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System-Level Deadlocks

• Possible forward progress issues:

– Deadlock
• Cyclical dependency between two or more processes
• Mutually blocking each other
• Each waiting for resources that can never become 

available

– Livelock
• Processes appear to be progressing
• But can never terminate or reach their final state

– Starvation
• Process never gets a required resource 
• It always loses competition for share resources



Formal Verification is Needed

 Cannot cover all possible cases
 Possibility of missing subtle corner-case bugs

 Bugs found late-stage
 More expensive to fix

 Exhaustive 
 Equivalent to simulating all possible scenarios
 But, system-level complexity too much for RTL 

formal

 Sign-off
 Abstract models required
 No bug left behind if done properly
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Wireless SOC PHY Layer Sub-System
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Background on DUT
Controller of next Generation WiFi Core for Mobile SoC
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1. Feature Rich WiFi Subsystem
◦ 2x2 MIMO – High throughput
◦ Beamforming - extended range
◦ 802.11AC Wave2 compliance

2. Makes very challenging to verify
◦ Block is deep inside the design - limited observability/controllability
◦ Interacts with Multiple block controllers
◦ Susceptible to dead-locks

3. Formal is the way to build confidence and de-risk, but …
◦ Too big a system for Traditional formal (FPV) to handle …



Three-Step Process
Architectural Formal Verification

1. Develop Architectural Models (AMs) for the Blocks in the System
– Assume the block-level “contract” that contributes to the system-

level requirement
– Abstract internal details not relevant to the system-level requirement

• E.g. For deadlock, model only the passing of control between block
– Allow non-deterministic latencies

2. Formal verification of System of Block AMs
– Prove that collection of block-level contracts imply system-level 

requirement
• E.g. Prove forward progress checks at the system-level

3. Validate Block AMs versus RTL
– Check that assumptions made about block AMs are true of the RTL
– Any mismatch is a problem
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Example Packet Control Flow

sm_findnxtframe
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Step # Description

1 BLK2 asks BLK1 to find next packet in the 
channel

2 Indicates start of a new RX frame; End of 
BLK1 operation; Trigger BLK10

3 BLK10 enables BLK9; It has counters to 
add delays to make sure that BLK9 data 
arrives after data from BLK1

4 BLK9 sends data

5 RX CTRL notifies last symbol information 
to reset BLK10

6 RX CTRL notifies packet end to BLK8

7 BLK8 sends data; BLK8 sends a complete 
flag to mark end of data

8 Indicate completion/termination of frame



Example: BLK8
Step 1: Block-Level Architectural Modeling

• FSM tracks the control state of the block
• SVA properties (assumes) model the output behavior

BLK8 (AM)
Inputs: Red
Outputs: Blue

ST_ACTIVE


ST_IDLEasync_rst_n

rx_pkt_end blk8_complete ||
reset

Property 1:
blk8_complete should 
not be asserted in 
ST_IDLE state

Property 2: 
.
.
.



BLK1 (AM)

sync_found_cck

blk1_start_rx  && 
!blk1_sig_detect 

reset

Example: BLK1 Architectural Model

RECEIVE

blk1_start_rx  && 
blk1_sig_detect 

blk1_shut_down_rx 


DYN_SEARCH


FOUND_CCK


Inputs: Red 
Outputs: Blue



blk1_sig_detect 

SEARCH


sm_findnxtframe



Results
Step 1: Block-Level Architectural Modeling

• Simply the act of developing the AMs exposed some architectural 
specification issues

• Example:
– Spec included recovery mechanism for shutdown during Rx frame reception
– Recovery after shutdown during Tx frame was not specified
– Discovered an inconsistency in the contract between the MAC and PHY



Step 2: System-Level Verification
System Model

• Assembly of block AMs form 
system-level model

• Models all possible flow 
control operations between 
the blocks and the central 
controller

• End-to-end checker for 
deadlock
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A subset of AMs is shown here for simplicity



Step 2: System-Level Verification
Deadlock Checker

phy_deadlock_a: assert property (
@(posedge clk) disable iff (rst)
(counter < TIMEOUT)

);

• Timeout safety property for deadlock
• Count up until:

– Frame is completed successfully, OR
– Frame is terminated due to an error

• Count should not exceed max upper 
bound on length of WiFi frames

// Reset counter on either of
// 1. error
// 2. start_search
if (error || start_delayed_search_ofdm) begin

counter <= 'd0;
end
else begin

if (tx_frame) begin
counter <= 'd0;

end
else if (sm_findnxtframe) begin

counter <= 'd1;
end
else begin

counter <= (counter == 'd0) ? 
'd0 : (counter + 1'd1);

end
end



Step 2: System-Level Verification
Abstractions and Coverage

• Real time limit is too long for 
formal to handle 
(microseconds)

• Abstraction: 
– Reduce the time required 

proportionally for each block to 
process the frame

– Overall frame time limit reduced 
to <200 clocks

• Bounded proof coverage used 
to sign-off on the system-level 
checker

• Measure depth of witness 
waveforms for functional and 
code coverage goals of the 
system-level model

• Ensure witness wave depths 
are less than bounded proof 
depths



Results
Step 2: System-Level Verification

• Found system-level deadlock bugs
• Example: Terminated packet causes RX_CTRL to become stuck in a wait state forever

RX frame started 
in dynamic mode

OFDM packet 
detection shut down

CCK packet 
found

AGC 
restarted

select_rxb remained asserted even after 
rxsm_pmi_gen_rxb_ppdu_end is sent
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Step 3: Validate AMs Versus RTL
Simulation Method

• Bind AMs to RTL in 
simulation environment

• Low effort approach
• Sufficient for relatively 

simple AMs
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Step 3: Validate AMs Versus RTL
Formal Method

• Formally verify assumptions 
made in AM

• Prove SVA properties on the 
RTL

• Abstractions use for large RTL 
counters
– Packet length counter
– Wait counter

• Bounded proof coverage used 
to sign-off
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RxSM (AM)

agc_sig_detect_ofdm

adc_capture_on

adc_capture_on

agc_shut_down_rx_ofdm

agc_sm_allow_phy_err

agc_sm_allow_phy_err

spectral_scan_on

Example: RX_CTRL Architectural Model

IDLE

Inputs: Red
Outputs: Blue
Config: Black
Clock Domain: clk80

DYN_START

RADAR_ON

SSCAN_ON
spectral_scan_on

REPORT_DONE

agc_start_rx_ofdm &&
!agc_sig_detect_ofdm &&

dyn_ofdm_cck_mode

agc_sig_detect_ofdm

agc_start_rx_ofdm &&
agc_sig_detect_ofdm

error_ofdm

reset

GEN_ERROR

ADC_ON

RECEIVE_REPORT

agc_start_rx_ofdm

START_REPORT
normal_rx_error

agc_sm_rpt_error
(clk80) ||

radar_timeout_ext_phy_err
(clk80)

ALLOW_RADAR

agc_sm_allow_phy_err 

start_delayed_search

error_ofdm



agc_restart

agc_restart ||
agc_sm_pwr_drop_error agc_restart

agc_sm_pwr_drop_error

start_delayed_search

START


ALLOW_RADAR
_WAIT_START

agc_sig_detect_ofdm && agc_sm_allow_phy_err 

agc_sm_allow_phy_err 

agc_sm_allow_phy_err

agc_sm_allow_phy_err

ASK_REPORT
agc_sm_rpt_data_wait

agc_restart



Results
Step 3: Validate AMs Versus RTL

• Corner-case bug example: Packet end and fail conditions occur simultaneously causing deadlock

TX frame started mpi_pmi_pkt_end and txbf_pmi_bf_fail
occurred simultaneously

A new RX frame could not be detected since 
RX_CTRL is stuck in TX state now

1 2

3



Summary

• Introduced a methodology to formally prove system level requirements using 
architectural models
– Addressed concerns surrounding adequacy of simulation coverage using formal to 

exhaustively cover corner cases
– Addressed issues of formal tools inability to handle high-complexity design by building 

Architectural Models of RTL blocks
– Ensured correctness of AMs by verifying them against respective RTL

• Successfully deployed the methodology for a Wireless SoC
– Proved the absence of deadlocks in the PHY sub-system

• Improved the quality of silicon
– Found 9 hard-to-find bugs which, left undiscovered, could have led to performance issues 

and/or unplanned chip re-spin



Acknowledgements

• Anshul Jain – Oski Technology, Inc.
• HarGovind Singh – Oski Technology, Inc.

• Cedric Choi – Qualcomm Atheros, Inc.
• Naveed Zaman – Qualcomm Atheros, Inc.



Epilogue


	Architectural Formal Verification of System-Level Deadlocks
	Agenda
	System-Level Deadlocks
	Formal Verification is Needed
	Wireless SOC PHY Layer Sub-System
	Background on DUT
	Architectural Formal Verification
	Example Packet Control Flow
	Step 1: Block-Level Architectural Modeling
	Example: BLK1 Architectural Model
	Step 1: Block-Level Architectural Modeling
	Step 2: System-Level Verification
	Step 2: System-Level Verification
	Step 2: System-Level Verification
	Step 2: System-Level Verification
	Step 3: Validate AMs Versus RTL
	Step 3: Validate AMs Versus RTL
	Example: RX_CTRL Architectural Model
	Step 3: Validate AMs Versus RTL
	Summary
	Acknowledgements
	Epilogue

