
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

• The goal of this project was to define an optimal architecture 
for a programmable hardware accelerator for processing 
common DSP functions.

• A software tool chain was developed in parallel with the 
hardware.

• The target applications such as trellis decoders, FFT’s, FIR’s, 
expressed in C were used as test cases to prove the value of the 
architectural choices.

• The hardware architecture was expressed as a SystemC model 
and a High Level Synthesis tool was used to generate RTL.

• The generated RTL was used to generate results (power, area) 
and then iterate with the architectural SystemC model.

• Questions to be answered:
– Can we use a SystemC model as basis for developing 

designs for DSP fabric?
– How effective is High Level Synthesis for this type of 

design activity?
– What is the cost of programmability?
– What are the optimal accelerator parameters?
– Can we code the SystemC models in a natural C style 

and still get good results in the generated RTL?
– Can we use the SystemC model as basis for applications 

simulator  for software development?
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• Design a DSP fabric to achieve power reduction with increased 
throughput as shown below.

Test Harness: Loads and 
runs code

SystemC Simulation:
Functional Verification

Verilog 
Simulation

RTL Synthesis 
and Power 

Analysis

Area and Power 
Estimates

LLVM based compiler flow 
with “optimization passes” 
for: Balancer, SDC 
Scheduling,  matcher, 
instruction frequency 
driven packing using integer 
linear programming and 
assembler

Dispatch thread
CYN_ARRAY_MEMORY(idata);
CYN_ARRAY_MEMORY(imem);
while(1){
CYN_INITIATE();
CYN_LATENCY();
switch(eop_code){

case FIREVER: {
HandleFirever(earg0);
break;

}
case FIREVERIN: {

HandleFireverin(earg0);
break;

}
case SAD: {

HandleSad(earg0);
break;

}
case….

}
}

void alu::HandleFirever
(sc_uint<DATA_WIDTH> arg0){

immediate = arg0;
acc_out.write(accum);
accum = 0;
if (counter == immediate) {

counter = 0;
inc_pc = 1;

} else {
inc_pc = 0;
address = counter;
a = accum;
coeff = imem[address];
data = idata[address];
accum = a + coeff * data;
acc_out.write(accum);
++address;
counter = address;

}
}

Declarations

Basic Blocks Accelerator 
Frequency

Instruction 
Count

Invocation 
count

Latency 
(2,4 ports)

Parallelism

CIC
BB11 100 9 20 4,4 2.2
BB1 200 4 21 3,3 1.3
FFT
BB5 500 7 10 4,4 1.75
BB1 1000 12 496 9,9 1.3
Turbo
BB4 500 36 64 14,14 2.6
BB12 1000 11 384 8,8 1.4
DCT
BB6 100 111 64 33,31 3.4
BB1 300 4 8 3,3 1.3

Design Power (mw) #Accelerators Area (mm*2)

16GSPS 128 tap 4000 208 126
Turbo * 152 18 5.2

Viterbi K=8 24 6 1.48
DCT 8x8 28.12 8 1.94

Smith Waterman 24 6 1.58

ASIC Turbo * 7.61 N/A 0.21

Case #instructions Internal
simulator

SystemC
simulator

Pthread’s with 
compiled code*

Single
Accelerator test 
(all others 
asleep)

0.26M 4 sec 0.9s <0.001

100 Accelerator 
test (all same 
program)

26M 84s(312K 
instr/second) (~ 3 
us per instruction)

22s (1192K 
instr/second)
(~ 1us per 
instruction)

0.024s(13M instr/second)
(compiled code)
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• SystemC with generated Verilog allowed us to get accurate area 
and power estimates very quickly (we met our 3 month 
deadline).

• The combination of HLS technology with SystemC source code 
meant that we could use a very natural C coding style for all of 
the hardware models and still get optimized RTL.

• Unfortunately the SystemC models were not fast enough to be 
an effective virtual prototype for application development.

• A Pthread model allowed much faster hardware 
simulation – fast enough to be used for application 
development.

• The overhead for using programmable accelerators was 
determined to be about 5x vs. a hard coded RTL implementation 
for one application (trellis decoder).

• The software tools were unable to effectively use more than 2 
accelerators. Our automated flow could only find on the average 
2 parallel instructions per basic block.

• 1 memory port per operand was sufficient for all of the 
applications we tested.

• The accumulator bus (40 bits) came with very low overhead and 
enabled ganging of accelerators.

• Advanced autonomous DSP instructions were relatively easy to 
define and evaluate using this design flow.

• For example the autonomous fir instruction, which 
enables instruction to stream data from memory 
without incrementing pc and gets coefficients from 
Instruction memory, was easily expressed in SystemC
and evaluated.

• Several of these were included in the final 
implementation since they effectively reduced 
latency and power for our target application.

Autonomous FIR instruction

sc_int<DATA_WIDTH>        
idata[IDATA_SIZE];

sc_biguint<DATA_WIDTH*5>
imem[IMEM_SIZE];

sc_uint<DATA_WIDTH>       
immediate;

sc_uint<COUNTER_WIDTH>    address;
sc_uint<ACCUM_WIDTH>      a;
sc_biguint<DATA_WIDTH*5>  coeff;
sc_int<DATA_WIDTH>        data;

Initial Architecture

SystemC model with the 
following variable 
parameters :
Number memory ports
Special DSP functions
Number of accelerators.

Accelerator Hardware and 
Software Architectural

Design

The selected part is “Butterfly” 

The  “Butterfly” is matched and covered by
library element “Butterfly_2ESC”

* Instructions executed directly, not interpreted nor decoded 
(pipeline not modeled). This is “application” simulation 
(instructions translated directly to host machine)

• Schedule: 3 months to complete the evaluation.
• Architectural parameters:

– Number of parallel execution units
– Propagation of unsaturated results between accelerators
– Number of memory ports
– Cost of advanced DSP instructions for FIR, Sum of 

absolute differences (SAD), Butterfly combinations.
• The decision criteria: Area and Power as measured by Cadence 

RTL design tools.
• Start from C code version of applications then measure:

– Number Accelerators needed and their frequency
– Instruction parallelism per basic block
– Memory bandwidth (number of memory ports)

• Gauge cost of programmability for one of our applications (run a 
case through to ASIC implementation).

* Same  C source code
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