempting this.

3.2 do_compare
Implement the do_compare method as follows:
1 function bit do_compare (ovm_object rhs,
 ovm_comparer comparer);

2 my bus op manual rhs ;

3 do_compare =

4 ($cast(rhs_,rhs) &&

5 super.do_compare(rhs,comparer) &&

6 addr == rhs_.addr &&

7 obj != null && obj.compare(rhs_.obj)

9);
10 endfunction

Line 1—This is the signature of the do_compare method
inherited from ovm_object. Your signature must be identical.

Line 3—This line begins a series of equality expressions
logically ANDed together. Only if all terms evaluate to true will
do_compare return 1. Should any term fail to compare, there is
no need to evaluate subsequent terms, as it will have no effect
on the result. This is referred to as short-circuiting, which
provides an efficient means of comparing. We don’t need to
check the rhs object for null because that is already done before
do_compare is called. Be sure to use triple-equal (===) when
comparing 4-state (logic) properties, else x’s will be treated as
“don’t care.”

Lines 4-— Compare only works between two objects of the
same type. The $cast evaluates to ’true’ if the cast succeeds,
thereby allowing evaluation of subsequent terms in the
expression. If the cast fails, the two objects being compared are
not of the same type and comparison fails early.

Line 5—Here, we call do_compare in the super class so any
inherited data members are compared. If you omit this
expression, the rhs object will not be fully compared.

Lines 6—The equality operator (==) can be used to compare any
data type. For objects, it compares only the reference handles,
i.e. it returns true if both handles point to the same underlying
object. You should have one of these expressions for each
member you wish to compare.

7

Lines 7-8—To compare different instances of a class type, call
the object’s compare method. Make sure the object handle is
non-null before attempting this.

3.3 convert2string
The convert2string method is used to print information about an
object in free-format. It is as efficient and succinct as the class
designer wants, imposing no requirements on the content and
format of the string that is returned. The author recommends
implementing convert2string for use in `uvm_info messages,
where users expect succinct output of the most relevant
information.
1 function string convert2string();

2 return $sformatf("%s a=%0h, s=%s,
 arr=%p obj=%s ",
 super.convert2string(), // base class
 addr, // integrals
 str, // strings
 arr, // unpacked types
 obj.convert2string());// objects
3 endfunction

Line 1—This is the signature of the convert2string method
inherited from ovm_object. Your signature must be identical.

Line 2—This line returns a string that represents the contents of
the object. Note that it leverages the built-in $sformatf system
function to perform the formatting for you. Use format specifiers
to %h, %d, %b, %s, etc. to display output in hex, decimal,
binary, or string formats. For unpacked data types, like arrays
and structs, use %p for the most succinct implementation. Be
sure to call super.convert2string.

3.4 do_print
To implement both print and sprint functionality, you only need
to override do_print as follows:
1 function void do_print (ovm_printer printer);

2 super.do_print(printer);

3 printer.print_generic("cmd","cmd_t",

 1,cmd.name());

4 printer.print_field("addr",addr,32);

5 printer.print_array_header("data",

 data.size(),

 "byte[$]");

6 foreach(data[i])

7 printer.print_generic($sformatf("[%0d]",i),
 ”byte”,
 8,
 $sformatf(“%0h”,data[i]));
8 printer.print_array_footer(data.size());

9 endfunction

Line 1—This is the signature of the do_print method inherited
from ovm_object. Your signature must be identical.

Line 2—Call super.do_print() to print the base class fields.

Line 3-4—We call methods in the ovm_printer class that
correspond to the type we want to print. Enum types use the
print_generic method, which has arguments for directly
providing field name, type, size, and value.

Line 5-8—Print arrays by printing its header, elements, and
footer in separate statements. To print individual elements, the
author recommends using print_generic, which allows you to
customize what is printed for the element name, type name, and
value.

3.5 do_record
Implement do_record as follows. First, define a simple macro,
‘ovm_record_field, that calls the vendor-specific system
function for recording a name/value pair, e.g. $add_attribute.
The macro allows you to pass the actual variable—not some
arbitrarily large bit-vector—to $add_attribute. (The UVM will
provide these macro definitions for you.)

‘ifdef QUESTA

 `define ovm_record_att(HANDLE,NAME,VALUE) \
 $add_attribute(HANDLE,VALUE,NAME);

‘endif

‘ifdef IUS

 ‘define ovm_record_att(HANDLE,NAME,VALUE) \
 <Cadence Incisive implementation>

‘endif

‘ifdef VCS

 ‘define ovm_record_att(HANDLE,NAME,VALUE) \
 <Synopsys VCS implementation>

‘endif

`define ovm_record_field(NAME, VALUE) \
 if (recorder != null &&
 recorder.tr_handle!=0) begin \
 `ovm_record_att(recorder.tr_handle, \
 NAME,VALUE) \
 end

These macros serve as a vendor-independent API for recording
fields from within the do_record method implementation. Note
that, for these macros to work, the ovm_recorder::tr_handle
must be set via a previous call to ovm_component::begin_tr or
ovm_transaction::begin_tr.

The do_record method simply invokes the `uvm_record_field
macro for each of the fields you want recorded:

1 function void do_record(ovm_recorder recorder);

2 super.do_record(recorder);

3 `ovm_record_field("cmd",cmd.name()) // enum

4 `ovm_record_field("addr",addr) // integral

5 foreach (data[index]) // arrays

6 `ovm_record_field(
 $sformatf("data[%0d]",index), data[index])

7 obj.record(recorder); // objects

endfunction

Line 1—This is the signature of the do_record method inherited
from ovm_object. Your signature must be identical.

Line 2—Be sure to call super.do_record so any inherited data
members are recorded.

8

Lines 3-7—Records enums, integral types, arrays, and objects
using invocations of the ‘ovm_record_field macro, or calling a
sub-object’s record method.

3.6 do_pack / do_unpack
These operations must be implemented such that unpacking is
the exact reverse of packing. Packing an object into bits then
unpacking those bits into a second object should be equivalent to
copying the first object into the second.

Packing and unpacking require precise concatenation of
property values into a bit vector, else the transfer would corrupt
the source object’s contents.

To help reduce coding errors, the author advises using small
convenience macros. 6 These types of macros are “less evil”
because they expand into small bits of readable code that users
might otherwise have to write themselves. In fact, the UVM will
offer versions of these macros to facilitate robust manual
implementations of do_pack and do_unpack.

`define ovm_pack_intN(VAR,SIZE) \
 packer.m_bits[packer.count +: SIZE] = VAR; \
 packer.count += SIZE;

`define ovm_pack_array(VAR,SIZE) \
 `ovm_pack_scalar(VAR.size(),32) \
 foreach (VAR `` [index]) begin \
 packer.m_bits[packer.count+:SIZE]=\
 VAR[index]; \
 packer.count += SIZE; \
 end

`define ovm_pack_queueN(VAR,SIZE) \
 `ovm_pack_arrayN(VAR,SIZE)

`define ovm_unpack_intN(VAR,SIZE) \
 VAR = packer.m_bits[packer.count +: SIZE]; \
 packer.count += SIZE;

`define ovm_unpack_enumN(TYPE,VAR,SIZE) \
 VAR = TYPE'(packer.m_bits[packer.count +: \
 SIZE]); \
 packer.count += SIZE;

`define ovm_unpack_queueN(VAR,SIZE) \
 int sz; \
 `ovm_unpack_scalar(sz,32) \
 while (VAR.size() > sz) \
 void'(VAR.pop_back()); \
 for (int i=0; i<sz; i++) begin \
 VAR[i]=packer.m_bits[packer.count+:SIZE];\
 packer.count += SIZE; \
 end

`define ovm_pack_int(VAR) \
 `ovm_pack_intN(VAR,$bits(VAR))
`define ovm_unpack_enum(VAR,TYPE) \
 `ovm_unpack_enumN(VAR,$bits(VAR),TYPE)
`define ovm_pack_queue(VAR) \
 `ovm_pack_queueN(BAR,$bits(VAR[0])

The ‘ovm_pack_int macro works for scalar built-in integral
types. You can add your own simple macros to support other

6 Simulators supporting bitstream operators should make packing

and unpacking easier, less error prone, and macro free:

 bits = {<<{ cmd, addr, data.size(), data, …};

types, if you like. For example, reals would need the $realtobits
and $bitstoreal system functions.

The macro implementations manipulate the m_bits and count
properties of the packer object. m_bits is the bit vector that holds
the packed object, and count holds the index at which the next
property will be written to or extracted from m_bits.

With these simple macros defined, you can implement pack and
unpack as follows:
1 function void do_pack(ovm_packer packer);

2 super.do_pack(packer);

3 `ovm_pack_int(cmd)

4 `ovm_pack_int(addr)

5 `ovm_pack_queue(data)

6 endfunction

7

8 function void do_unpack (ovm_packer packer);

9 super.do_unpack(packer);

10 `ovm_unpack_enum(cmd_t,cmd)

11 `ovm_unpack_int(addr)

12 `ovm_unpack_queue(data)
13 endfunction

Line 1—This is the signature of the do_pack method inherited
from ovm_object. Your signature must be identical.

Line 2—Always call super.do_pack first.

Lines 3-5—For each property, invoke one of the convenience
macros, which concatenates values into the packer’s internal
m_bits field and updates the count variable. Here, we’ve
leveraged some convenience macros to make it simple and less
error prone.

Line 8—This is the signature of the do_unpack method inherited
from ovm_object. Your signature must be identical.

Line 9—Always call super.do_unpack first.

Lines 10-12—You must unpack each property in the same order
as you packed them. You will need to cast the bits when
unpacking into strongly typed data types like strings and enums.

4. Conclusion
This paper has provided insight into the hidden costs behind the
various macros provided in OVM. Some macros expand into
small bits of code that the user would end up writing, or ensure
the correct operation of critical features in the OVM. Other
macros expand into large blocks of unreadable code that end up
hurting performance and productivity in the long run, or
unnecessarily obscure and limit usage of a simple, flexible API.

In summary:

We recommend always using the ‘ovm_*_utils macros and the
reporting macros: ‘ovm_info, ‘ovm_warning, ‘ovm_warning,
and ‘ovm_fatal. These macros provide benefits that far exceed
their costs.

The ‘ovm_*_imp_decl macros are acceptable because they
provide a reasonable trade-off between convenience and
complexity.

9

The ‘ovm_field macros have long-term costs that far exceed
their short-term benefit. They save you the one-time cost of
writing implementations. However, the performance and debug
costs are incurred over and over again. Consider the extent of
reuse across thousands of simulation runs, and across projects.
For VIP, reuse extends across the industry. The more an object
definition is used, the more costly ‘ovm_field macros become in
the long-run. While the UVM improves the performance of the
field macros, it also provides “less evil” macros that help make
the do_* methods easier to implement. In this author’s opinion,
it is still better to implement simple, manual implementations.

The ‘ovm_do macros attempt to hide the start, start_item, and
finish_item methods for sequence and sequence_item execution.
This is unnecessary and confusing. The current 18 macro
variants with long names and embedded in-line constraints cover
only small fraction of the possible ways you can execute
sequences and sequence items. It is easier to learn to use the
simple 3-method API, encapsulating repeated operations inside a
task.

The ‘ovm_sequence-related macros hard-code a sequence to a
particular sequencer type and facilitate the auto-execution of
random sequences. Sequences should not be closely couple to a
particular sequencer type, and they should not be started
randomly. Stimulus generation is typically preceded by reset and
other initialization procedures that preclude their automatic
execution. You should declare sequences with

‘ovm_object_utils and sequencers with ‘ovm_component_utils,
then start specific sequences explicitly using the start method.
The UVM recognizes these and other shortcomings by
deprecating the macros and OVM sequence library API. A new,
superior sequence library implementation that is decoupled from
the sequencer is currently being developed.

5. Acknowledgements
The author wishes to acknowledge the significant collaborative
contributions of John Rose, Senior Product Engineer at Cadence
Design Systems, Inc., toward improving the performance of the
field-macro definitions in the UVM.

6. References

[1] "IEEE Standard for SystemVerilog- Unified Hardware

Design, Specification, and Verification Language," IEEE
Std 1800-2009, 2009.

[2] OVM 2.1.1 Reference, ovmworld.org
[3] OVM User Manual, ovmworld.org
[4] Accellera Verfication IP Technical SubCommittee (UVM

Development Website);
http://www.accellera.org/apps/org/workgroup/vip

[5] Amdahl’s Law: http://en.wikipedia.org/wiki/Amdahl’s_law

10

	1. Introduction
	2. Cost-Benefit Analyses
	2.1 ‘ovm_*_utils
	2.2 ‘ovm_info | warning | error | fatal
	2.3 ‘ovm_*_imp_decl
	2.4 ‘ovm_do_*
	2.5 ‘ovm_sequence macros
	2.6 ‘ovm_field_*
	2.6.1 Code bloat
	2.6.2 Low performance
	2.6.3 Not all types supported
	2.6.4 Debugging difficulties
	2.6.5 Other limitations
	2.6.6 Dead code

	3. Alternative to ‘ovm_field macros
	3.1 do_copy
	3.2 do_compare
	3.3 convert2string
	3.4 do_print
	3.5 do_record
	3.6 do_pack / do_unpack

	4. Conclusion
	5. Acknowledgements
	6. References

