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Abstract- Formal verification applications have been evolving over the past few decades to address problems at 
increasingly higher levels of hardware design complexity. The latest step in this evolution has been the introduction of 
architectural formal verification methodologies to target system-level requirements. This paper describes our 
architectural formal verification process, including the development and use of architectural models, and we present a 
case study of how this method was applied to verify the absence of deadlocks in an industrial design. 

 
I. INTRODUCTION 

Traditionally, design teams have relied upon System-on-Chip (SoC) Register Transfer Level (RTL) simulations and 
in-circuit emulation to verify system-level requirements such as safety, security, coherence and absence of deadlock. 
These verification approaches model and test the entire chip at a relatively low level of abstraction. Due to the 
complexity of modern designs, the coverage of corner-case scenarios using these methods is predictably low and it 
leaves us with the possibility of subtle, system-level bugs surviving the verification process. 
 
Verification of control-oriented problems, such as deadlock, are a perfect fit for formal verification. Formal 
verification can provide complete coverage, equivalent to that achieved by simulating all possible scenarios, thus 
leaving no bugs behind. On the other hand, formal model checking suffers from the exponential challenge associated 
with PSPACE-complete problems [1]. Thus, proving absence of deadlock on the RTL model of an entire system 
with formal technology is impractical. Instead, we move to a higher level of abstraction in order to produce 
meaningful results. 
 
Fig. 1 illustrates how formal verification applications have been evolving over the past couple of decades to address 
problems at increasingly higher levels of hardware design complexity. Formal verification began being used in the 
1990s to provide a static sign-off flow for synthesis by comparing the logic of the RTL to that of the gate level 
netlist, one flip-flop at a time. In the 2000s, Assertion-Based Verification (ABV) came into use to formally verify 
small cones of sequential logic, such as those which controlled one-hot encoding of an FSM or a hand-shake 
interface protocol. More recently, formal sign-off methodologies have emerged, which enable formal verification of 
entire design blocks using end-to-end formal checkers with abstraction models [2]. 
 
The next big leap in the evolution of formal verification is to the system-level. Architectural formal verification is a 
novel approach which on one hand, leverages the exhaustive analysis capability of formal to explore all corner cases, 
but on the other hand, uses highly abstract architectural models to overcome complexity barriers and enable deep 
analysis of design behavior. This forms a powerful combination which enables effective system-level requirements 
verification that is especially useful to target areas that are not well covered by traditional verification methods, such 
as deadlock. 
 
Since the methodology does not rely upon the availability of RTL models, one additional benefit is that it can be 
deployed very early in the design phase. This allows architectural bugs to be detected and fixed before they are 
propagated throughout the implemented design. In contrast, fixing late-stage architectural bugs that are found 
through full-chip simulation or emulation may require many RTL design changes, since fixing these types of bugs 
often has a ripple effect that spans out to many blocks. It is vastly preferable to avoid that type of code churn, which 
can result in a significant setback in verification maturity and lead to costly project delays. 
 



 
Fig. 1. The evolution of formal applications over the decades. 

 
II. ARCHITECTURAL FORMAL VERIFICATION METHODOLOGY 

The following sub-sections describe the three major steps of the architectural formal verification methodology. 

A. Block-Level Architectural Modeling 
In the first step, an Architectural Model (AM) is created for each block that contributes to the system-level 
requirement that is being verified. In any hierarchical design, system-level requirements must be decomposed and 
distributed amongst the block-level components. This effectively forms a contract in which it is incumbent upon the 
blocks to deliver specific functionality that contributes to satisfying the system-level goals. 
 
The block AMs include only a small slice of the functionality of the blocks. This slice of behavior models the 
contract for a specific system-level requirement. A collection of block AMs forms a set of abstract models for which 
all other block-level design details are excluded, except for those required to achieve the verification goal. 
 
To verify the absence of system-level deadlocks, the block AMs include only the functionality related to forward 
progress. They would model behavior such as the passing of control through Start/Done messages, wait states that 
can be encountered due to limited availability of resources and flow control at interfaces through backpressure or 
credit-based protocols.  
 
The block AMs are coded with combination of SystemVerilog Assertion (SVA) properties and SystemVerilog (SV) 
RTL code. A key aspect of the AMs is that the output response of the blocks is controlled using SVA properties that 
are set as assumptions. These assumptions are subsequently used in Step 3 to verify the implementation.  
 
The block AMs also include non-deterministic models for the latency through the blocks. This allows for a variable 
range of timing options to be explored and for discovery of bugs related to corner-case combinations of block 
latencies. A side benefit is that block level timing specifications can be developed by discovering the limitations of 
acceptable timing parameters at the system-level. 
 

B. System-Level Requirements Verification 

In the second step, the system-level architectural model is constructed from a collection of block level AMs. Then the 
formal sign-off methodology, which is routinely employed for block level verification, is used to prove that the system 
level requirements hold for this architectural model. 
 
The formal sign-off process is depicted in Fig. 2 and it can be broken down into four parts which are described below. 



 
End-to-end Checkers.  End-to-end checkers are quite different than typical assertion based checks. They model 
the end to end behavior of the block under test, and predict what the output should be based on the input, much like a 
scoreboard.  
 
For example, a forward progress checker might be coded to check that when some activity is observed at the input to 
the system, then a corresponding output should arrive within a finite time, when accounting for acceptable blocking 
conditions. 
 
The end-to-end checking logic is typically coded using specialized abstraction techniques that makes them suitable 
for formal verification. This is important so that they don't add too much complexity to the state space of the model 
which is being formally verified. 
 
Constraints. By default, formal verification will explore all possible input stimulus, so it's important to filter out 
the illegal input space with constraints and eliminate false failures of the checkers. However, care must be taken to 
verify that there are no over-constraints which could mask real failures and cause bugs in the design to be missed. The 
constraints can be verified through formal methods such as assume-guarantee and by running the constraints as 
assertions in the system-level simulation environment. 
  
Dealing with Complexity. Even though we are working with very abstract AMs, formal verification may still 
hit complexity barriers for system-level architectural designs, especially when dealing with end-to-end checkers. Thus, 
the requirement exists for the next piece of the methodology, which are the abstraction models. Abstraction models 
reduce the state space or latency of the design so that formal verification can explore beyond its default threshold.  
 
For example, reset abstraction is a commonly used technique that allows formal analysis to reset the design to very 
deep sequential states. Design behavior can be explored around those deeps states that would otherwise be unreachable 
when starting formal verification at the default reset state. 
  
Formal Coverage.  Formal coverage is a key component of the sign-off methodology. Much like in simulation, 
formal coverage measures controllability - how many of the design states have been explored by the input stimulus. 
But, it also has a unique ability to report observability coverage - that is how many of the design states are checked 
by the end-to-end checkers. This makes formal coverage a very strong metric for measuring progress and closing 
verification holes. 
 

 
Fig. 2. Components of the formal sign-off methodology 

C. Block-Level Implementation Verification 

The third and final step in the architectural formal verification flow is to check that the RTL implementation of the 
blocks will guarantee the system-level contract that was assumed for the AMs. In this step, the modeling logic of an 



AM and the SVA assume properties that govern the output behavior are turned into a checker for the RTL code of 
the block by now asserting those properties. This checker can be used in either simulation or formal verification. 
 

When used in formal verification, this step is a formal equivalency check between the AMs and the RTL model, one 
block at a time. It serves the purpose of closing the loop on the architectural verification process to ensure that the 
implementation has not introduced bugs that would cause the design to fail to meet the architectural requirements. 
Since the problem is decomposed to a sequence of block-level verification tasks, it becomes tractable. A failure 
observed in this step due to a mismatch between the two models would detect a bug in the architectural specification 
from which the AM was derived, a bug in the AM itself or a bug in the RTL model. 
 

III. CASE STUDY: WIRELESS SOC PHY LAYER SUB-SYSTEM 

The design under test (DUT) in this case study is a wireless SOC PHY layer sub-system. The block diagram of the 
system is shown in Fig. 3. Wireless packets contain various fields in the preamble and payload which must be 
concurrently operated on by the corresponding design blocks during the reception and transmission of data [3]. In 
this system, the central controller (RX CTRL) must sequence the operation and manage the interaction between the 
blocks, but the blocks also communicate and pass control between themselves. The risk of deadlock arises because 
of the many corner-case interactions between the various blocks and the dependency upon the control being 
successfully passed between them under all conditions. 
 

 

Fig. 3. Wireless SoC PHY layer sub-system 

The following sections describe the process of deploying the three steps of the architectural formal verification 
methodology described in section II. 
 
A. Block-Level Architectural Modeling 
Block level architectural models were developed using a finite state machine (FSM) to track the control state of each 
module. A set of SVA properties defined the output behavior of the block based on the inputs and the internal state. 
 
The AM for BLK8 forms a simple example as shown in Fig. 4. The AM has only two internal states, IDLE and 
ACTIVE. In the IDLE state, the block waits for the end_packet input to assert. Then it transmits the data within a 
variable time-window after activation, asserts the blk8_complete output pulse and returns to the idle state. 



 
Fig. 4. BLK8 Architectural Model 

The AM for BLK4 is depicted in the state diagram of Fig. 5. The FSM is composed of seven states. The states with 
the circle markings indicate the states in which the block has “the ball”. In these states, control of forward progress 
has been passed to this block from a neighboring block and the neighboring block is waiting for control to be 
returned. The block outputs marked with up and down arrows indicate a positive or negative edge transition of the 
signal. 
 

 
Fig. 5. BLK4 Architectural Model 

B. System-Level Requirements Verification 

The complete system of AMs was then assembled and end-to-end checkers for deadlock were developed as shown 
in Fig. 6. The system allows for all possible wireless packet control flow operations with communication between 
the blocks and the central controller.  



  
Note: For simplicity, a subset of AMs is shown 

 

Fig. 6. System of AMs and End-to-End Checkers 

Fig. 7 describes one possible path of packet control flow through the system. The system-level deadlock checker 
was implemented as a safety property. We used a counter which started at observation of the start of a new frame i.e. 
posedge of sm_findnxtframe, shown as Step 1 in Fig. 7. The counter counts up until one of the following happens, 
shown as Step 8 in Fig. 7: 
1. The frame is completed successfully and a request to start searching for frames is made 
2. The frame is terminated prematurely due to an error 
There is an upper bound on the length of a WiFi frame, therefore the frames are expected to be completed, and the 
system is expected to transition from Step 1 through to Step 8, within a limited time. We used an assertion to check 
that the counter never crossed this upper limit. The real upper time limit on the frame would be too long for formal 
to handle, since it is on the order of microseconds. The time taken is distributed across different blocks, therefore, 
we scaled down the upper time limit proportionally for all the blocks. This abstraction reduced the limit to the order 
of a couple of hundred clocks for the system level deadlock checker. The below code shows how the counter and the 
assertion were implemented: 
 

localparam TIMEOUT = 200; 
 
reg [$clog2(TIMEOUT) : 0] counter; 
 
always @(posedge clk) begin 
   if (rst) begin 
      counter <= 'd0; 
   end 
   else begin 
      // Reset counter on arrival of either of the following 
      // 1. error 
      // 2. start_search 
      if (error || start_delayed_search_ofdm) begin 
         counter <= 'd0; 
      end 
      else begin 
         if (tx_frame) begin 
            counter <= 'd0; 
         end 
         else if (sm_findnxtframe) begin 
            counter <= 'd1; 
         end 
         else begin 
            counter <= (counter == 'd0) ? 'd0 : (counter + 1'd1); 
         end 
      end 
   end 
end 
 
phy_deadlock_a: assert property ( 
   @(posedge clk) disable iff (rst) 
   (counter < TIMEOUT) 
); 



 

 
Fig. 7. Example Packet Control Flow 

Formal coverage was used to ensure that the depth of bounded proofs for the system-level checkers was sufficient 
for sign-off on these design properties [4]. One of the key inputs to the process of determining the Required Proof 
Depth (RPD) comes from measuring the maximum depth of reachability witness waveforms for the functional and 
code coverage goals in the design. 
 
C. Block-Level Implementation Verification 

The final step was to verify the RTL implementation against the flow-control contracts for the blocks that were 
assumed in the AMs. AMs were used either in the top-level simulation environment or in formal verification at the 
block-level. Binding the models to the RTL in the simulation environment required very little effort. A trade-off had 
to be made between exhaustive verification in formal versus the extra time required to create the formal testbench. 
Fig. 8 shows how the AMs were used in the top-level simulation environment. 
 

 
Note: For simplicity, a subset of AMs is shown 

 

Fig. 8. Verifying RTL Matches the AMs in Simulation 



Due to the simplicity of the AMs of most blocks, using them as a checker in the top-level simulation environment 
was deemed to suffice. However, a few of the more complicated blocks, such as the main controller (RX_CTRL) 
were verified in formal. Fig. 9 shows the formal verification environment for the RX_CTRL block.  
 
We used counter abstraction methods for the packet length and wait counters when formally verifying RX_CTRL. 
This method abstracts the 2n-state graph of an n-bit counter to a few states, e.g. 0, 1, at-least-one, at-leastzero [5]. 
This shortened the sequential depth of otherwise deeply embedded corner-case states and allowed us to cover them 
with formal analysis. 
 

 
Fig. 9. Verifying RTL Matches the AMs in Formal Verification 

Once again, we used formal reachability coverage analysis to validate the RPD of the block level checkers. 
 

IV. RESULTS 
The architectural formal verification process uncovered design issues during each of the three major steps of the flow. 
 
During the first step, simply the act of creating the abstract block-level models exposed some architectural 
specification issues, even before formal verification was run on the models. This is typical of any process that takes a 
design description and captures it in executable form. For example, this effect is often observed when documenting 
design intent with assertions. In this case, we found that the PHY specification clearly described the recovery 
mechanism for shutdown during reception of an Rx frame. However, the recovery mechanism following shutdown 
during transmission of a Tx frame was omitted. Our investigation uncovered a system-level inconsistency that spanned 
the function of both the MAC and PHY, since the design of the MAC falsely assumed that shutdown during Tx frames 
would never occur. 
 
During the second step of formally verifying the system of AMs, numerous bugs related to system-level deadlock 
were discovered. For example, the counterexample in Fig. 10 shows how a sequence of events causes the main 
controller not to be notified when an 802.11b packet is terminated. The RX_CTRL block becomes stuck in a wait state 
that will never terminate, resulting in a deadlock situation in the PHY. 
 



 
Fig. 10. RX_CTRL not Notified of Terminated Packet 

During the third step of testing the RTL models against the AMs, the formal verification process uncovered additional 
bugs. Fig. 11 shows one example of a corner-case bug that was discovered in the RX_CTRL block. Here, the packet 
end and bf_fail conditions occur at the same time during transmission, causing the RX_CTRL to become deadlocked 
in the TX state. 
 

 
Fig. 11. RX_CTRL Deadlocked in the TX State 

 
 
 
 
 
 



V. CONCLUSIONS 
Verification of system-level requirements is a critical challenge for today's design teams. The problem is not well 
addressed by traditional verification methods and subtle bugs that slip through to production can have disastrous 
consequences. In this paper, we have described an architectural formal verification methodology which addresses 
these concerns. 
 
Architectural formal verification is the next big leap in the evolution of formal applications. It can be performed at 
an early phase of design development, before RTL coding has begun, which improves the quality of the architectural 
design. Once the RTL code is developed, the RTL models can be tested against the contract required of them at the 
system-level, which improves the quality of the design implementation. 
 
The methodology was deployed on a wireless SoC PHY layer sub-system. Design quality was improved in a 
measurable way as nine difficult to find bugs were discovered, many of which could have led to an unplanned chip 
re-spin. 
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