Applying Transaction-level Debug and Analysis
Technigues to DUT Simulated Activity Using Data-
Mining Techniques

Leo Chai Bindesh Patel, Jun Zhao
Research & Development Research & Development
nVidia, Inc. Synopsys, Inc.

Shanghai, China Mountain View, California

Abstract— Bus activity during RTL simulation is normally ~ the transactions that the user wants to abstraci/¢hile
captured into a debug database at the bit-level. Heever, the engine itself is straight-forward, a mechaniszads
since transactions provide a clearer, bus-protocoliew of to be provided to the user to specify a temporqilisece
activity in a design and verification environment,engineers of events. We will discuss several possibilities tue
often manually map this bit-level data to abstractd bus il focus on the use of SystemVerilog AssertioV4S
transactions. This is the general context for thipaper. syntax and semantics to specify the sequence. SVA i
Significant work and capability already exists to drectly highlighted because it has provisions for everghin
record transaction-level traces from higher-abstration needed to specify any temporal sequence, complex or
models such as a UVM-based SystemVerilog testbench. jyaqic - additionally, most engineers either alre&dgw

However, the focus of this paper is applying thessame ; ; e
transaction-level debug and analysis techniques tthe ngatlgggg??eeriggare able to easily grasp it & dtasely

DUT (design-under-test) activity.
The techniques described have been applied tola rea
Keywords— debug, transacation, testbench, UVM, design and verification environment and these
SystemVerilog, assertion experiences will also be shared in this paper. Vile w
illustrate some examples as well as present the
| INTRODUCTION efficiencies obtgined when the proposals in thizepare
) o) . adopted. We will conclude with proposals for futurerk
For analyzing activity inside a design (DUT), basic; yse more advanced visualization and analysis

bundling of nets into buses for debug and analysigchniques specifically tailored for abstract data.
purposes is a common technique but is limited to

concatenation and sometimes logical expressiortheof
said nets at one particular snapshot time. As ample, Il. TRADITIONAL SIGNAL-BASED ANALYSIS AND
with these basic bundling capabilities, the user iaw DEBUG

the address bus as the actual address (in hegr it

the individual bits of the address bus. For bus, Smulation and Data Dumping

transactions, changes over time also have to be
considered. For example, a READ transaction on & DU
bus usually corresponds to a set of signals chgngin
particular windows of different times. An enginesil
typically decode these changes into the REA
transaction, mentally or using a notebook, sinc th

Today, most verification flows follow a similar
pattern whereby an Engineer runs simulations of his
environment using an automated script and/or Mbkefi
which at the end returns some measure of passl.off fa
Dhere is a failure, another simulation is run fog failing
X test but now with the dumping of debug data enabled
more _understandable and applicable to the debug aRdlis §ata is typically in tﬁe gdebuggingg tool's mati
analysis. format such as the Fast Signal Database (FSDB) from
The solution proposed in this paper does what $kee u Synopsys. Once the data is generated, the Engiaeer
was doing manually, but now automatically. This isload it into the debug tool for further analysifiefe may
accomplished with an engine that scans a recorded t be varying levels of automation in this flow buetmain
of signals and look for patterns of activity thahstitute ~ Scope does not change.

B. Debug Methods terms of time and effort. An example of a recent
Once the data and design description, typicallgin t€chnology that automates the identification of tbet-
hardware description language (HDL), is loaded thtp ~Causeé of an anomaly that the Engineer is tracing is
debug tool, various techniques are employed to tied Behavior Analysis which uses formal techniques.

root-cause of the failure. Standard techniques chase
waveform analysis have been around for years. (Eitju

Signal View Waveform Analog Tools Window Help

1,400 &0

Fen @ HBUSREQ([2: 0 1 0 1 0 JIyofifofifoJifoy4]
IR LN LY Y L

¥e B HBUSR

File View Trace Tools Window Help o o v
& Q@) (%) - ™ i [2 x1ns Clock:

v

— b
- 'F':igure 2. Behavioral analysis techniques to do aoinatic root cause analysis using semi-formal methed

More recently, technologies have advanced to peovid This behavioral analysis technology allows the
new ways and automation which are geared towardsngineer to perform root-cause analysis autométical
getting to the root-cause as quickly as possiblereM over multiple levels of logic and clock cycles with
research and investments in such debug technologismgle or minimal number of commands. (Figure 2)
have increased given the generally accepted faadt th
debug now takes almost half of the verificationleyia

. INTRODUCTION TOTRANSACTION-BASED Figure 3 shows one implementation of showing
MODELING AND ANALYSIS transaction-level data in a waveform tool.

Transaction-based in electronic design automation Additional applications have been developed that ar
(EDA) generally refers to the higher-level targeted at detailed analysis of transaction-ldaéh. One
communication that occurs between components. Thesgch application is based on standard spreadshé¢bt
components are typically modeled at a higher attitra IS, a table view which includes capabilities fdtefing
than HDL's and as such references to data are ataad sorting. This is also illustrated in Figure 3.
corresponding higher level abstraction of transasti
Example methodologies that employ this higher level
modeling are SystemC and UVM testbenches. Bus Iv. FEEDING TRANSACTION-BASED TOOLS
designers and architects refer to a transactionaas 10 utilize the transaction debug and analysis
temporal event of signal-level activity that doeme bus capabilities described in the previous sectionsiireg
action such as read or a write. For the purposthief the data to be recorded at that same higher atistrac
paper, we will refer to a transaction as any endafien level. The SCV extension of SystemC has built-in
of multiple events of data activity. The events barand capabilities to plug in a debug recording interfadech

typically are over time. then allows for transaction-level data to be reedrihto
a debug database such as FSDB. Users can themniew
A. Debug and Analysis at the Transaction-Level debug at the transaction-level. More recently,bisth

ethodologies such as the Universal Verification

ethodology (UVM) have gained rapid adoption. These
are founded on base class libraries that are émdilind a
transaction-level data object. UVM, for exampldowab
r{émdom sequences of transactions to be easily afeder
which in turn feed into the DUT as stimulus. DUT
responses are also encoded into transaction-lewallxy
UVM monitors for easier automated analysis by the
verification environment. UVM in particular provisle
hooks in the library where a transaction recording

Advanced debug platforms have evolved to recor
and provide applications for transaction-based geind
analysis. The notion of simple bus bundling thatais
collection of signals at one snapshot time was adgo
starting basis. The next natural step was to exte
existing waveform applications to display a tratissc
Of course, this depends on the data being reccaddd
stored into a debug database, such as FSDB.

~Y *<nWave:3 home/bindesh/demos/SVA Evaluator/Master5 new/Extracted.fsdb.v - O X
File Signal View Waveform Analog Tools Window Help QA P v
B2 XD 21,240,000 | & [0 Av 21240000 x1ps (@) (@] %) By: [F]v(«][>) @ 6ot 61~

W8l =1 CORE_MEM_READ

CORE_MEM_W*
le : Addr

Eile Stream View Tools Window Help [& | P v
8 P 21,240,000 4o A 21240000 T D 0l x1ps

CORE_MEM_WRITE X |CORE_MEM_READ X |CORE_MEM_READ_CORE_MEM_WRITE X

Index BeginTime EndTime Label Relationship Addr Data
25 21240000 21400000 CORE_MEM_READ - ‘h 3 ‘h 52
26 21640000 21720000 CORE_MEM_WRITE - ‘h1e ‘hd
27 21800000 213860000 CORE_MEM_READ - ‘h4 ‘'h 53
28 22200000 22280000 CORE_MEM_WRITE - ‘h1f ‘he
29 22600000 22680000 CORE_MEM_WRITE - ‘*h 20 ‘hf
30 23000000 23080000 CORE_MEM_WRITE - ‘h 21 ‘h 10
31 23400000 23480000 CORE_MEM_WRITE - ‘*h 22 ‘h 11
32 23800000 23880000 CORE_MEM_WRITE - 'h 23 ‘h12

Cursor: CORE_MEM_READ (2.124e+07, 2.14e+07)
Figure 3. Transaction debug and analysis tools bad®n waveforms and spreadsheets

interface can be plugged in that allows the seqerezied So far, we have established that the ideal way to
monitor transactions to be recorded into a debugecord, store, and view DUT bus activity is by leaging
database. These are natural applications for tosa transaction-based analysis capabilities alreadyladle
based debug and analysis and flows are provided to many advanced debug platforms. An added, but key
generate the data in a highly automated fashion. complication here is that a bus transaction is csag

of signal events happening over time. Thereforeijcba
A. Data Mining fromDUT single-time bundling capabilities provided in stard

What we have discussed so far are flows that cafiebuggers cannot be used. The user has to beledoai
naturally generate transaction-level debug datatural Mechanism to generate the data. One solution &itd
in the sense that the context that these enviromyemch Provide a set of Verilog task-based APIs that tseru

as SystemVerilog UVM or SystemC SCV, operate on argodes directly into their design so that the data i
themselves based on the notion of a transaction. recorded at the transaction-level during the sitiara

_ ~ These exist in some cases, but are difficult and

Designs themselves, referred to DUTs, are typicallgumbersome for the user to code. A better solwtionld
described at the Register Transfer Level (RTL) gisinpe to provide the user a mechanism for extracting,
Verilog or VHDL. The debug data dumped from amining, transaction-level data from signal-levelbde
simulator usually consists of discrete signal-laalvity. data. A GUI-based wizard for the user to descrim t
Debug tools and simulators are able to capturegstmd sequence of specific signal events that a tramsads
present busses to the user as such. The same dande composed of can be provided but that can be also
for ENUM types, with the debug tools providing ittitte cumbersome and the re-usability is questionablee Th
views tO.the user. These primitive levels of enakgimn preferred route is to provide a language that demwa
or bundling are helpful to users. users to specify the transaction semantics.

Most modern SoCs are built around a standard or)]]
custom bus architecture, such as AMBA. Howevefaas B- Using SVAto Describe a Transaction
as the design itself is concerned, the modellisa$tRTL
and thus the same signal-level dump of the busaakigs
generated for debug. An automated mechanism for the
simulator or debugger to decode, or more precisely
encode, bus signal-level activity into the corresponding
bus transactions would provide users a more intuand
clear picture of SoC activity. (Figure 4)

seguence core_memory_write;
logic [10:0] Addr;
logic [31:0] Data;

(1) ##0

(EN == 1'b1 && WE == 1'b1,
Addr = ADDR, Data = DI) ##1
(I(EN == 1'b1 && WE == 1'b1));

Simulator
PSP I T Iy Iy
adar YO X

Look What really

happened

endsequence

seguence core_memory_read;
logic [10:0] Addr;
logic [31:0] Data;

(1) ##0
(WE == 1'00 && RST == 1'b0 &&
RDInvalid == 1'b0, Addr = ADDR) ##1

(RDInvalid == 1'b0) ##1
(1, Data = DO);
Endsequence

CORE_MEM_WRITE : assert
property(@(posedge CLK)
core_memory_write);

Figure 4. Transaction convey a more intuitive meaning of bus
protocol and SoC activity to the user

Buses are defined in terms of transactions anywaly a
these are the perfect basis of presenting theaugiemw of
bus activity. In fact, users, even when analyzing b
signal-level waveforms, often manually encode the
activity into the bus transactions using old-fagkid pen
and paper.

CORE_MEM_READ : assert
property(@(posedge CLK)
core_memory_read);

Figure 5. SVA code snippets showing sequences that describe
AMBA Read and Write tranactions

When attempting to develop a language or text-based

configuration file that can suitably describe tect®on Simulator | Py
activity at the signal-level, it was noted that gtandard Signal-Level
SystemVerilog Assertion (SVA) syntax can fulfilll al IS
requirements. SVA sequences can be used to describe

complex temporal sequence of events. Once thusly 4
described, a utility engine can be developed thalav Descriptiofi e
mine for the sequence of events from an existiggadi the protocolin >
level debug database. Such a utility would be sirtib s

existing post-simulation assertion checker progrémas

mine assertion failures from a debug databasegr#itan T A 4

having the simulator do the checking.

« Standard language Transaction-

)) + Assertion languages have Level il
Figure 5 shows a SVA sequence that describes facilties to specify temporal i

AMBA AHB READ and WRITE transactions. Sequence of events.

» SVA has local variables which
can map to attributes for

The extraction utility can mine the read and write transactions
transactions based on the signal-level activitthef WE,
EN, RST, RDInvalid, Addr, and Data signals in
accordance with the temporal sequence specifiettien
SVA code.

The data-mining utility can be designed to alsoastt

local variables within the sequence as attributeshe Figure 6 illustrates the flow for dumping a stamtlar

transaction. In Figure 5, for example, Addr andaDedn design signal debug database that is then procdssed
be extracted and stored as transaction attribWeswill transactions.

discuss transaction and attribute display in the&t ne . . .
section. play As a side note, it should be noted that the appica

of mining transaction data out of a signal-levelabase
isn't necessarily limited to debug and analysisait also

Figure 6. Flow for transaction data-mining from design debug
database

Ny on \ uate aster Eracte -0 X
Eile Signal View Waveform Analog Tools Window Help Q5 YR
8& "X =) 21,240,000 | & [0 o v 21,240,000 x1ps (@) (@) (%) By: |F]v(«][>) @ Goto: [sic

Al [, [21, 000, 000 21,230,000, . . |21,400,000 21, 600, 000 21, 800, 000 A

e e ey

Bz EX
i

e e

—_—_—y

[0, /. . , [iop,qo0,000 200, 000, 000 300, 000, 000 40D, 000,
- T T - 3

Q

Figure 7. Signal-level and transaction-level for MBA

be used as a quick-and-dirty means to identify @mee The advantage of this view is that it allows therus
information. Today, users often do this with wavefo perform analysis (ala spreadsheet) functions ldwirsy
inspection, a mostly manual process of identifythg and flittering based on any column. In this viele t
interesting sequence of events that the user éseisted columns show the attributes.

in covering. Using SVA code and the post-simulation
extraction utility, this process can be automatadi more
importantly, made more deterministic, accurate, and
repeatable (i.e. reusable).

Vl. CASESTUDY

A. Data Mining
As we have discussed, transaction-level modeling is
V. TRANSACTION-BASED TOOLS commonly used to model system-level behavior. At

Once the data is available, the debug platfornmVidia, we have many standard or user- defined rgéne
applications can be used to debug, visualize, antyze. transaction protocols applied and implemented noua
Currently, two techniques are used, with more titur SOC-related projects. However, some knowledge of
specialized applications in the works. It is cléwre is a transaction protocol details is necessary for SOC
lot of potential for innovation in this area. verification engineers to debug the design with a
simulator-dumped debug database. For efficient and
%ractical debug, engineers are forced to studyopobt
details, which in itself is a non-trivial task.idtespecially
inefficient for design debuggers, who are usualbt n
familiar with protocol knowledge,

Firstly, waveform tools can be enhanced to no
additionally show transaction-level data. Figurehbws
a signal-level waveform of some AMBA AHB bus
activity as well as the extracted transaction-legivity

Figure 7 also illustrates the clarity provided Ine t
transaction-level waveform over the correspondin
signal-level activity. Having both the abstract an

Now, with the help of transaction debug and analysi
ools based on protocol waveforms data-mined from a
X . . X simulator-dumped signal-based database (e.g. FSDB),
detailed views side-by-side allows the user to thet users have a means to clearly visualize and easily

ggghlgv\slr]glnevr\:eztd:g tlehees a?tlﬁbiltséos Z?V:agﬁctfgg;ec understand the transaction protocol informatiorieAf
. AC bus signals are recorded into an FSDB file as per o

Data and Atrr, are also show as support data in ﬂ].'?sual process, an extraction engine called Transact

Evaluator in the Verdi platform can be used to psscit
The same data can also be imported into and extract transaction-level FSDB.
spreadsheet-like tool as show in Figure 8.

waveform.

The transaction evaluation engine requires the taser
code the protocol so it can recognize a transactioen

s ot ottt Sttt atord oS st processing the signal-level FSDB. SVA is used &cip
2 & [oimom | dafo & oo T xips the protocol. This SVA code can be reused whentner
CORE_I\T:M_READ X CERE_TEM_WRITE XEC;)-RE_MEM_READ_CLZ):EI_MEM_WRITE);m _ protocol |S used aga”f]

Index eginTime ndTime el Ir ata
: 20000 Ss00000 | CORE MEMLWATE| o Before transactions are extracted using the SVA, th
; = Tewnn o eV e T following steps have to be done:
5 7720000 7800000 CORE_MEM_WRITE ‘hS 'h 54 i . i
: Soomes Sieec00— | core IR0z et 1) SVAcoding for Transaction Dumping
S T i s e L Add SVA code to the design that will ultimately be
10 12440000 | CORE MEM WRITE| 3 used to extract transactions. Here is a summacpdihg
1 12760000 12840000 CORE_MEM_WRITE ‘hb 'h 34 :
2 13160000 13240000 | CORE_MEM_WRITE he h 35 Styles that we app|y
13 13560000 13640000 CORE_MEM_WRITE ‘hd 'h 36
14 13960000 14040000 CORE_MEM_WRITE ‘he *h 37 .
s s Tadoneo | CoRE MEMLVRITE| 1 E) - Use sequence or property block for modeling the
17 15160000 15240000 | CORE_MEM_WRITE nit n 3 transaction, while deep nesting range repetitiouh an
18 16280000 16440000 CORE_MEM_READ ‘h8 'h 31 .
19 | 16600000 | 16760000 | CORE_MEM_READ 9 I e | unbound range delay, e.g. ##[O$], are not Suggeste
5 TobiGee0 | 19860000 [CORE-MEM_WATE[s H as it will impact performance.
22 20200000 20280000 CORE_MEM_WRITE ‘h1b ‘ha
23 Hosson I — o T w - SVA local variables, including those declared ia th

sequence or property of a specific assertion véll b

recorded as attributes of the extracted transagtion
Figure 8. Analyzing Transaction-level data in a spreadshestt therefore, it's better not to declare local vamsbl
utility with the same name across different
sequences/properties so as not to cause confusion
during debug.

- Specify the transaction label name of a specifisimulator, then run a simulation and generate abB-S
file containing design and assertion data as per ou
neormal process.

sequence by declaring local.

- Use plusargs as a switch to enable and disab

assertion in simulation.

property APB_READ;
logic [31 :0] Addr; // local
variable to record attribute addr
logic [31 :0] Data; // local
variable to record attribute data
logic [127:0] Client; // local
variable to record attribute client
name

@(posedge pclk) disable iff
(disable_ntx_dump)

((psel && penable && !pwrite),
Addr = paddr) |-> ##1

(((psel && penable && 'pwrite &&
pready)[->1]), Data = prdata, Client =
"dtv");
endproperty

APB_READ_nTX : assert
property(APB_READ);

Figure 9. Code snippet from our protocol transaction extoacti
library

Figure 9 shows code snippet that illustrates odmgp

style.
2) Waveform dumping

Compile SVA module together with design for the

hd “<nWave:2> home/../sys_reg_san ityl.so/sys_reg_sanity/nTX_result.fsdb.vf
File Signal View Haveform Analog Jools Hindow Help

8& "X BB 827,469,550,000 | &b (0

Transaction
name

Addr=7d000438

Transactionrelated
signal group

[« |«

A v -827,469,550,00% x 1fs

JAHB_SLV_READ_nTX: (8266828

Verdi also includes an assertion evaluation entjiae

supports a post-processing mechanism for assertion
calculation, which allows for the SVA module nothie
compiled in the simulator. However, this post pssce
way is not recommended for complete (i.e all agsest

in environment) assertion evaluation due to peréoroe
considerations. Rather, it is to be used for a Issudiset

of assertion evaluation. This may be especiallyfulise
during assertion code development, since it alliwsa
potentially quicker code-and-try cycle for assersioThis

flow has not been tried at nVidia yet.

3) Evaluate the assertions for transaction extraction.
Load the design and FSDB file into the Verdi
platform.

Open Verdi's Transaction Evaluator

Invoke "Tools" -> "Transaction" -> "Evaluator" in
Verdi’'s nTrace window. This opens the "Transaction
Evaluator" form where all SVA assert signals are
listed.

Enable assertions to be evaluated.

When the user selects the scope of interest, the
transactions are listed in the middle pane. Attat,t
the users has to select the assertions to be drac
and click either the "Add Selected Transaction"
button or "Add All Transactions" button to move the
selection to the Evaluation Enable List pane.

Invoke evaluator engine to process.

Click "Evaluate", the transactions will be extratte

=[o%
= o v

Q @2 By: [F]v(«)(>) @ 6oto: 61|

Label(begin,end)
attributes list

I EEEE———
Selected: /HRAP/top_peatrans_wrap/u_nv_top_peatrans/sys0_0/u..._ahb2ip/U_AHB_SLAVE_ahbslv_gizmo_ahbifc_NTX/RHB_SLV_READ_nTX _J

Extened Label

Value:Attribute name

AHB_SLY_READ_nTX.AHB_READ

Assertion property

L p] |

Figure 1C. Example extracted transactior-based waveform in the nVidia environmer

from the assertion code and saved to the specified
file. After the extraction, this FSDB file will
automatically be loaded into Verdi and you cantstar
using all transaction viewing and analysis commands
for debug in addition to the standard Verdi capgbil

- Detailed Transaction View The spreadsheet tool has capabilities similar to a

Load the transaction FSDB file into nWave the same traditional spreadsheet, such as sorting, filteriag.

way as a general FSDB file. A stream name will be Both the waveform and spreadsheet provides filjesind
shown in the signal pane; begin time, end time, and Color highlighting of transactions that match a ruse

attributes are shown in the value pane; and the specified expression, allowing our users to focostte
transaction will be shown in the waveform pane as transactions of interest.
rectangles enclosing all the attributes.

In addition to waveform-based debug and analysis,
the Verdi platform also includes spreadsheet-based
review for deeper analysis. This is shown in FigLte

- Linking between Transaction and Signals B. Data L°99' ng])
Double click the transaction stream in the signal AS previously discussed, transaction-level datatman
pane, and then all the signals related to thi§atively dumped from a UVM environment -
stream are displayed below the stream. These af@ecifically, sequencer, driver, and monitor tratiea-
the signals used by the transaction evaluator t§Vvel activity can be recorded for debug and amelgs
generate the transaction stream. This way, wle _transaction-level. This provides much-needed
have access to this level of detail if and wheryisibility into a UVM testbench during post-simuitat
needed. debug. This recording is accomplished by way of a
Figure 10 shows extracted transactions in waveforrfecorder module that is specific to the debug detab
in our (nVidia) environment. As illustrated, the that the user is aiming for (see Figure 12).
transaction-level waveform provides a clear viete ithe
bus in the context of protocol transaction activity

R4 <verdi:nTraceMain:1> WRAP.top_peatrans_wrap.u_nv_top_peatrans.sys0_0.u_NV_apb_clusterapb_bridge.U_APB_MASTER_NV_apb_bridge_NTX APB_MASTER_NTX (/./././dvlib/ntx_dump/t177/APB_MASTER_NTX.sv) - /home/../nTX_result fog=]§

Eile View Source Irace [ebug Tools Hindow Help o
e MoL® e “ BReE20C00%% @ N8R e &
<Inst._Tree> ﬂ ﬁ ;J ﬂ *<Src:1OHRAP, top_peatrans._urap.u.nv_top_peatrans.sys0.0,u_NV_apb_cluster . apb_bridge.U_APB_HASTER_NY. .. (._‘j ﬂ ﬂ ﬂ 5]
e v i S v e Y gg)]
8 73] uahb_decoder (NV_ahb_decoder) 991(APB_MST_READTX : assert property(APB_READ);
:G;P»&"‘;»V‘t'dﬁ:‘b (d’lb-b:lc;sc-'“-m‘l’»"” 992{ APB_MST_WRITE_nTX : assert property(APB_WRITE);
8) uN_ao_cluster (NV_ao_cluster 33|
a%m,m_clusm (W_apb_cluster) 334 init1al begin
aEw_ahb_bndge (NV_ahb_bridge) 935| 1F(Stestsplusargs(“enable_ntx_dunp®)) begin
& {7 apb_bridge (NV_apb_bridge) 9%| i1f(Stestsplusargs(*disable_apb_ntx_dume")) begin
£ RandSuncRandPickTask 997 disable_ntx_duwp = 13
@ 8 IV_apb_bridge_cov_inst (NV_apb_bridge_cov) 9% end
B 9 U_APB_MASTER_NV_apb_bridge_NTX (APB_HASTER_NTX) 339 else begin
B g FPB_HET_READ_nTX 1000 disable_ntx_dup = 0 d
AT V] V]
<] >l < ib| |
|xrHave:2> /one/.../sys.reg.sanityl.so/sys. reg.ssnity/nDiresult..., 9| 7| - | O] x| nTrans:S> fhome/..../sys.reg_sanityl.so/sys.reg_sanity/nTX_result Fsdo.of = /... U || - D x|
File Signal View Waveform fnalog Iools Window 5 v Eile Stream View Iools B v
8% NX D6 360,419,980,000 | b (0 » @ » By: » Goto: » & 216, 168,626,000 | &y [0 A 216168826000 T D M x 1ns

[[300,000,060,000, , 1409,00,090,000, , [5Q0, 0|V —— |WB_MST_WUE_,.TX X

Index Label BeginTime EndTine Addr Data
1 | APB_MST_WRITE_nTX 216168826000 216502162000 ‘h e400 ‘h 10200
2 | APB_MST_WRITE_nTX 213085516000 213418852000 ‘h eSad ‘h_40007e
3 | APB_MST_WRITE_nTX 235335646000 235418380000 'h 24 ‘'h c0
4 | APB_MST_WRITE_nTX 251663110000 252002446000 ‘h edc8 ‘h 70
5 | APB_MST_WRITE_nTX 261335854000 261663190000 ‘h e430 ‘h 110
6 | APB_MST_WRITE_nTX 273663334000 280002670000 ‘h ed30 ‘h 10¢
7 | APB_MST_WRITE_nTX 357163954000 357503230000 ‘h ed34 ‘h 6
8 | APB_MST_WRITE_nTX 350413380000 360753316000 'h ed34 *h 5001
9 | APB_MST_WRITE_nTX 697168507000 697135174000 ‘h eSce ‘h1
10 | APB_MST_WRITE_nTX 638221843000 638248516000 ‘h ede8 ‘h 3
11 | APB_MST_WRITE_nTX 699055183000 693081856000 "h e5d0 ‘h 1000
12 | APB_MST_WRITE_nTX 693888523000 693315136000 ‘h eddd ‘h 7424
13 | APB_MST_WRITE_nTX 693955136000 693981863000 ‘h ebee ‘h 330F
14 | APB_MST_WRITE_nTX 700741869000 700768536000 ‘h e664 ‘h 80000000
15 | APB_MST_WRITE_nTX 713228636000 713255302000 ‘h e85¢ ‘h 4FFfebff
16 | APB_MST_WRITE_nTX 714615313000 714641380000 ‘h e664 'h 0
17 | APB_MST_WRITE_nTX 729835435000 730548774000 ‘h 99180 ‘h 800e8edl
18 | APB_MST_WRITE_nTX 771575763000 771582436000 ‘h 7c ‘h 080863
13 | APB_MST_WRITE_nTX 772342447000 772343113000 'h 864 ‘h 7931186
20 | APB_MST_WRITE_nTX 777075813000 777089146000 ‘h 600c ‘h 67
v 21 | APBMST_WRITE_nTX 778443157000 778462431000 "h_a000 ‘h SeSb0c8s
bl |
~ [m
"

Figure 11. Deeper analysis of transaction data ugy spreadsheet-based tool

Verdi with New Transaction
Based Debug

I Recorder |
UvVM

~=
N J

Figure 12. Automated flow for recording transaction activitgri a
UVM-based environment

The user simply includes this recorded module éirth
simulation and the data is recorded into a datalsassh
as FSDB. Now, the user can utilize the transadiiased
applications that the debugger of choice affords.

vil. CONCLUSIONAND FUTURE WORK
While there are natural areas of application fghhi

level abstraction, or transaction-based, debug sagh
UVM and SystemC, the concepts and techniques aF8

equally applicable and provide productivity gairs f
DUT buses. This requires mining transaction-levatad

from signal-level debug databases. SystemVerilog'g;

assertion (SVA) component is a key aspect of o, f
and provides the syntax and semantics for users

specify or code the protocol transactions. Thisvfend
resulting capabilities have been used in a realdise at
nVidia and proven to provide productivity gainsdebug
and analysis of SoC-based designs built aroundsbuse
standard or custom.

Much of future research and work in this area bl
focused on the applications. While existing techai
that have origins in debugging discrete signallleve
activity, such as waveforms, have been thus far
leveraged, it is clear that any future innovatiwilshave
to rely on new and separate platforms geared edpeci
for debug and analysis of high-level abstractiotada
Even at the application level, the user will likehant to
re-organize the data in various way$®(@vel of data-
mining, but now at the application-level). For exden
the user may want to see all the transactionshidnag the
same address attribute together. Further posgbilihay
lie in the analysis aspects, such as performanalysis
Users may want to do performance-related analysis o
the various bus transactions, which they may then b
useful in optimizing the design itself.

Another area of research interest has the traciay b
of transactions, in a somewhat similar fashionragihg
signal activity back logic level by logic level. iBhis non-
trivial in that relationships between transactibrase to
exist and be recorded into the debug database.

REFERENCES

YC. Hsu, B. Tabbara, YA. Chen, F. Tsai, “Advanceechniques for
RTL Debugging”, DAC Proceedings, 2003

Uuvm User Guide and Reference
http://www.accellera.org/downloads/standards/uvm

R. Chen, B. Patel, and J. Zhao, “UVM Transactioncdreing
Enhancements”, DVCon Proceedings, 2011

2] Manual, http://

to

