IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Architecting “Checker IP” for
AMBA protocols

Ajeetha Kumari, Verification Consultant, VerifWorks Pvt. Ltd.

Srinivasan Venkataramanan, Verification Technologist, VerifWorks
Pvt. Ltd

% VV
A AL JE.
e‘\ 7

2017

DESIGN AND VERIFICATION™

DvC:Oi Agenda

* CIP - Introduction

* What to Verify in Assertion

* AHB CIP Example

* AXI3 Architecture

* CIP Guidelines

* Using Go2UVM Framework
* Using SVUnit

* Summary

* References

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist, VerifWorks Pvt Ltd

2017
=iy INTRODUCTION CIP

CONFERENCE AND EXHIBITION

e CIP - Checker IP

— Set of assertions for a given protocol
* AHB requirement - htrans signal from an AHB master.

* The signals cip_pass and cip_fail indicates state of
assertions capturing this requirement.

— IDLE > NONSEQ == legal

AHB valid htrans transition

nekd 1 F L4 III

htrans 777 IDLE Y NONSEQJ) BUSY
Cip_pass / \
cip_fail

3/21/17 ! ’ g 3

N\ mawB\A Ao~ Ot A

2017

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

AHB CIP EXAMPLE

*To enumerate the fail scenarios, other possible
transitions of htrans need to be explored.

* In these figures the signal cip_fail goes HIGH
indicating a protocol violation.

AHB invalid htrans transition [DLE > SEQ

helk *

/7717

17777
117/ '1////,

CIp_pass

cp fa [}

AHB invalid htrans transition IDLE > BUSY

helk *

ans 777/

777/

0Ip_pass

i f

[

\/mawBlA\A Ao~ PO]

+ Al

2017

DESIGN AND VERIFICATION™

DV WHAT TO VERIFY IN ASSERTIONS?

NNNNNNNNNNNNNNNNNNNNNNN

* Assertion aspects

— Intent :- reflects the system engineer or designer's
understanding or vision of what is desired, as defined in
written, assumed, unsaid, or implied requirements, many
of which may be Ioosely (or tightly) specified in timing
diagrams and in engineers' heads.

— Accuracy :-deals with the proper expression of the
requirements with emphasis on coding rules, style, and
coverage of intended cases.

— Efficiency :- deals with coding that puts too much
unnecessary overhead on the simulator because of
unneeded threads.

— Purpose :- addresses the uses or application of the
verification environment.

© Accellera Systems Initiative 5

2017

DE

Component with Component with
AX| master AWVALID AXI slave
Write channel address and control |
AW = AWREADY > AW
WVALID
Write channel data d
Wor WREADY » W
B BVALID
) Write channel response
B < BREADY 1 B
ARVALID |
Read channel address and control
AR = ARREADY > AR
j RVALID
D Read channel data
R < RREADY 1 R
AXI3
Master

-

pvicior AXI3 CIP Architecture

Write
channels

Read
channels

AWID

AWADDR
ANSIZE AXI3 Slave

AWBURST

_4

N\ mawB\A Ao~ Ot A

2017
Dvi:oOn AXI3 CIP
Property as checker

| a0 bt st o o,

bl
E e (ot e AL 5 g e of 230 on AT 55 ot it e tle
310

Property as constraint

m_p_vw_awaddr_boundary: assume property (p_vw_awaddr_boundary

m_p_vw_awaddr_wrap_align: assume property (p_vw_awaddr_wrap_align) ;
m_p_w_awburst: assume property (p_vw_awburst) ;
m_p_vw_awcache: assume property (p_vw_awcache) ;

m_p_vw_awlen_wrap: assume property (p_vw_awlen_wrap) ;

3/21/17

\ /~

No of properties

Checkers
er Constraints
ave Checkers

LY « I Y R PRSE o TR A A |

IIIIIIIIIIIIIIIIIIIII ™

DV CIN Guidelines for CIP

*Use of checker...endchecker
construct

Use module as a container
*Use bind construct

*Use of interface as a container
*Use text macro in action blocks
*Use appropriate delays in value
change functions

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist, VerifWorks Pvt Ltd 8

2017

DESIGN AND VERIFICATION™

Dv:o Assertion styles

* RTL designers — inlined checks
* Verification engineers — external using bind

* A set of small assertions is usually better than single
large assertions

* [nstantiations
— Concurrent
— Immediate
— Procedural concurrent

* How to insert a group of assertions inline in RTL?

N\ mawB\A Ao~ Ot A

IIIIIIIIIIIIIIIIIIIII ™

DVC O Using checker...endchecker

e SV 2009 added new container for assertions
— checker

* Offers flexibility in terms of instantiation

— All 3 forms — immediate, concurrent & procedural
concurrent

* Useful for smaller checkers (OVL like)
* Support “free/rand variables”
— Great for pure formal verification tools

* For CIP not recommended because of language
restrictions

 No parameters

wlom~s DL A

IIIIIIIIIIIIIIIIIIIII ™

DVC O Using module as container

* SystemVerilog module is well known construct
* Easy to use/code

* Modules can instantiate other modules
— Direct
— Indirect via bind

e Assertions can be coded inside modules

3/21/17 oo !!”!!”!”l!\,Iﬂlu_m!Al,lnl”l!!!” O 11

wlom~s DL A

2017

= osico- Problem with module as CIP

CONFERENCE AND EXHIBITION

container

Can NOT bind a module to an interface
Interface is widely used construct

interface

CIP bound to
interface

2

3/21/17

Ajeetha Kumairri, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist, VerifWorks Pvt Ltd

12

2017

DESIGN AND VERIFICATION™

DV Interface as assertion container

Interface is a popular construct in SV

*Widely used for communication between dut
and tb

interface

<

CIP inside
Interface

CIP inside
Interface

3/21/17

Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist, VerifWorks Pvt Ltd

13

2017

DESIGN AND VERIFICATION'

DV Text macro in action blocks

*Text macros can be used to insert a block of
code which is useful in simulation to make them

FV friendly and vice versa
VW _CIP_SIM is used

1599

1600 a_p_w_awburst: assert property (p_w_awburst)
1601

1002 ifdef

1603 else

3 on page 4-5")
1605 “endif //WW_CIP_SIN

ArAS
1010 |

1604 “vm_error (wi_id,"p_wi_awburst: When AWALID is high, a value of 2'b11 on AWBURST is not permitted. Spec: table 4-

3/21/17 Ajeetha Kumari, Verification Consultant and Srinivasan Venkataramanan, Verification Technologist, VerifWorks Pvt Ltd

14

2017

DESIGN AND VERIFICATION™

DvEon USING Go2UVM FRAMEWORK

* Goal: develop unit tests in UVM framework
* Problem: UVM is too big for this task at hand
* Solution: open-source Go2UVM package.

[e e 1 Go2UUH Unit test for the following property
= g /1 After an IDLE transfer,next clock transfer type be either IDLE or NSEQ
1 property p_idle or nseq;
[rT e S ‘ (htrans == ahb_transfer kind e'(IDLE)) && hgrant |=>
, = ((htrans == ahb_transfer kind e'(NONSEQ)) || (htrans == ahb transfer kind e'(IDLE)));
1 . endproperty : p_idle or nseq
{ uvm_report_object ’ ¥
. 1 , task main ();
{ uvm_component | ‘un_info (log_id, "Start of main", VUM HEDIUH)
1 un_info (log id, “p idle or nseq PASS trace IDLE --) NONSEQ", UUH HEDIUH)
* this.vif.cb.hgrant <= 1'D1;
uvm_test this.vif.ch.htrans <= ahb_transfer kind e'(IDLE);
1 ’ repeat (5) @ (this.vif.ch);
: this.vif.ch.htrans <= ahb_transfer kind e'(NONSEQ);
go2uvm__base_test repeat (1) @ (this.vif.ch);
- "wwn_info (log_id, "End of: p_idle or nseq PASS trace IDLE -- NONSEQ", UUH HEDIUH)
this.vif.cb.htrans (= ahb transfer kind e'(IDLE);
i——

N\ mawB\A Ao~ Ot A

IIIIIIIIIIIIIIIIIIIII ™

A AT T UsING SVUNIT REPORT MOCKER

* Self-checking of unit tests through SVUnit’'s UVM
Report Mock:

— Need to declare PASS/FAIL automatically based on
the user’s intent.

— This challenge is more than typical DUT PASS/FAIL
declaration (that could be based on presence of
UVM_ERROR in log file).

— Unit tests inject “error scenarios” by definition

— Manual classification of expected UVM_ERRORSs is
not feasible

3/21/17 oo !!II!!II!III!\IIAIE’:‘\!AI’IAIIIU!!!II O 16

wlom~s DL A

DVQOV SAMPLE UNIT TEST FAIL SCENARIO

CONFERENCE AND EXHIBITION

AHB invalid htrans transition IDLE = BUSY

hclk +_| +—| + ‘_+ | + | + |

htrans 7 \DLE X BUSY Y7777
cip_pass
cip_fail /_\

* At clock tick 6, we would expect an assertion to

fire. If we run the trace as-is, it reports an UVM
ERROR like shown below:

UVM_ERROR../vw_cip_src/vw_ahb_lite_cip.sv(134) @ 175.00 ns: reporter [SVA] Invalid
htrans transition - from IDLE only NSEQ is allowed. Assertion 'a_p_idle_or_nseq' FAILED

at time: 175ns (18 clk), scope:vw_ahb _lite_cip_go2uvm.vw_ahb_lite_cip_0, start-time:
165ns (17 clk)

3/21/17 ! ’ ’ ! 17

N\ mawB\A Ao~ Ot A

2017

DESIGN AND VERIFICATION™

Dvi.on Using repor_mock API

repeat (1) @ (this.vif.ch);

“uum_info (log_id, “End of: p_idle or nseq PASS trace IDLE --> NONSEQ", UUM HEDIUM)

this.vif.cb.htrans <= ahb_transfer kind e'(IDLE);

repeat (5) @ (this.vif.cb);

this.vif.cb.htrans <= ahb_transfer kind e'({SEQ);

repeat (2) @ (this.vif.cb);

uun_report_nock: :expect_error("SI");

“uum_info (log_id, “End of: p_idle or nseq FAIL trace IDLE --> SEQ", UUM HEDIUM)

this.vif.cb.htrans <= ahb_transfer kind e'(IDLE);

repeat (5) @ (this.vif.cb);

/1 uun report_nock::expect error();

this.vif.cb.htrans <= ahb_transfer _kind e'(BUSY);

repeat (2) @ (this.vif.cb);

/1 TBD find a better way to handle this

go2uvm test fail count += (‘uum report mock::verify complete());

“uum_info (log_id, “End of: p_idle or nseq FAIL trace IDLE --> BUSY", UUM MEDIUM)
endtask : main

endclass : vy ahb lite cip test

AN LY « I PR PR o TR R I T |

IIIIIIIIIIIIIIIIIIIIIII

« Simple checkers can be developed quickly and
used across design entities,
 Comprehensive CIP (Checker IP) takes
* a good architecture
* set of coding guidelines to keep them reusable.
 In this paper, we have shared our experience of:
« Converting a plain set of properties to a
reusable CIP.
« How we used a self-checking unit test
framework to verify each assertion in a CIP.

3/21/17 oo !!II!!II!III!\IIAIE’:‘\!AI’IAIIIU!!!II O 19

wlom~s DL A

2017

DESIGN AND VERIFICATION™

DV

DvConN References

1.

© oo

SystemVerilog LRM -

http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

ARM AXI specification — https://www.arm.com/products/system-
ip/amba-specifications

ARM releases assertion models -
https://www.arm.com/about/newsroom/12266.php

Experiencing Checkers for a Cache Controller Design
http://systemverilog.us/DvCon2010/DvCon10 Checkers paper.pdf
Accellera Open Verification Library (OVL)
http://accellera.org/activities/working-groups/ovl

SystemVerilog Assertions handbook, www.systemverilog.us,
www.verifnews.org/publications/book

“What are $past compared to on first clock event?”
http://bit.ly/2hkb7nV

Go2UVM open-source test layer, www.go2uvm.org.

SVUnit - http://www.aqgilesoc.com/open-source-projects/svunit/

N\ mawB\A Ao~ Ot A

3

2017

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

[21/17

Q&A

Thanks

N\ mawB\A Ao~ Ot A

2

1

