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Abstract— Bus activity during RTL simulation is normally 
captured into a debug database at the bit-level. However, 
since transactions provide a clearer, bus-protocol view of 
activity in a design and verification environment, engineers 
often manually map this bit-level data to abstracted bus 
transactions.  This is the general context for this paper. 
Significant work and capability already exists to directly 
record transaction-level traces from higher-abstraction 
models such as a UVM-based SystemVerilog testbench. 
However, the focus of this paper is applying these same 
transaction-level debug and analysis techniques to the 
DUT (design-under-test) activity.  
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I.  INTRODUCTION 
For analyzing activity inside a design (DUT), basic 

bundling of nets into buses for debug and analysis 
purposes is a common technique but is limited to 
concatenation and sometimes logical expressions of the 
said nets at one particular snapshot time. As an example, 
with these basic bundling capabilities, the user can view 
the address bus as the actual address (in hex) rather than 
the individual bits of the address bus. For bus 
transactions, changes over time also have to be 
considered. For example, a READ transaction on a DUT 
bus usually corresponds to a set of signals changing at 
particular windows of different times.  An engineer will 
typically decode these changes into the READ 
transaction, mentally or using a notebook, since that is 
more understandable and applicable to the debug and 
analysis.  

The solution proposed in this paper does what the user 
was doing manually, but now automatically. This is 
accomplished with an engine that scans a recorded trace 
of signals and look for patterns of activity that constitute 

the transactions that the user wants to abstract out. While 
the engine itself is straight-forward, a mechanism needs 
to be provided to the user to specify a temporal sequence 
of events. We will discuss several possibilities but we 
will focus on the use of SystemVerilog Assertion (SVA) 
syntax and semantics to specify the sequence. SVA is 
highlighted because it has provisions for everything 
needed to specify any temporal sequence, complex or 
basic. Additionally, most engineers either already know 
the language or are able to easily grasp it as it is closely 
related to Verilog. 

The techniques described have been applied to a real 
design and verification environment and these 
experiences will also be shared in this paper. We will 
illustrate some examples as well as present the 
efficiencies obtained when the proposals in this paper are 
adopted. We will conclude with proposals for future work 
to use more advanced visualization and analysis 
techniques specifically tailored for abstract data. 

II. TRADITIONAL SIGNAL-BASED ANALYSIS AND 

DEBUG 

A. Simulation and Data Dumping 
Today, most verification flows follow a similar 

pattern whereby an Engineer runs simulations of his 
environment using an automated script and/or Makefile 
which at the end returns some measure of pass or fail. If 
there is a failure, another simulation is run for the failing 
test but now with the dumping of debug data enabled. 
This data is typically in the debugging tool’s native 
format such as the Fast Signal Database (FSDB) from 
Synopsys. Once the data is generated, the Engineer can 
load it into the debug tool for further analysis. There may 
be varying levels of automation in this flow but the main 
scope does not change. 



B. Debug Methods 
Once the data and design description, typically in a 

hardware description language (HDL), is loaded into the 
debug tool, various techniques are employed to find the 
root-cause of the failure. Standard techniques based on 
waveform analysis have been around for years. (Figure 1) 

More recently, technologies have advanced to provide 
new ways and automation which are geared towards 
getting to the root-cause as quickly as possible. More 
research and investments in such debug technologies 
have increased given the generally accepted fact that 
debug now takes almost half of the verification cycle in 

terms of time and effort. An example of a recent 
technology that automates the identification of the root-
cause of an anomaly that the Engineer is tracing is 
Behavior Analysis which uses formal techniques. 

This behavioral analysis technology allows the 
Engineer to perform root-cause analysis automatically 
over multiple levels of logic and clock cycles with a 
single or minimal number of commands. (Figure 2) 

 
Figure 1.  Waveform-based debug and analysis of AMBA bus activity 

 
Figure 2.  Behavioral analysis techniques to do automatic root cause analysis using semi-formal methods 



III.  INTRODUCTION TO TRANSACTION-BASED 

MODELING AND ANALYSIS 
Transaction-based in electronic design automation 

(EDA) generally refers to the higher-level 
communication that occurs between components. These 
components are typically modeled at a higher abstraction 
than HDL’s and as such references to data are at a 
corresponding higher level abstraction of transactions. 
Example methodologies that employ this higher level 
modeling are SystemC and UVM testbenches. Bus 
designers and architects refer to a transaction as a 
temporal event of signal-level activity that does some bus 
action such as read or a write. For the purpose of this 
paper, we will refer to a transaction as any encapsulation 
of multiple events of data activity. The events can be and 
typically are over time. 

A. Debug and Analysis at the Transaction-Level 
Advanced debug platforms have evolved to record 

and provide applications for transaction-based debug and 
analysis. The notion of simple bus bundling that is a 
collection of signals at one snapshot time was a good 
starting basis. The next natural step was to extend 
existing waveform applications to display a transaction.  
Of course, this depends on the data being recorded and 
stored into a debug database, such as FSDB. 

 

Figure 3 shows one implementation of showing 
transaction-level data in a waveform tool. 

Additional applications have been developed that are 
targeted at detailed analysis of transaction-level data. One 
such application is based on standard spreadsheets – that 
is, a table view which includes capabilities for filtering 
and sorting.  This is also illustrated in Figure 3. 

IV. FEEDING TRANSACTION-BASED TOOLS 
To utilize the transaction debug and analysis 

capabilities described in the previous sections requires 
the data to be recorded at that same higher abstraction 
level. The SCV extension of SystemC has built-in 
capabilities to plug in a debug recording interface which 
then allows for transaction-level data to be recorded into 
a debug database such as FSDB. Users can then view and 
debug at the transaction-level. More recently, testbench 
methodologies such as the Universal Verification 
Methodology (UVM) have gained rapid adoption. These 
are founded on base class libraries that are built around a 
transaction-level data object. UVM, for example, allows 
random sequences of transactions to be easily generated, 
which in turn feed into the DUT as stimulus. DUT 
responses are also encoded into transaction-level data by 
UVM monitors for easier automated analysis by the 
verification environment. UVM in particular provides 
hooks in the library where a transaction recording 

 
Figure 3. Transaction debug and analysis tools based on waveforms and spreadsheets 



interface can be plugged in that allows the sequencer and 
monitor transactions to be recorded into a debug 
database. These are natural applications for transaction-
based debug and analysis and flows are provided to 
generate the data in a highly automated fashion. 

A. Data Mining from DUT 
What we have discussed so far are flows that can 

naturally generate transaction-level debug data – natural 
in the sense that the context that these environments, such 
as SystemVerilog UVM or SystemC SCV, operate on are 
themselves based on the notion of a transaction. 

Designs themselves, referred to DUTs, are typically 
described at the Register Transfer Level (RTL) using 
Verilog or VHDL. The debug data dumped from a 
simulator usually consists of discrete signal-level activity. 
Debug tools and simulators are able to capture, store, and 
present busses to the user as such. The same can be done 
for ENUM types, with the debug tools providing intuitive 
views to the user. These primitive levels of encapsulation 
or bundling are helpful to users.  

Most modern SoCs are built around a standard or 
custom bus architecture, such as AMBA. However, as far 
as the design itself is concerned, the model is still at RTL 
and thus the same signal-level dump of the bus signals is 
generated for debug. An automated mechanism for the 
simulator or debugger to decode, or more precisely 
encode, bus signal-level activity into the corresponding 
bus transactions would provide users a more intuitive and 
clear picture of SoC activity. (Figure 4) 

 
Figure 4.  Transaction convey a more intuitive meaning of bus 

protocol and SoC activity to the user 

Buses are defined in terms of transactions anyway and 
these are the perfect basis of presenting the user a view of 
bus activity. In fact, users, even when analyzing bus 
signal-level waveforms, often manually encode the 
activity into the bus transactions using old-fashioned pen 
and paper.  

So far, we have established that the ideal way to 
record, store, and view DUT bus activity is by leveraging 
transaction-based analysis capabilities already available 
in many advanced debug platforms. An added, but key, 
complication here is that a bus transaction is comprised 
of signal events happening over time. Therefore, basic 
single-time bundling capabilities provided in standard 
debuggers cannot be used.  The user has to be provided a 
mechanism to generate the data. One solution could be to 
provide a set of Verilog task-based APIs that the user 
codes directly into their design so that the data is 
recorded at the transaction-level during the simulation. 
These exist in some cases, but are difficult and 
cumbersome for the user to code. A better solution would 
be to provide the user a mechanism for extracting, or 
mining, transaction-level data from signal-level debug 
data. A GUI-based wizard for the user to describe the 
sequence of specific signal events that a transaction is 
composed of can be provided but that can be also 
cumbersome and the re-usability is questionable. The 
preferred route is to provide a language that can allow 
users to specify the transaction semantics. 

B. Using SVA to Describe a Transaction 

 
Figure 5.  SVA code snippets showing sequences that describe 

AMBA Read and Write tranactions 

sequence core_memory_write; 
  logic [10:0] Addr; 
  logic [31:0] Data; 
 
  (1) ## 0 
  (EN == 1'b1 && WE == 1'b1,  
   Addr = ADDR, Data = DI) ##1 
  (!(EN == 1'b1 && WE == 1'b1)); 
endsequence 
 
sequence core_memory_read; 
  logic [10:0] Addr; 
  logic [31:0] Data; 
   
  (1) ## 0 
  (WE == 1'b0 && RST == 1'b0 &&  
   RDInvalid == 1'b0, Addr = ADDR) ##1 
  (RDInvalid == 1'b0) ##1 
  (1, Data = DO); 
Endsequence 
 
CORE_MEM_WRITE : assert 
     property(@(posedge CLK)      
     core_memory_write); 
 
CORE_MEM_READ  : assert  
     property(@(posedge CLK)  
     core_memory_read); 



When attempting to develop a language or text-based 
configuration file that can suitably describe transaction 
activity at the signal-level, it was noted that the standard 
SystemVerilog Assertion (SVA) syntax can fulfill all 
requirements. SVA sequences can be used to describe 
complex temporal sequence of events. Once thusly 
described, a utility engine can be developed that would 
mine for the sequence of events from an existing signal-
level debug database. Such a utility would be similar to 
existing post-simulation assertion checker programs that 
mine assertion failures from a debug database, rather than 
having the simulator do the checking. 

Figure 5 shows a SVA sequence that describes 
AMBA AHB READ and WRITE transactions. 

The extraction utility can mine the read and write 
transactions based on the signal-level activity of the WE, 
EN, RST, RDInvalid, Addr, and Data signals in 
accordance with the temporal sequence specified in the 
SVA code. 

The data-mining utility can be designed to also extract 
local variables within the sequence as attributes to the 
transaction. In Figure 5, for example, Addr and Data can 
be extracted and stored as transaction attributes. We will 
discuss transaction and attribute display in the next 
section. 

 
Figure 6.  Flow for transaction data-mining from design debug 

database 

 

Figure 6 illustrates the flow for dumping a standard 
design signal debug database that is then processed for 
transactions. 

As a side note, it should be noted that the application 
of mining transaction data out of a signal-level database 
isn’t necessarily limited to debug and analysis; it can also 

 
Figure 7.  Signal-level and transaction-level for AMBA 



be used as a quick-and-dirty means to identify coverage 
information. Today, users often do this with waveform 
inspection, a mostly manual process of identifying the 
interesting sequence of events that the user is interested 
in covering. Using SVA code and the post-simulation 
extraction utility, this process can be automated and more 
importantly, made more deterministic, accurate, and 
repeatable (i.e. reusable). 

V. TRANSACTION-BASED TOOLS 
Once the data is available, the debug platform 

applications can be used to debug, visualize, and analyze. 
Currently, two techniques are used, with more future 
specialized applications in the works. It is clear there is a 
lot of potential for innovation in this area. 

Firstly, waveform tools can be enhanced to now 
additionally show transaction-level data. Figure 7 shows 
a signal-level waveform of some AMBA AHB bus 
activity as well as the extracted transaction-level activity 

Figure 7 also illustrates the clarity provided by the 
transaction-level waveform over the corresponding 
signal-level activity. Having both the abstract and 
detailed views side-by-side allows the user to get the 
high-level view at all times but also have access to the 
details when needed. The attributes of each transaction, 
Data and Attr, are also show as support data in the 
waveform. 

The same data can also be imported into a 
spreadsheet-like tool as show in Figure 8.  

 
Figure 8.  Analyzing Transaction-level data in a spreadsheet-based 

utility 

 

The advantage of this view is that it allows the user to 
perform analysis (ala spreadsheet) functions like sorting 
and flittering based on any column. In this view, the 
columns show the attributes. 

VI. CASE STUDY 

A. Data Mining 
As we have discussed, transaction-level modeling is 

commonly used to model system-level behavior. At 
nVidia, we have many standard or user- defined general 
transaction protocols applied and implemented in various 
SOC-related projects. However, some knowledge of 
transaction protocol details is necessary for SOC 
verification engineers to debug the design with a 
simulator-dumped debug database. For efficient and 
practical debug, engineers are forced to study protocol 
details, which in itself is a non-trivial task. It is especially 
inefficient for design debuggers, who are usually not 
familiar with protocol knowledge,  

Now, with the help of transaction debug and analysis 
tools based on protocol waveforms data-mined from a 
simulator-dumped signal-based database (e.g. FSDB), 
users have a means to clearly visualize and easily 
understand the transaction protocol information. After 
bus signals are recorded into an FSDB file as per our 
usual process, an extraction engine called Transaction 
Evaluator in the Verdi platform can be used to process it 
and extract transaction-level FSDB.  

The transaction evaluation engine requires the user to 
code the protocol so it can recognize a transaction when 
processing the signal-level FSDB. SVA is used to specify 
the protocol. This SVA code can be reused whenever the 
protocol is used again.  

Before transactions are extracted using the SVA, the 
following steps have to be done: 

1) SVA coding for Transaction Dumping 
Add SVA code to the design that will ultimately be 

used to extract transactions. Here is a summary of coding 
styles that we apply: 

- Use sequence or property block for modeling the 
transaction, while deep nesting range repetition and 
unbound range delay, e.g. ##[0:$], are not suggested 
as it will impact performance. 

- SVA local variables, including those declared in the 
sequence or property of a specific assertion will be 
recorded as attributes of the extracted transactions; 
therefore, it’s better not to declare local variables 
with the same name across different 
sequences/properties so as not to cause confusion 
during debug. 



- Specify the transaction label name of a specific 
sequence by declaring local. 

- Use plusargs as a switch to enable and disable 
assertion in simulation. 

 
Figure 9.  Code snippet from our protocol transaction extraction 

library 

Figure 9 shows code snippet that illustrates our coding 
style. 

2) Waveform dumping 
Compile SVA module together with design for the 

simulator, then run a simulation and generate an FSDB 
file containing design and assertion data as per our 
normal process.  

Verdi also includes an assertion evaluation engine that 
supports a post-processing mechanism for assertion 
calculation, which allows for the SVA module not to be 
compiled in the simulator. However, this post process 
way is not recommended for complete (i.e all assertions 
in environment) assertion evaluation due to performance 
considerations. Rather, it is to be used for a small subset 
of assertion evaluation. This may be especially useful 
during assertion code development, since it allows for a 
potentially quicker code-and-try cycle for assertions. This 
flow has not been tried at nVidia yet. 

3) Evaluate the assertions for transaction extraction. 
- Load the design and FSDB file into the Verdi 

platform. 

- Open Verdi’s Transaction Evaluator 
Invoke "Tools" -> "Transaction" -> "Evaluator" in 
Verdi’s nTrace window. This opens the "Transaction 
Evaluator" form where all SVA assert signals are 
listed. 

- Enable assertions to be evaluated. 
When the user selects the scope of interest, the 
transactions are listed in the middle pane. After that, 
the users has to select the assertions to be extracted 
and click either the "Add Selected Transaction" 
button or "Add All Transactions" button to move the 
selection to the Evaluation Enable List pane. 

- Invoke evaluator engine to process. 
Click "Evaluate", the transactions will be extracted 

property APB_READ;  
    logic [ 31 :0] Addr;     // local 
variable to record attribute  addr 
    logic [ 31 :0] Data;     // local 
variable to record attribute  data 
    logic [127:0] Client;   // local 
variable to record attribute client 
name 
 
    @(posedge pclk) disable iff 
(disable_ntx_dump)  
    ((psel && !penable && !pwrite), 
Addr = paddr) |-> ##1  
    (((psel && penable && !pwrite && 
pready)[->1]), Data = prdata, Client = 
"dtv"); 
endproperty  
 
APB_READ_nTX  : assert 
property(APB_READ); 
 

 
Figure 10.   Example extracted transaction-based waveform in the nVidia  environment 



from the assertion code and saved to the specified 
file. After the extraction, this FSDB file will 
automatically be loaded into Verdi and you can start 
using all transaction viewing and analysis commands 
for debug in addition to the standard Verdi capability. 

- Detailed Transaction View 
Load the transaction FSDB file into nWave the same 
way as a general FSDB file. A stream name will be 
shown in the signal pane; begin time, end time, and 
attributes are shown in the value pane; and the 
transaction will be shown in the waveform pane as 
rectangles enclosing all the attributes.  

- Linking between Transaction and Signals 
Double click the transaction stream in the signal 
pane, and then all the signals related to this 
stream are displayed below the stream. These are 
the signals used by the transaction evaluator to 
generate the transaction stream. This way, we 
have access to this level of detail if and when 
needed. 

Figure 10 shows extracted transactions in waveform 
in our (nVidia) environment. As illustrated, the 
transaction-level waveform provides a clear view into the 
bus in the context of protocol transaction activity. 

 

 

 

In addition to waveform-based debug and analysis, 
the Verdi platform also includes spreadsheet-based 
review for deeper analysis. This is shown in Figure 11. 

The spreadsheet tool has capabilities similar to a 
traditional spreadsheet, such as sorting, filtering, etc. 
Both the waveform and spreadsheet provides filtering and 
color highlighting of transactions that match a user-
specified expression, allowing our users to focus on the 
transactions of interest. 

B. Data Logging 
As previously discussed, transaction-level data can be 

natively dumped from a UVM environment – 
specifically, sequencer, driver, and monitor transaction-
level activity can be recorded for debug and analysis at 
the transaction-level. This provides much-needed 
visibility into a UVM testbench during post-simulation 
debug.  This recording is accomplished by way of a 
recorder module that is specific to the debug database 
that the user is aiming for (see Figure 12). 

 
Figure 11.   Deeper analysis of transaction data using spreadsheet-based tool 



 
Figure 12.  Automated flow for recording transaction activity from a 

UVM-based environment 

The user simply includes this recorded module in their 
simulation and the data is recorded into a database, such 
as FSDB. Now, the user can utilize the transaction-based 
applications that the debugger of choice affords. 

VII.  CONCLUSION AND FUTURE WORK 
While there are natural areas of application for high-

level abstraction, or transaction-based, debug such as 
UVM and SystemC, the concepts and techniques are 
equally applicable and provide productivity gains for 
DUT buses. This requires mining transaction-level data 
from signal-level debug databases. SystemVerilog’s 
assertion (SVA) component is a key aspect of this flow, 
and provides the syntax and semantics for users to 

specify or code the protocol transactions. This flow and 
resulting capabilities have been used in a real-life case at 
nVidia and proven to provide productivity gains in debug 
and analysis of SoC-based designs built around buses, 
standard or custom.  

Much of future research and work in this area will be 
focused on the applications. While existing techniques 
that have origins in debugging discrete signal-level 
activity, such as waveforms, have been thus far 
leveraged, it is clear that any future innovations will have 
to rely on new and separate platforms geared especially 
for debug and analysis of high-level abstraction data. 
Even at the application level, the user will likely want to 
re-organize the data in various ways (2nd level of data-
mining, but now at the application-level). For example, 
the user may want to see all the transactions that have the 
same address attribute together. Further possibilities may 
lie in the analysis aspects, such as performance analysis. 
Users may want to do performance-related analysis on 
the various bus transactions, which they may then be 
useful in optimizing the design itself. 

Another area of research interest has the tracing back 
of transactions, in a somewhat similar fashion to tracing 
signal activity back logic level by logic level. This is non-
trivial in that relationships between transactions have to 
exist and be recorded into the debug database. 
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