
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

• The goal of this project was to define an optimal architecture
for a programmable hardware accelerator for processing
common DSP functions.

• A software tool chain was developed in parallel with the
hardware.

• The target applications such as trellis decoders, FFT’s, FIR’s,
expressed in C were used as test cases to prove the value of the
architectural choices.

• The hardware architecture was expressed as a SystemC model
and a High Level Synthesis tool was used to generate RTL.

• The generated RTL was used to generate results (power, area)
and then iterate with the architectural SystemC model.

• Questions to be answered:
– Can we use a SystemC model as basis for developing

designs for DSP fabric?
– How effective is High Level Synthesis for this type of

design activity?
– What is the cost of programmability?
– What are the optimal accelerator parameters?
– Can we code the SystemC models in a natural C style

and still get good results in the generated RTL?
– Can we use the SystemC model as basis for applications

simulator for software development?

Abstract

Objectives

Materials and Methods

Results

Conclusions

References

1. G. Venkatesh, J. Sampson, N. Goulding, S Garcia, V Brysin, J Lugo Martinez, S
Swanson, M Bedford Taylor, Conservation Cores: Reducing the Energy of Mature
Computations, Proceedings of the fifteenth edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems.

2. H. Esmaeilzadeh, E. Blem, R Amant, K Sankaralingam, D Burger, Dark Silicon and
The End of Multicore Scaling, Proc of the 38th International Symposium on
Computer Architecture, 2011.

3. J. Cong, Z. Zhang An Efficient and Versatile Scheduling Algorithm based on SDC
formulation. Proceedings of the 43rd Annual Design Automation Conference.

4. V Ganesh, D Dill, A Decision Procedure for Bit-Vectors and Arrays. Proc Computer
Aided Verification 2007.

5. LLVM: An Infrastructure for Multi-Stage Optimization, C Lattner, MS Thesis, CS Dept,
University of Illinois at Urbana Champaign, Dec 2002.

6. Nadav Rotem, Haifa University, Presentation titled “High Level Synthesis Using
LLVM”, http://llvm.org/devmtg/2010-11/Rotem-CToVerilog.pdf

7. Scott Mahkle et al, Effective Compiler Support For Predicated Execution Using the
HyperBlock. Micro 25, Proceedings of the 25th annual international symposium on
Microarchitecture, pages 45-54, 1992.

8. Aline Mello et al, “Parallel Simulation of SystemC TLM 2.0 Compliant MPSoC on SMP
Workstations”, DATE Conference, 2010.

Acknowledgements
We thank the anonymous referees for their constructive feedback and
acknowledge the helpful discussions with Edvard Ghazaryan.

RUSHC, Forte Design Systems.
Andy Fox, Tigran Sargsyan, Steven Anderson

Architectural Evaluation Of a Programmable Accelerator For Baseband, Phy and Video
Applications Using High Level Synthesis

• Design a DSP fabric to achieve power reduction with increased
throughput as shown below.

Test Harness: Loads and
runs code

SystemC Simulation:
Functional Verification

Verilog
Simulation

RTL Synthesis
and Power

Analysis

Area and Power
Estimates

LLVM based compiler flow
with “optimization passes”
for: Balancer, SDC
Scheduling, matcher,
instruction frequency
driven packing using integer
linear programming and
assembler

Dispatch thread
CYN_ARRAY_MEMORY(idata);
CYN_ARRAY_MEMORY(imem);
while(1){
CYN_INITIATE();
CYN_LATENCY();
switch(eop_code){

case FIREVER: {
HandleFirever(earg0);
break;

}
case FIREVERIN: {

HandleFireverin(earg0);
break;

}
case SAD: {

HandleSad(earg0);
break;

}
case….

}
}

void alu::HandleFirever
(sc_uint<DATA_WIDTH> arg0){

immediate = arg0;
acc_out.write(accum);
accum = 0;
if (counter == immediate) {

counter = 0;
inc_pc = 1;

} else {
inc_pc = 0;
address = counter;
a = accum;
coeff = imem[address];
data = idata[address];
accum = a + coeff * data;
acc_out.write(accum);
++address;
counter = address;

}
}

Declarations

Basic Blocks Accelerator
Frequency

Instruction
Count

Invocation
count

Latency
(2,4 ports)

Parallelism

CIC
BB11 100 9 20 4,4 2.2
BB1 200 4 21 3,3 1.3
FFT
BB5 500 7 10 4,4 1.75
BB1 1000 12 496 9,9 1.3
Turbo
BB4 500 36 64 14,14 2.6
BB12 1000 11 384 8,8 1.4
DCT
BB6 100 111 64 33,31 3.4
BB1 300 4 8 3,3 1.3

Design Power (mw) #Accelerators Area (mm*2)

16GSPS 128 tap 4000 208 126
Turbo * 152 18 5.2

Viterbi K=8 24 6 1.48
DCT 8x8 28.12 8 1.94

Smith Waterman 24 6 1.58

ASIC Turbo * 7.61 N/A 0.21

Case #instructions Internal
simulator

SystemC
simulator

Pthread’s with
compiled code*

Single
Accelerator test
(all others
asleep)

0.26M 4 sec 0.9s <0.001

100 Accelerator
test (all same
program)

26M 84s(312K
instr/second) (~ 3
us per instruction)

22s (1192K
instr/second)
(~ 1us per
instruction)

0.024s(13M instr/second)
(compiled code)

Evaluation Flow

Final Architecture

Simulation performance

Software Experiments Min / Max results

Power and Area Results for final architecture

Contacts
Andy Fox, RUSHC, andy@rushc.com
Steven Anderson, Forte Design Systems, sanderson@forteds.com
Tigran Sargsyan, RUSHC, tigran@rushc.com

• SystemC with generated Verilog allowed us to get accurate area
and power estimates very quickly (we met our 3 month
deadline).

• The combination of HLS technology with SystemC source code
meant that we could use a very natural C coding style for all of
the hardware models and still get optimized RTL.

• Unfortunately the SystemC models were not fast enough to be
an effective virtual prototype for application development.

• A Pthread model allowed much faster hardware
simulation – fast enough to be used for application
development.

• The overhead for using programmable accelerators was
determined to be about 5x vs. a hard coded RTL implementation
for one application (trellis decoder).

• The software tools were unable to effectively use more than 2
accelerators. Our automated flow could only find on the average
2 parallel instructions per basic block.

• 1 memory port per operand was sufficient for all of the
applications we tested.

• The accumulator bus (40 bits) came with very low overhead and
enabled ganging of accelerators.

• Advanced autonomous DSP instructions were relatively easy to
define and evaluate using this design flow.

• For example the autonomous fir instruction, which
enables instruction to stream data from memory
without incrementing pc and gets coefficients from
Instruction memory, was easily expressed in SystemC
and evaluated.

• Several of these were included in the final
implementation since they effectively reduced
latency and power for our target application.

Autonomous FIR instruction

sc_int<DATA_WIDTH>
idata[IDATA_SIZE];

sc_biguint<DATA_WIDTH*5>
imem[IMEM_SIZE];

sc_uint<DATA_WIDTH>
immediate;

sc_uint<COUNTER_WIDTH> address;
sc_uint<ACCUM_WIDTH> a;
sc_biguint<DATA_WIDTH*5> coeff;
sc_int<DATA_WIDTH> data;

Initial Architecture

SystemC model with the
following variable
parameters :
Number memory ports
Special DSP functions
Number of accelerators.

Accelerator Hardware and
Software Architectural

Design

The selected part is “Butterfly”

The “Butterfly” is matched and covered by
library element “Butterfly_2ESC”

* Instructions executed directly, not interpreted nor decoded
(pipeline not modeled). This is “application” simulation
(instructions translated directly to host machine)

• Schedule: 3 months to complete the evaluation.
• Architectural parameters:

– Number of parallel execution units
– Propagation of unsaturated results between accelerators
– Number of memory ports
– Cost of advanced DSP instructions for FIR, Sum of

absolute differences (SAD), Butterfly combinations.
• The decision criteria: Area and Power as measured by Cadence

RTL design tools.
• Start from C code version of applications then measure:

– Number Accelerators needed and their frequency
– Instruction parallelism per basic block
– Memory bandwidth (number of memory ports)

• Gauge cost of programmability for one of our applications (run a
case through to ASIC implementation).

* Same C source code

http://llvm.org/devmtg/2010-11/Rotem-CToVerilog.pdf
mailto:andy@rushc.com
mailto:sanderson@forteds.com
mailto:tigran@rushc.com

	Slide Number 1

