

1

Architecturally Scalable Testbench

For Complex SoC

Senthilnath Subbarayan, Senior Staff Engineer, Qualcomm, Bangalore, India
(subbaray@qti.qualcomm.com)

Arulanandan Jacob, Staff Engineer, Qualcomm, Bangalore, India
(jarulana@qti.qualcomm.com)

Sandeep Kumar, Senior Staff Engineer/Manager, Qualcomm, Bangalore, India
(ksandeep@qti.qualcomm.com)

Abstract— SOC design complexity increases by multifold year on year. To address the growing complexity of design,
it mandates the need of optimized testbench to adhere strict time to market scenarios. This paper talks about the art of
constructing SOC testbench, to verify any data path by bringing in RTL modules and the required testbench
components by configuration approach. The configuration file used, takes leverage of the same inputs used by the
Portable Test and Stimulus Standard (PSS) for creating testcases. Paper also discuss about the ease of use of the
testbench along with time saving and memory footprint obtained through this configurable testbench approach.

Keywords— scalable testbench; black boxing; PSS; UVM; performance

I. INTRODUCTION

In today’s fastmoving consumer electronics industry, achieving short time-to-market is the single most effective
way of maximizing semiconductor sales and profit. As the size and complexity of SoC design grow each year, there
arises a need for optimized design and verification integration techniques to cater the needs of a quality product.

Though there are various automation techniques available starting from Register Abstraction Layer Modelling
(RAL), testbench build with integration of Bus VIP’s, to speed up IP verification, there exist a limited option to
speed up testbench bring up time for SoC testbenches. IP-XACT representation of IP and verification IP (VIP)
provide the standard way of exchanging SoC design information, it takes a significant time and effort to modify the
in-house IP’s and VIP’s in IP-XACT format and then create a SoC testbench with self-developed utilities or vendor
tools.

In SoC verification, the arrival of IP’s at different times for SoC integration mandates the need for an adaptable
testbench to meet the tape-out deadlines.

2018 2019 2020 2021

G
at

e
co

un
t

Figure 1 Gate count vs time

2

In this paper, we will be discussing about the need for scalable testbench and existing testbench solutions. Later
part discusses about how Architecturally Scalable testbench provides a solution for easy integration of testbench
components along with dynamic RTL black boxing mechanism to get the best build and run time.

II. NEED FOR SCALABILITY

When the product portfolio increases, a generic testbench to cater all the diverse product needs is limited.
Maintaining such a generic testbench becomes bulkier over a period. To use the generic testbench for a specific
product, there arises a need to bring in the required verification components, integrate and verify this product.
Integration of such verification components manually, is time consuming and may lead to human errors.

There arises a need for testbench components integration in a modular fashion to reduce complexity/compute
time with increased efficiency.

A. RTL Less Compile

To adhere strict SoC timelines, there is a need for RTL less testbench compile. Before receiving the first level
integrated RTL, the SoC testbench should be integrated with the required verification IP’s (VIP) based on the I/O
interfaces. This enables the scope to automate the VIP integration and the number of VIP instances in the testbench
instead of manual integration. Here, it enables a need for smart integration of VIP’s and its instances by automation.

B. Compile time switch Reduction

When a SoC chip is a derivative of previous chip, the testbench and its components are reused. Any
additional/unused components are added/removed from the SoC testbench by means of compile time switches. Re-
use being the most convenient way, any manual Testbench component modification will result in significant
increase in time to stabilize the Testbench. This also increases the Testbench size and number of compile/run time
switches. Maintaining the Testbench over a period of years become cumbersome. Here, it enables a need for smart
integration mechanism to add or remove testbench source codes for easy maintenance.

Mobile
Telematics

Non-Scalable
Common Testbench

Modem

IOT
Auto

Compute

Figure 2 Generic Testbench for Diverse products

3

III. EXISTING TESTBENCH SOLUTIONS

Most of the tool vendors support IP-XACT format of data representation for their IP’s and VIP’s so that the
interconnection of design and verification components are taken care by the tool and an automated testbench is
created. This approach is good when all the underlying IP’s and VIP’s are IP-XACT representable, but in a large
SoC’s where the most IP’s and VIP’s used are internally developed, it requires a huge migration effort for IP-XACT
representation and stabilizing the generated testbench. Also, vendor license is required to enable automation in
testbench generation. Though the solutions are not readily available to be used, it allows us to explore for other
solutions.

The Architecturally Scalable Testbench (ASTB) provides an automated way to integrate/remove any
component into the testbench based on the configuration and migrate the same across different SoC platform.

IV. ARCHITECTURALLY SCALABLE TESTBENCH (ASTB)

The first step in developing a scalable testbench is to create a configuration file. A SoC UVM Testbench consists
UVM constructs to instantiate, build and connect the required UVM components. The configuration file should
contain entries that are required to construct an UVM based testbench. The constructs required for creating instance
and building the testbench components are brought in through template file. SoC testbench can also consists of
reference models that are required to verify a specific block. The source codes of such reference models are brought
into the testbench through marker file mechanism with the help of a utility.

The user input configuration file is created in such a way that it can derive the required information from
Portable Stimulus Standard (PSS) input file.

ASTB provides an easy and convenient way to integrate the testbench component, thus reducing the efforts on
migrating the testbench across different platform. It also enables faster debug time due to black boxing of the
unwanted RTL modules. Overall simulation time is reduced due to lesser components in testbench and RTL.

In ASTB flow, the blocks required for simulation is selected instead of using the full SOC Testbench. Similarly,
the RTL modules which does not contribute to the data path are black boxed as per the configuration file. This
results in usage of optimized testbench along with optimized RTL for a given simulation which reduces memory
foot print and elaboration time. This also promotes the standardized way of integrating Reusable Testbench
components for a given chip.

Figure 3 Config file generation from PSS flow

Project config Test
config PSS constructs PSS tool SoC Testcases

configuration file

template files
(repository)

Testbench
Generator

Customized SoC
Testbench

4

Below flow diagram [Figure 4, Figure 5] compares between the conventional testbench and ASTB.

V. RESULTS

We have chosen the following data paths for comparison. It comprises of external debug interface, test controller
interface, Processor 1 and Processor 2. The build and run times are compared with conventional testbench and
ASTB.

Identify data path blocks to simulate

update configuration file

scripts to Black Box
other blocks as per

config file

scripts to create
customized testbench as

per config file

Black Box module
creation

create customized
testbench

Compile, elaborate and simulate

Identify data path blocks to simulate

Use full pre-
compiled rtl (PCR)

Use full testbench
derived from

previous projects

Manually update full
testbench for any
data path to be

simulated

Compile, elaborate and simulate

Figure 4 Conventional SoC Testbench Flow Figure 5 Architecturally Scalable Testbench Flow

Figure 6 Performance of ASTB with conventional Testbench

5

The memory utilized by ASTB over conventonal testbench is as follows. Here, we see around 35% reduced
memory usage over conventional testbench.

VI. LIMITATIONS

ASTB supports for RTL simulations in SoC. This can be extended to Emulation, Vector, Gate Level Simulations
at SoC level. Currently, SoC level Testbenches are supported by ASTB. This concept can be enhanced to support
IP level environment as well so that it forms a single Testbench that can be used by different stakeholders.

VII. CONCLUSION

This paper discusses about the approach that can be used to derive a platform independent testbenches. It
suggests a practical application method to build an efficient and structured verification environment which meets
various requirements of SoC verification. The scale of SoC complexity varies with respect to product, may it be a
simple IOT device or a complex mobile phone, we need a mechanism to generate platform independent testbench
in less time. ASTB address this problem, along with dynamic RTL black boxing reduces the build and run time
around 30 to 40 %. The surplus time can be used to verify additional system level scenarios.

REFERENCES

[1] UVM based testbench architecture for logic sub-system verification T M Pavithran ; Ramesh Bhakthavatchalu 2017 International
Conference on Technological Advancements in Power and Energy (TAP Energy)

[2] https://www.testandverification.com/wp-content/uploads/DVClub/19_Mar_2013/Broadcom-Lavanya&Balaji.pdf

[3] https://www.design-reuse.com/articles/18478/semi-automatic-testbench-generation.html

[4] https://link.springer.com/chapter/10.1007/978-3-642-42024-5_34

Figure 7 Memory usage of ASTB with conventional Testbench

