
Architectural Formal Verification
of System-Level Deadlocks

Mandar Munishwar
Qualcomm Atheros, Inc.

Vigyan Singhal
Oski Technology, Inc.

Agenda

• What is System-level Deadlock ?

• Design Under Verification

• Architectural Formal Verification Methodology

• Results

System-Level Deadlocks

• Possible forward progress issues:

– Deadlock
• Cyclical dependency between two or more processes
• Mutually blocking each other
• Each waiting for resources that can never become

available

– Livelock
• Processes appear to be progressing
• But can never terminate or reach their final state

– Starvation
• Process never gets a required resource
• It always loses competition for share resources

Formal Verification is Needed

 Cannot cover all possible cases
 Possibility of missing subtle corner-case bugs

 Bugs found late-stage
 More expensive to fix

 Exhaustive
 Equivalent to simulating all possible scenarios
 But, system-level complexity too much for RTL

formal

 Sign-off
 Abstract models required
 No bug left behind if done properly

RTL
DUT

Test
vectors

Patterned
vectors

System
Model

Test
properties

Test
results

Deadlock
...

True
or

False

Counter-example

Simulation
Formal

Wireless SOC PHY Layer Sub-System

Central
controller
sequences

operations of
all other blocks

RX CTRL

BLK11

BLK2BLK1

BLK10

BLK3

BLK9

BLK8

BLK4

BLK5

BLK7 BLK6

BLK12

Background on DUT
Controller of next Generation WiFi Core for Mobile SoC

RX CTRL

BLK11

BLK

2
BLK

1
BLK

10

BLK

3

BLK

9
BLK

8

BLK

4

BLK

5
BLK

7
BLK

6

BLK12

1. Feature Rich WiFi Subsystem
◦ 2x2 MIMO – High throughput
◦ Beamforming - extended range
◦ 802.11AC Wave2 compliance

2. Makes very challenging to verify
◦ Block is deep inside the design - limited observability/controllability
◦ Interacts with Multiple block controllers
◦ Susceptible to dead-locks

3. Formal is the way to build confidence and de-risk, but …
◦ Too big a system for Traditional formal (FPV) to handle …

Three-Step Process
Architectural Formal Verification

1. Develop Architectural Models (AMs) for the Blocks in the System
– Assume the block-level “contract” that contributes to the system-

level requirement
– Abstract internal details not relevant to the system-level requirement

• E.g. For deadlock, model only the passing of control between block
– Allow non-deterministic latencies

2. Formal verification of System of Block AMs
– Prove that collection of block-level contracts imply system-level

requirement
• E.g. Prove forward progress checks at the system-level

3. Validate Block AMs versus RTL
– Check that assumptions made about block AMs are true of the RTL
– Any mismatch is a problem

AM
Arch
Spec

AM1

AM3AM2

AM1
RTL1==

Example Packet Control Flow

sm_findnxtframe

BLK1

RX CTRL

blk1_start_rx

BLK9

BLK8

3

blk9_data

blk9_valid
4

6rx_pkt_end

blk8_complete7

8
error ||

start_delayed_search

BLK10 5last_symbol

BLK2

1

blk1_sig_detect
2

enable_blk9

Step # Description

1 BLK2 asks BLK1 to find next packet in the
channel

2 Indicates start of a new RX frame; End of
BLK1 operation; Trigger BLK10

3 BLK10 enables BLK9; It has counters to
add delays to make sure that BLK9 data
arrives after data from BLK1

4 BLK9 sends data

5 RX CTRL notifies last symbol information
to reset BLK10

6 RX CTRL notifies packet end to BLK8

7 BLK8 sends data; BLK8 sends a complete
flag to mark end of data

8 Indicate completion/termination of frame

Example: BLK8
Step 1: Block-Level Architectural Modeling

• FSM tracks the control state of the block
• SVA properties (assumes) model the output behavior

BLK8 (AM)
Inputs: Red
Outputs: Blue

ST_ACTIVE


ST_IDLEasync_rst_n

rx_pkt_end blk8_complete ||
reset

Property 1:
blk8_complete should
not be asserted in
ST_IDLE state

Property 2:
.
.
.

BLK1 (AM)

sync_found_cck

blk1_start_rx  &&
!blk1_sig_detect 

reset

Example: BLK1 Architectural Model

RECEIVE

blk1_start_rx  &&
blk1_sig_detect 

blk1_shut_down_rx 


DYN_SEARCH


FOUND_CCK


Inputs: Red
Outputs: Blue



blk1_sig_detect 

SEARCH


sm_findnxtframe

Results
Step 1: Block-Level Architectural Modeling

• Simply the act of developing the AMs exposed some architectural
specification issues

• Example:
– Spec included recovery mechanism for shutdown during Rx frame reception
– Recovery after shutdown during Tx frame was not specified
– Discovered an inconsistency in the contract between the MAC and PHY

Step 2: System-Level Verification
System Model

• Assembly of block AMs form
system-level model

• Models all possible flow
control operations between
the blocks and the central
controller

• End-to-end checker for
deadlock

BLK1
AM

BLK2
AM

RX
CTRL
AM

BLK6
AM

BLK8
AM

BLK9
AM

BLK10
AM

Deadlock
Checker



A subset of AMs is shown here for simplicity

Step 2: System-Level Verification
Deadlock Checker

phy_deadlock_a: assert property (
@(posedge clk) disable iff (rst)
(counter < TIMEOUT)

);

• Timeout safety property for deadlock
• Count up until:

– Frame is completed successfully, OR
– Frame is terminated due to an error

• Count should not exceed max upper
bound on length of WiFi frames

// Reset counter on either of
// 1. error
// 2. start_search
if (error || start_delayed_search_ofdm) begin

counter <= 'd0;
end
else begin

if (tx_frame) begin
counter <= 'd0;

end
else if (sm_findnxtframe) begin

counter <= 'd1;
end
else begin

counter <= (counter == 'd0) ?
'd0 : (counter + 1'd1);

end
end

Step 2: System-Level Verification
Abstractions and Coverage

• Real time limit is too long for
formal to handle
(microseconds)

• Abstraction:
– Reduce the time required

proportionally for each block to
process the frame

– Overall frame time limit reduced
to <200 clocks

• Bounded proof coverage used
to sign-off on the system-level
checker

• Measure depth of witness
waveforms for functional and
code coverage goals of the
system-level model

• Ensure witness wave depths
are less than bounded proof
depths

Results
Step 2: System-Level Verification

• Found system-level deadlock bugs
• Example: Terminated packet causes RX_CTRL to become stuck in a wait state forever

RX frame started
in dynamic mode

OFDM packet
detection shut down

CCK packet
found

AGC
restarted

select_rxb remained asserted even after
rxsm_pmi_gen_rxb_ppdu_end is sent

1 2

3 4

5

6

7

Step 3: Validate AMs Versus RTL
Simulation Method

• Bind AMs to RTL in
simulation environment

• Low effort approach
• Sufficient for relatively

simple AMs

BLK1
AM

BLK2
AM

BLK6
AM

BLK8
AM

BLK9
AM

Simulation

TOP
Testbench

BLK10
AM

A subset of AMs is shown here for simplicity

Step 3: Validate AMs Versus RTL
Formal Method

• Formally verify assumptions
made in AM

• Prove SVA properties on the
RTL

• Abstractions use for large RTL
counters
– Packet length counter
– Wait counter

• Bounded proof coverage used
to sign-off

Formal
Verification

RX
CTRL
AM

TOP
deadlock
checker

RX CTRL
RTL

RX CTRL
Testbench

RxSM (AM)

agc_sig_detect_ofdm

adc_capture_on

adc_capture_on

agc_shut_down_rx_ofdm

agc_sm_allow_phy_err

agc_sm_allow_phy_err

spectral_scan_on

Example: RX_CTRL Architectural Model

IDLE

Inputs: Red
Outputs: Blue
Config: Black
Clock Domain: clk80

DYN_START

RADAR_ON

SSCAN_ON
spectral_scan_on

REPORT_DONE

agc_start_rx_ofdm &&
!agc_sig_detect_ofdm &&

dyn_ofdm_cck_mode

agc_sig_detect_ofdm

agc_start_rx_ofdm &&
agc_sig_detect_ofdm

error_ofdm

reset

GEN_ERROR

ADC_ON

RECEIVE_REPORT

agc_start_rx_ofdm

START_REPORT
normal_rx_error

agc_sm_rpt_error
(clk80) ||

radar_timeout_ext_phy_err
(clk80)

ALLOW_RADAR

agc_sm_allow_phy_err 

start_delayed_search

error_ofdm



agc_restart

agc_restart ||
agc_sm_pwr_drop_error agc_restart

agc_sm_pwr_drop_error

start_delayed_search

START


ALLOW_RADAR
_WAIT_START

agc_sig_detect_ofdm && agc_sm_allow_phy_err 

agc_sm_allow_phy_err 

agc_sm_allow_phy_err

agc_sm_allow_phy_err

ASK_REPORT
agc_sm_rpt_data_wait

agc_restart

Results
Step 3: Validate AMs Versus RTL

• Corner-case bug example: Packet end and fail conditions occur simultaneously causing deadlock

TX frame started mpi_pmi_pkt_end and txbf_pmi_bf_fail
occurred simultaneously

A new RX frame could not be detected since
RX_CTRL is stuck in TX state now

1 2

3

Summary

• Introduced a methodology to formally prove system level requirements using
architectural models
– Addressed concerns surrounding adequacy of simulation coverage using formal to

exhaustively cover corner cases
– Addressed issues of formal tools inability to handle high-complexity design by building

Architectural Models of RTL blocks
– Ensured correctness of AMs by verifying them against respective RTL

• Successfully deployed the methodology for a Wireless SoC
– Proved the absence of deadlocks in the PHY sub-system

• Improved the quality of silicon
– Found 9 hard-to-find bugs which, left undiscovered, could have led to performance issues

and/or unplanned chip re-spin

Acknowledgements

• Anshul Jain – Oski Technology, Inc.
• HarGovind Singh – Oski Technology, Inc.

• Cedric Choi – Qualcomm Atheros, Inc.
• Naveed Zaman – Qualcomm Atheros, Inc.

Epilogue

	Architectural Formal Verification of System-Level Deadlocks
	Agenda
	System-Level Deadlocks
	Formal Verification is Needed
	Wireless SOC PHY Layer Sub-System
	Background on DUT
	Architectural Formal Verification
	Example Packet Control Flow
	Step 1: Block-Level Architectural Modeling
	Example: BLK1 Architectural Model
	Step 1: Block-Level Architectural Modeling
	Step 2: System-Level Verification
	Step 2: System-Level Verification
	Step 2: System-Level Verification
	Step 2: System-Level Verification
	Step 3: Validate AMs Versus RTL
	Step 3: Validate AMs Versus RTL
	Example: RX_CTRL Architectural Model
	Step 3: Validate AMs Versus RTL
	Summary
	Acknowledgements
	Epilogue

