
Architecting “Checker IP” for
AMBA protocols

Ajeetha Kumari, Verification Consultant, VerifWorks Pvt. Ltd.
Srinivasan Venkataramanan, Verification Technologist, VerifWorks

Pvt. Ltd

Agenda

• CIP – Introduction
• What to Verify in Assertion
• AHB CIP Example
• AXI3 Architecture
• CIP Guidelines
• Using Go2UVM Framework
• Using SVUnit
• Summary
• References

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist, VerifWorks Pvt Ltd 2

• CIP – Checker IP
– Set of assertions for a given protocol

• AHB requirement - htrans signal from an AHB master.
• The signals cip_pass and cip_fail indicates state of

assertions capturing this requirement.
– IDLE à NONSEQ == legal

INTRODUCTION CIP

Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 33/21/17

•To enumerate the fail scenarios, other possible
transitions of htrans need to be explored.
• In these figures the signal cip_fail goes HIGH
indicating a protocol violation.

AHB CIP EXAMPLE

Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 43/21/17

WHAT TO VERIFY IN ASSERTIONS?

• Assertion aspects
– Intent :- reflects the system engineer or designer's

understanding or vision of what is desired, as defined in
written, assumed, unsaid, or implied requirements, many
of which may be loosely (or tightly) specified in timing
diagrams and in engineers' heads.

– Accuracy :-deals with the proper expression of the
requirements with emphasis on coding rules, style, and
coverage of intended cases.

– Efficiency :- deals with coding that puts too much
unnecessary overhead on the simulator because of
unneeded threads.

– Purpose :- addresses the uses or application of the
verification environment.

© Accellera Systems Initiative 5

AXI3 CIP Architecture

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 6

AXI3 CIP

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 7

Property as checker Property as constraint

No	of	properties

Master	Checkers
Master	Constraints
Slave	Checkers

Guidelines for CIP

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist, VerifWorks Pvt Ltd 8

•Use of checker…endchecker
construct
•Use module as a container
•Use bind construct
•Use of interface as a container
•Use text macro in action blocks
•Use appropriate delays in value
change functions

Assertion styles

• RTL designers – inlined checks
• Verification engineers – external using bind
• A set of small assertions is usually better than single

large assertions
• Instantiations

– Concurrent
– Immediate
– Procedural concurrent

• How to insert a group of assertions inline in RTL?

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 9

Using checker…endchecker

• SV 2009 added new container for assertions
– checker

• Offers flexibility in terms of instantiation
– All 3 forms – immediate, concurrent & procedural

concurrent
• Useful for smaller checkers (OVL like)
• Support “free/rand variables”

– Great for pure formal verification tools
• For CIP not recommended because of language

restrictions
• No parameters

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 10

Using module as container

• SystemVerilog module is well known construct
• Easy to use/code
• Modules can instantiate other modules

– Direct
– Indirect via bind

• Assertions can be coded inside modules

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 11

Problem with module as CIP
container

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist, VerifWorks Pvt Ltd 12

•Can NOT bind a module to an interface
•Interface is widely used construct

CIP bound to
interface

Interface as assertion container

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist, VerifWorks Pvt Ltd 13

•Interface is a popular construct in SV
•Widely used for communication between dut
and tb

CIP inside
Interface

CIP inside
Interface

Text macro in action blocks

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist, VerifWorks Pvt Ltd 14

•Text macros can be used to insert a block of
code which is useful in simulation to make them
FV friendly and vice versa
•VW_CIP_SIM is used

• Goal: develop unit tests in UVM framework
• Problem: UVM is too big for this task at hand
• Solution: open-source Go2UVM package.

USING GO2UVM FRAMEWORK

Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 153/21/17

• Self-checking of unit tests through SVUnit’s UVM
Report Mock:
– Need to declare PASS/FAIL automatically based on

the user’s intent.
– This challenge is more than typical DUT PASS/FAIL

declaration (that could be based on presence of
UVM_ERROR in log file).

– Unit tests inject “error scenarios” by definition
– Manual classification of expected UVM_ERRORs is

not feasible

USING SVUNIT REPORT MOCKER

Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 163/21/17

• At clock tick 6, we would expect an assertion to
fire. If we run the trace as-is, it reports an UVM
ERROR like shown below:

UVM_ERROR../vw_cip_src/vw_ahb_lite_cip.sv(134)	@	175.00	ns:	reporter	[SVA] Invalid	
htrans	transition	- from	IDLE	only	NSEQ	is	allowed.	Assertion 'a_p_idle_or_nseq'	FAILED
at	time:	175ns	(18	clk),	scope:vw_ahb_lite_cip_go2uvm.vw_ahb_lite_cip_0,	start-time:	
165ns	(17	clk)

SAMPLE UNIT TEST FAIL SCENARIO

Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 173/21/17

Using repor_mock API

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 18

Summary

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 19

• Simple checkers can be developed quickly and
used across design entities,

• Comprehensive CIP (Checker IP) takes
• a good architecture
• set of coding guidelines to keep them reusable.

• In this paper, we have shared our experience of:
• Converting a plain set of properties to a

reusable CIP.
• How we used a self-checking unit test

framework to verify each assertion in a CIP.

References

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 20

1. SystemVerilog LRM -

http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
2. ARM AXI specification – https://www.arm.com/products/system-

ip/amba-specifications
3. ARM releases assertion models -

https://www.arm.com/about/newsroom/12266.php
4. Experiencing Checkers for a Cache Controller Design

http://systemverilog.us/DvCon2010/DvCon10_Checkers_paper.pdf
5. Accellera Open Verification Library (OVL)

http://accellera.org/activities/working-groups/ovl
6. SystemVerilog Assertions handbook, www.systemverilog.us,

www.verifnews.org/publications/book
7. “What are $past compared to on first clock event?”

http://bit.ly/2hkb7nV
8. Go2UVM open-source test layer, www.go2uvm.org.
9. SVUnit - http://www.agilesoc.com/open-source-projects/svunit/

Q & A

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist,
VerifWorks Pvt Ltd 21

