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Abstract- Checkers are critical part of design verification process. With advent of constrained-random techniques, lot of 

stimulus generation capabilities are supported by languages, methodologies and supporting tools. Ensuring that a design behaves 
as per the specification is achieved using various forms of checkers. The term “checker” at times means different things to different 
people. With SystemVerilog 2009 standard making “checker” as a keyword in the language itself, we would like to use that for 
temporal checks using assertions. In this paper, we share our experience of architecting Checker IP (CIP) for typical protocols. 

 
 

I.   INTRODUCTION 
 The world of electronics system design has grown leaps and bounds in terms of complexity, at the same time 

reducing time to market for new products, derivatives etc. Such a trend has been enabled by IP’s (Intellectual 
Properties) – both at the design front and the verification front. When it comes to verification, these IP’s are commonly 
referred to as Verification Intellectual Properties (VIP’s) – a loosely used term today in the industry to imply 
simulation based, stimulus-driver-and-scoreboard components. In a typical SystemVerilog UVM-based context these 
are also often referred to as Universal Verification Components (UVCs). 

There are usually two significant parts to a VIP - one portion consists of sequences, tests, sequence libraries, 
configurations etc. The other portion of a standard VIP performs checking (also known as scoreboards, checkers) and 
tracks coverage (functional & assertion). 

Among these two portions, the first one mentioned above is very much necessary in simulation based verification. 
However, adjacent technologies such as Formal Verification (FV, Model Checking) only require the 
checkers/properties and a set of coverage points.  Armed with what-to-check, FV tools tend to explore the entire state 
space, constrained only by the user-provided constraints models, and tries to prove or falsify the properties on the 
given DUT. In a way, a lot of heavy lifting of generating stimulus is handled by formal engines under the hood, though 
strictly speaking FV tools perform a mathematical exploration rather than a traditional stimulus-based approach.  
To differentiate from traditional VIP, we use the term Checker IP - CIP. CIP strictly speaking, is a sub-set of standard 
VIP. In this paper, we present our experience of building a CIP – Checker IP that focusses on the “properties” of the 
design in the form of checkers, covers and constraints. Such CIPs are reusable in simulation as well as formal 
verification, provided enough care is taken during the architecting of these IPs. 
  

 

 

  



II.   CHECKER IP (CIP)   
 

Checker IP is an IP that captures properties of a given protocol in the form of SystemVerilog asserts, covers and 
assumes [1]. Motivation behind creating a CIP is to focus on the expected outcome of the DUT in terms of expected 
behaviors, unexpected protocol violations, desired scenarios etc. In a CIP, we separate the “does-it-work”, “are-we-
done” queries from the means of doing it (either simulation or formal).  
 
For standard protocol, such as ARM’s AMBA family [2], it is common to define a set of compliance checks ([3]) from 
the specification itself. Given the number of systems being built around standard buses, it is imperative for the industry 
to be able to leverage on a standard CIP that checks for a list of well-defined compliance rules. However, a set of 
properties and asserts around them is not a reusable piece of CIP – they are simply collection of properties. There are 
several techniques and guidelines in making such a list of properties into an IP (CIP).  
 

III.   ARCHITECTING CHECKER IPS     
 
 The first and foremost requirement of any IP is that it is easily configurable to different configurations of the 
protocol/system. For instance, consider an AMBA AXI3 protocol with Masters and Slaves. A simple block diagram 
([2]) of a master-slave over AXI bus is shown in Figure-1. 

 
 

Figure-1 simple block diagram of a master-slave over AXI bus [2] 
 

In the above picture, we only show the Master and Slave. In a complete AXI subs-system, there may be additional 
components such as interconnects, arbiters, decoders etc. Since the protocol is well documented, it is natural to extract 
a compliance check-list for AXI3 (ARM has a version released in [3]).  
While capturing the checklist to an executable checker, mere translation of English specifications to a set of 
SystemVerilog Assertions could be a good start. However, such a simple laundry list of properties will be very difficult 
to use as a CIP in a simulation setup, for instance. This is so because there may be different ports in a Master vs. Slave 
interface. Then there are optional features that add additional ports to the interface (such as protection, locks, grants 
etc.) that may be present only in Master interface and not in Slave interface and vice versa.  
 
In general, a given property can be an assert on one interface while the same is considered as an assumption in the 
other interface (e.g. Master should assert awvalid, hence an assert or a check for Master interface; while the same 
awvalid is an input to the slave interface, thereby turning out to be an assume there). From a language perspective, 
SystemVerilog has: 
• Assert (For checks) 
• Assume (Constraints) 
• Cover (For desired behaviors)  
A typical CIP should use all the 3 above at every interface, for example a Master interface should contain properties 
classified into asserts, assumes and covers. 
  



  
Consider AXI3 protocol, the specification (Section 4.4, Table 4-3) mentions legal values for ARBURST and 
AWBURST as shown in Figure-2 below: 
 

 
 

Figure-2 Extract from ARM AXI3 Specification 
 

 
One could translate this specification to an executable property as shown in Figure-3 below: 
 

 
 

Figure-3 Sample CIP code for AWBURST requirement 
 
 
A typical AXI system utilizes this signal in its Write channel as shown below: 
 

 
Figure-4 AXI Write channel (sub-set) 

 
 AWBURST is an output from the Master and an input to the slave. A property written as shown in Figure-3 above is 
applicable to both Master and Slave. However, from a Master perspective this property shall be a checker and from 
Slave perspective it is supposed to be an assumption or a constraint. A CIP for AXI3 hence shall be architected in a 
way that the common properties are declared once.  
 



Property as checker 
 
A master_checker file shall use this property as an assert as shown in Figure-5 below: 
 
 
 
 
 

 
 
 
 

Figure-5 AXI3 Master Checker  
 
In the above assertion, action block is used to flag failures through popular UVM reporting infrastructure. Integration 
with UVM is highly recommended and useful when the testbench is in UVM. Such error reporting makes log files 
easier to read, parse/mine for failures. And with UVM one gets the added benefits of controllability of these messages 
and their associated actions. 
 

Property as constraint 
 
A property describing a behavior of a set of signals shall be configured as a constraint when the corresponding signals 
are inputs to the module under test. In case of AXI3, since AWBURST is an input to an AXI3 slave model, this 
property shall be used an assumption or a constraint. Sample code for AXI3 slave CIP is shown below in Figure-6. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure-6 AXI3 Slave Constraint 
 

To provide a feel for the complexity, table below summarizes the approximate number of checkers and constraints 
for an AXI3 CIP. 
 
 

Category Number of entities 
(asserts/assumes) 

AXI3 Master Checkers 102 
AXI3 Master Constraints 20 
AXI3 Slave Checkers 43 
AXI3 Slave Constraints 67 

 
 
 
  



III Guidelines for creating CIPs   
  
SystemVerilog provides powerful and rich set of constructs to model temporal behaviors of designs in an unambiguous 
and concise manner [1]. However, not all constructs are formal verification compatible. While there is no standard 
subset of SVA for formal as per LRM, with our long experience with various EDA tools, we have arrived at a common 
minimal sub-set. We share some of our learnings on this domain in this paper. 
 

Using checker construct 
The ideal container for a CIP should be the relatively new checker..endchecker construct as described in our  

DVCon 2010 paper [4]. However, our experience shows that this construct is not well supported across tools and also 
there are certain restrictions on parameters etc. in the language itself ([1]). However, checker construct provides more 
flexibility in terms of its instantiation (procedural, inline, concurrent etc.). Hence for smaller assertion based entities 
such as the OVL-types [5], the authors believe checker is very useful. However, attempting to use them for a complex 
CIP will be more pain than worth. 

 
Using module as container 

 
One of the most common containers in Verilog and SystemVerilog is module. It is quite common to use a module as 
container or encapsulation unit for assertions in SystemVerilog.  To keep the assertions separate from the design, often 
engineers use bind construct to attach a checker module to a design module.  
 
Quoting from a SystemVerilog Assertions book [6], section 4.7, consider a design module named “dut” and a checker 
entity named “vf”, Figure-7 below shows how typically a bind construct is used to tie these 2 modules. 
 

 
Figure-7 Using SystemVerilog bind 

 
SystemVerilog bind is elaborated by the simulator and internally it instantiated the bounded entity inside the module 
it is being bounded to. To demonstrate this concept, consider the equivalent of Figure-7 above, after a tool does the 
elaboration; it instantiates an instance of vf module inside the dut module. This is shown in Figure-8 below: 

 
 

Figure-8 Internal mechanism of SystemVerilog bind 
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Figure 4.7-2 demonstrates the binding of a counter with its verification environment, and Figure 4.7-3 illustrates 
the equivalent model of such binding using a verification model instantiated into the counter.  
 
Verification module bound to DUT Equivalent model as a result of the binding where 

verification module is instantiated within DUT 

 

 
Figure 4.7-1  Binding of a module/interface/checker to a module 

 
Figure 4.7-2 Binding of a counter with its verification environment 

bind_target_scope 

bind_instantiation 
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Figure 4.7-2 demonstrates the binding of a counter with its verification environment, and Figure 4.7-3 illustrates 
the equivalent model of such binding using a verification model instantiated into the counter.  
 
Verification module bound to DUT Equivalent model as a result of the binding where 

verification module is instantiated within DUT 

 

 
Figure 4.7-1  Binding of a module/interface/checker to a module 

 
Figure 4.7-2 Binding of a counter with its verification environment 
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bind_instantiation 



 
 
 

Using interface as container 
 

Given the prominent use of SystemVerilog and UVM-based testbenches in the industry, many teams use 
SystemVerilog interface feature as the primary means of communication across testbench and DUT. While an 
interface as in SystemVerilog LRM [1] can have many features as that of a module, it cannot instantiate a module. 
This is explained below with the help of Figure-9 and Figure-10. 
 

                                               
 
 Figure-9 module can instantiate an interface                           Figure-10 Interface cannot instantiate a module   
 
Why this is important? Consider a typical AXI sub-system being verified with UVM based VIPs. The AXI pins are 
modelled using a SystemVerilog interface that gets instantiated as many times as necessary. The SystemVerilog 
interface serves as the primary means of communication between UVM class based system to a SystemVerilog module 
based design. Now, let’s consider a scenario wherein, to strengthen the quality of verification a CIP is being bound to 
this AXI interface. If the CIP container were to be a module then we get a compile error from the tool indicating the 
problem highlighted in Figure-10 above. 
 
A solution to this problem is to use interface as container for CIPs. As SystemVerilog allows an interface to instantiate 
another interface, a good CIP modeled using interface can be bound to a DUT inside a module or a VIP based 
simulation setup using interface. This is described in Figure-11 below: 
 

 
Figure-11 Interface can instantiate another interface 

 
 

 



Guard simulation specific constructs with a text macro 
 
SystemVerilog is a rich language with many features. Not all features are supported in all technologies that use this 
language. In the context of CIPs, it is desirable to keep the CIP usable in both simulation and formal verification flow. 
there are also some advanced non-determinism related features used in a pure formal IPs that are not simulation 
compatible. As a coding guideline, it is recommended to use appropriate text macros to mask parts of code from 
simulator and FV tools as needed.  
 
One common example of this is the action block using UVM messaging system with assertions. Given that UVM is 
heavily class based and not synthesizable code, FV tools usually do not like that code. Hence a text macro 
(VW_CIP_SIM) is used to guard the action block code from FV tools and use it only in simulation as shown in Figure-
12 below.  
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Figure-12 Using text macro in action blocks  
 
 

Using appropriate delays with value change functions 
 
SystemVerilog provides rich set of functions to model temporal behaviors. Some of the value access functions such 
as $past, $sampled etc. refer to values of signals from the previous clock cycles. Similarly, there are several value 
change functions such as $rose, $fell etc. that rely on the previous value of the signal being monitored with respect to 
a clock. While these are good, handy features in the language, care should be taken while coding them to avoid false 
failures in simulation and/or formal verification. Consider the following assertion (Taken from an online technical 
forum [7]): 

 
Figure-13 Need to be careful while using $past in assertions    

 
 
The issue with above code is: “What does the $past return in clocks prior to DLY”? In simulation, the answer is X. 
That could cost some debug cycles. However, in FV tools, this can lead to false failures as the tool is free to assume 
any value to the req signal in this example in clocks prior to DLY (DLY is a parameter, say 5). 
 
A recommended solution to this problem is to delay the checking of such properties by appropriate number of clock 
cycles. A better code that fixes the above problem is shown in Figure-14.  
 

 
 

Figure-14 Add ##delay to the start of the property to avoid uninitialized values 



 
 

Unit test each assertion 
 
Assertions are “checkers” of your design, or the core of “verifier” – but who will verify that verifier? Given that a 
comprehensive CIP is complex code, it requires thorough verification itself. We have developed a series of unit tests 
inside Go2UVM framework [8] to tackle this problem. In a nutshell, this involves creating pass and fail trace for each 
assertion with a simple UVM test. These unit tests should be smart enough to be self-checking. We have used a UVM 
report mocker from open-source SVUnit framework [9] to self-check each unit test around assertions.  
 
Consider AHB protocol requirement on htrans signal as shown in Figure-15 below: 
 

 
Figure-15 AHB htrans requirement   

 
 
A representative property for this requirement in SVA is shown below in Figure-16. 

 
Figure-16 AHB htrans check   

 
Now to ensure that the above assertion indeed “verifies” the arbiter, one needs to test this code. To be compete in the 
testing one needs to consider pass and fail scenarios. Some of the fail scenarios are captured below in Figure-17 and 
Figure-18. 
 

 
             Figure-17 AHB htrans invalid transition - 1                           Figure-18 AHB htrans invalid transition - 2 
 
 
Once we identify the required scenarios, question is can we code them in UVM framework? A full-fledged UVM 
bench for this testing would be an overkill.  
 



We have used a simple test layer on top of UVM, named Go2UVM [8] test as shown in Figure-19 below: 
 

 
Figure-19 Go2UVM test base class 

 
 
With Go2UVM package, one need not worry about objections, various components etc. We can write quality traces 
with very few lines of code. A pass trace for the above assertion in Go2UVM framework is shown below in Figure-
20.  
 
 
 

 
 

Figure-20 AHB hrtans Go2UVM test (PASS trace) 
 

The FAIL traces – or the negative scenarios during which the assertion is supposed to fire are even more important to 
verify. Coding them in Go2UVM is fairly straight forward. But the challenge there lies in automating these unit tests 
and classifying them as PASS or FAIL (of the test, an intended negative test is supposed to fail with UVM_ERROR 
for instance). In unit tests, we need to declare PASS/FAIL automatically based on the user’s intent. This challenge is 
more than typical DUT PASS/FAIL declaration (that could be based on presence of UVM_ERROR in log file).  



Unit tests inject “error scenarios” by definition Manual classification of expected UVM_ERRORs is not feasible. We 
used a uvm_report_mock feature originally developed by Neil Johnson as part of his SVUnit [9]. This base class is 
now part of latest Go2UVM package as well. Consider the following trace in Figure-21 for the htrans assertion: 
 

 
 

Figure-21 AHB hrtans invalid transition (negative test) 
 
 

At clock tick 6, we would expect the assertion to fire. If we run the trace as-is, it reports an UVM_ERROR like 
shown below: 
 

 
Figure-22 Sample UVM ERROR due to FAIL trace (negative test) 

 
 

A very useful package called uvm_mock_pkg is available as part of open-source SVUnit. At a high level this 
package provides three key features: 
• A callback to capture all UVM errors coming from the simulation 
• An API to specify expected errors by the end user 
• An API to compare the expected and actual errors at the end and flag any mismatches 

 
uvm_report_mock::expect_error() API internally populates queue of “expected errors”. For instance, in our 
AHB CIP unit test we call the expect_error for negative trace as shown in Figure-23 below: 
 
 

 
Figure-23 Self-checking Go2UVM unit test with expect_error call 

 



With this handy report mocker our unit tests are self-checking. We strongly believe a good CIP should be accompanied 
by a quality set of unit tests that can be regressed anytime there is a bug fix to the CIP.  
 

IV Summary  
 
Design Verification with SystemVerilog assertions has been popular in the industry for well over a decade. While 
simple checkers can be developed quickly and used across design entities, a comprehensive CIP (Checker IP) takes a 
good architecture and set of coding guidelines to keep them reusable. In this paper, we have shared our experience of 
converting a plain set of properties to a reusable CIP. We also shared how we used a self-checking unit test framework 
to verify each assertion in a CIP.  
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