
Applying Transaction-level Debug and Analysis
Techniques to DUT Simulated Activity Using Data-

Mining Techniques

Leo Chai
Research & Development

nVidia, Inc.
Shanghai, China

Bindesh Patel, Jun Zhao
Research & Development

Synopsys, Inc.
Mountain View, California

Abstract— Bus activity during RTL simulation is normally
captured into a debug database at the bit-level. However,
since transactions provide a clearer, bus-protocol view of
activity in a design and verification environment, engineers
often manually map this bit-level data to abstracted bus
transactions. This is the general context for this paper.
Significant work and capability already exists to directly
record transaction-level traces from higher-abstraction
models such as a UVM-based SystemVerilog testbench.
However, the focus of this paper is applying these same
transaction-level debug and analysis techniques to the
DUT (design-under-test) activity.

Keywords— debug, transacation, testbench, UVM,
SystemVerilog, assertion

I. INTRODUCTION
For analyzing activity inside a design (DUT), basic

bundling of nets into buses for debug and analysis
purposes is a common technique but is limited to
concatenation and sometimes logical expressions of the
said nets at one particular snapshot time. As an example,
with these basic bundling capabilities, the user can view
the address bus as the actual address (in hex) rather than
the individual bits of the address bus. For bus
transactions, changes over time also have to be
considered. For example, a READ transaction on a DUT
bus usually corresponds to a set of signals changing at
particular windows of different times. An engineer will
typically decode these changes into the READ
transaction, mentally or using a notebook, since that is
more understandable and applicable to the debug and
analysis.

The solution proposed in this paper does what the user
was doing manually, but now automatically. This is
accomplished with an engine that scans a recorded trace
of signals and look for patterns of activity that constitute

the transactions that the user wants to abstract out. While
the engine itself is straight-forward, a mechanism needs
to be provided to the user to specify a temporal sequence
of events. We will discuss several possibilities but we
will focus on the use of SystemVerilog Assertion (SVA)
syntax and semantics to specify the sequence. SVA is
highlighted because it has provisions for everything
needed to specify any temporal sequence, complex or
basic. Additionally, most engineers either already know
the language or are able to easily grasp it as it is closely
related to Verilog.

The techniques described have been applied to a real
design and verification environment and these
experiences will also be shared in this paper. We will
illustrate some examples as well as present the
efficiencies obtained when the proposals in this paper are
adopted. We will conclude with proposals for future work
to use more advanced visualization and analysis
techniques specifically tailored for abstract data.

II. TRADITIONAL SIGNAL-BASED ANALYSIS AND

DEBUG

A. Simulation and Data Dumping
Today, most verification flows follow a similar

pattern whereby an Engineer runs simulations of his
environment using an automated script and/or Makefile
which at the end returns some measure of pass or fail. If
there is a failure, another simulation is run for the failing
test but now with the dumping of debug data enabled.
This data is typically in the debugging tool’s native
format such as the Fast Signal Database (FSDB) from
Synopsys. Once the data is generated, the Engineer can
load it into the debug tool for further analysis. There may
be varying levels of automation in this flow but the main
scope does not change.

B. Debug Methods
Once the data and design description, typically in a

hardware description language (HDL), is loaded into the
debug tool, various techniques are employed to find the
root-cause of the failure. Standard techniques based on
waveform analysis have been around for years. (Figure 1)

More recently, technologies have advanced to provide
new ways and automation which are geared towards
getting to the root-cause as quickly as possible. More
research and investments in such debug technologies
have increased given the generally accepted fact that
debug now takes almost half of the verification cycle in

terms of time and effort. An example of a recent
technology that automates the identification of the root-
cause of an anomaly that the Engineer is tracing is
Behavior Analysis which uses formal techniques.

This behavioral analysis technology allows the
Engineer to perform root-cause analysis automatically
over multiple levels of logic and clock cycles with a
single or minimal number of commands. (Figure 2)

Figure 1. Waveform-based debug and analysis of AMBA bus activity

Figure 2. Behavioral analysis techniques to do automatic root cause analysis using semi-formal methods

III. INTRODUCTION TO TRANSACTION-BASED

MODELING AND ANALYSIS
Transaction-based in electronic design automation

(EDA) generally refers to the higher-level
communication that occurs between components. These
components are typically modeled at a higher abstraction
than HDL’s and as such references to data are at a
corresponding higher level abstraction of transactions.
Example methodologies that employ this higher level
modeling are SystemC and UVM testbenches. Bus
designers and architects refer to a transaction as a
temporal event of signal-level activity that does some bus
action such as read or a write. For the purpose of this
paper, we will refer to a transaction as any encapsulation
of multiple events of data activity. The events can be and
typically are over time.

A. Debug and Analysis at the Transaction-Level
Advanced debug platforms have evolved to record

and provide applications for transaction-based debug and
analysis. The notion of simple bus bundling that is a
collection of signals at one snapshot time was a good
starting basis. The next natural step was to extend
existing waveform applications to display a transaction.
Of course, this depends on the data being recorded and
stored into a debug database, such as FSDB.

Figure 3 shows one implementation of showing
transaction-level data in a waveform tool.

Additional applications have been developed that are
targeted at detailed analysis of transaction-level data. One
such application is based on standard spreadsheets – that
is, a table view which includes capabilities for filtering
and sorting. This is also illustrated in Figure 3.

IV. FEEDING TRANSACTION-BASED TOOLS
To utilize the transaction debug and analysis

capabilities described in the previous sections requires
the data to be recorded at that same higher abstraction
level. The SCV extension of SystemC has built-in
capabilities to plug in a debug recording interface which
then allows for transaction-level data to be recorded into
a debug database such as FSDB. Users can then view and
debug at the transaction-level. More recently, testbench
methodologies such as the Universal Verification
Methodology (UVM) have gained rapid adoption. These
are founded on base class libraries that are built around a
transaction-level data object. UVM, for example, allows
random sequences of transactions to be easily generated,
which in turn feed into the DUT as stimulus. DUT
responses are also encoded into transaction-level data by
UVM monitors for easier automated analysis by the
verification environment. UVM in particular provides
hooks in the library where a transaction recording

Figure 3. Transaction debug and analysis tools based on waveforms and spreadsheets

interface can be plugged in that allows the sequencer and
monitor transactions to be recorded into a debug
database. These are natural applications for transaction-
based debug and analysis and flows are provided to
generate the data in a highly automated fashion.

A. Data Mining from DUT
What we have discussed so far are flows that can

naturally generate transaction-level debug data – natural
in the sense that the context that these environments, such
as SystemVerilog UVM or SystemC SCV, operate on are
themselves based on the notion of a transaction.

Designs themselves, referred to DUTs, are typically
described at the Register Transfer Level (RTL) using
Verilog or VHDL. The debug data dumped from a
simulator usually consists of discrete signal-level activity.
Debug tools and simulators are able to capture, store, and
present busses to the user as such. The same can be done
for ENUM types, with the debug tools providing intuitive
views to the user. These primitive levels of encapsulation
or bundling are helpful to users.

Most modern SoCs are built around a standard or
custom bus architecture, such as AMBA. However, as far
as the design itself is concerned, the model is still at RTL
and thus the same signal-level dump of the bus signals is
generated for debug. An automated mechanism for the
simulator or debugger to decode, or more precisely
encode, bus signal-level activity into the corresponding
bus transactions would provide users a more intuitive and
clear picture of SoC activity. (Figure 4)

Figure 4. Transaction convey a more intuitive meaning of bus

protocol and SoC activity to the user

Buses are defined in terms of transactions anyway and
these are the perfect basis of presenting the user a view of
bus activity. In fact, users, even when analyzing bus
signal-level waveforms, often manually encode the
activity into the bus transactions using old-fashioned pen
and paper.

So far, we have established that the ideal way to
record, store, and view DUT bus activity is by leveraging
transaction-based analysis capabilities already available
in many advanced debug platforms. An added, but key,
complication here is that a bus transaction is comprised
of signal events happening over time. Therefore, basic
single-time bundling capabilities provided in standard
debuggers cannot be used. The user has to be provided a
mechanism to generate the data. One solution could be to
provide a set of Verilog task-based APIs that the user
codes directly into their design so that the data is
recorded at the transaction-level during the simulation.
These exist in some cases, but are difficult and
cumbersome for the user to code. A better solution would
be to provide the user a mechanism for extracting, or
mining, transaction-level data from signal-level debug
data. A GUI-based wizard for the user to describe the
sequence of specific signal events that a transaction is
composed of can be provided but that can be also
cumbersome and the re-usability is questionable. The
preferred route is to provide a language that can allow
users to specify the transaction semantics.

B. Using SVA to Describe a Transaction

Figure 5. SVA code snippets showing sequences that describe

AMBA Read and Write tranactions

sequence core_memory_write;
 logic [10:0] Addr;
 logic [31:0] Data;

 (1) ## 0
 (EN == 1'b1 && WE == 1'b1,
 Addr = ADDR, Data = DI) ##1
 (!(EN == 1'b1 && WE == 1'b1));
endsequence

sequence core_memory_read;
 logic [10:0] Addr;
 logic [31:0] Data;

 (1) ## 0
 (WE == 1'b0 && RST == 1'b0 &&
 RDInvalid == 1'b0, Addr = ADDR) ##1
 (RDInvalid == 1'b0) ##1
 (1, Data = DO);
Endsequence

CORE_MEM_WRITE : assert
 property(@(posedge CLK)
 core_memory_write);

CORE_MEM_READ : assert
 property(@(posedge CLK)
 core_memory_read);

When attempting to develop a language or text-based
configuration file that can suitably describe transaction
activity at the signal-level, it was noted that the standard
SystemVerilog Assertion (SVA) syntax can fulfill all
requirements. SVA sequences can be used to describe
complex temporal sequence of events. Once thusly
described, a utility engine can be developed that would
mine for the sequence of events from an existing signal-
level debug database. Such a utility would be similar to
existing post-simulation assertion checker programs that
mine assertion failures from a debug database, rather than
having the simulator do the checking.

Figure 5 shows a SVA sequence that describes
AMBA AHB READ and WRITE transactions.

The extraction utility can mine the read and write
transactions based on the signal-level activity of the WE,
EN, RST, RDInvalid, Addr, and Data signals in
accordance with the temporal sequence specified in the
SVA code.

The data-mining utility can be designed to also extract
local variables within the sequence as attributes to the
transaction. In Figure 5, for example, Addr and Data can
be extracted and stored as transaction attributes. We will
discuss transaction and attribute display in the next
section.

Figure 6. Flow for transaction data-mining from design debug

database

Figure 6 illustrates the flow for dumping a standard
design signal debug database that is then processed for
transactions.

As a side note, it should be noted that the application
of mining transaction data out of a signal-level database
isn’t necessarily limited to debug and analysis; it can also

Figure 7. Signal-level and transaction-level for AMBA

be used as a quick-and-dirty means to identify coverage
information. Today, users often do this with waveform
inspection, a mostly manual process of identifying the
interesting sequence of events that the user is interested
in covering. Using SVA code and the post-simulation
extraction utility, this process can be automated and more
importantly, made more deterministic, accurate, and
repeatable (i.e. reusable).

V. TRANSACTION-BASED TOOLS
Once the data is available, the debug platform

applications can be used to debug, visualize, and analyze.
Currently, two techniques are used, with more future
specialized applications in the works. It is clear there is a
lot of potential for innovation in this area.

Firstly, waveform tools can be enhanced to now
additionally show transaction-level data. Figure 7 shows
a signal-level waveform of some AMBA AHB bus
activity as well as the extracted transaction-level activity

Figure 7 also illustrates the clarity provided by the
transaction-level waveform over the corresponding
signal-level activity. Having both the abstract and
detailed views side-by-side allows the user to get the
high-level view at all times but also have access to the
details when needed. The attributes of each transaction,
Data and Attr, are also show as support data in the
waveform.

The same data can also be imported into a
spreadsheet-like tool as show in Figure 8.

Figure 8. Analyzing Transaction-level data in a spreadsheet-based

utility

The advantage of this view is that it allows the user to
perform analysis (ala spreadsheet) functions like sorting
and flittering based on any column. In this view, the
columns show the attributes.

VI. CASE STUDY

A. Data Mining
As we have discussed, transaction-level modeling is

commonly used to model system-level behavior. At
nVidia, we have many standard or user- defined general
transaction protocols applied and implemented in various
SOC-related projects. However, some knowledge of
transaction protocol details is necessary for SOC
verification engineers to debug the design with a
simulator-dumped debug database. For efficient and
practical debug, engineers are forced to study protocol
details, which in itself is a non-trivial task. It is especially
inefficient for design debuggers, who are usually not
familiar with protocol knowledge,

Now, with the help of transaction debug and analysis
tools based on protocol waveforms data-mined from a
simulator-dumped signal-based database (e.g. FSDB),
users have a means to clearly visualize and easily
understand the transaction protocol information. After
bus signals are recorded into an FSDB file as per our
usual process, an extraction engine called Transaction
Evaluator in the Verdi platform can be used to process it
and extract transaction-level FSDB.

The transaction evaluation engine requires the user to
code the protocol so it can recognize a transaction when
processing the signal-level FSDB. SVA is used to specify
the protocol. This SVA code can be reused whenever the
protocol is used again.

Before transactions are extracted using the SVA, the
following steps have to be done:

1) SVA coding for Transaction Dumping
Add SVA code to the design that will ultimately be

used to extract transactions. Here is a summary of coding
styles that we apply:

- Use sequence or property block for modeling the
transaction, while deep nesting range repetition and
unbound range delay, e.g. ##[0:$], are not suggested
as it will impact performance.

- SVA local variables, including those declared in the
sequence or property of a specific assertion will be
recorded as attributes of the extracted transactions;
therefore, it’s better not to declare local variables
with the same name across different
sequences/properties so as not to cause confusion
during debug.

- Specify the transaction label name of a specific
sequence by declaring local.

- Use plusargs as a switch to enable and disable
assertion in simulation.

Figure 9. Code snippet from our protocol transaction extraction

library

Figure 9 shows code snippet that illustrates our coding
style.

2) Waveform dumping
Compile SVA module together with design for the

simulator, then run a simulation and generate an FSDB
file containing design and assertion data as per our
normal process.

Verdi also includes an assertion evaluation engine that
supports a post-processing mechanism for assertion
calculation, which allows for the SVA module not to be
compiled in the simulator. However, this post process
way is not recommended for complete (i.e all assertions
in environment) assertion evaluation due to performance
considerations. Rather, it is to be used for a small subset
of assertion evaluation. This may be especially useful
during assertion code development, since it allows for a
potentially quicker code-and-try cycle for assertions. This
flow has not been tried at nVidia yet.

3) Evaluate the assertions for transaction extraction.
- Load the design and FSDB file into the Verdi

platform.

- Open Verdi’s Transaction Evaluator
Invoke "Tools" -> "Transaction" -> "Evaluator" in
Verdi’s nTrace window. This opens the "Transaction
Evaluator" form where all SVA assert signals are
listed.

- Enable assertions to be evaluated.
When the user selects the scope of interest, the
transactions are listed in the middle pane. After that,
the users has to select the assertions to be extracted
and click either the "Add Selected Transaction"
button or "Add All Transactions" button to move the
selection to the Evaluation Enable List pane.

- Invoke evaluator engine to process.
Click "Evaluate", the transactions will be extracted

property APB_READ;
 logic [31 :0] Addr; // local
variable to record attribute addr
 logic [31 :0] Data; // local
variable to record attribute data
 logic [127:0] Client; // local
variable to record attribute client
name

 @(posedge pclk) disable iff
(disable_ntx_dump)
 ((psel && !penable && !pwrite),
Addr = paddr) |-> ##1
 (((psel && penable && !pwrite &&
pready)[->1]), Data = prdata, Client =
"dtv");
endproperty

APB_READ_nTX : assert
property(APB_READ);

Figure 10. Example extracted transaction-based waveform in the nVidia environment

from the assertion code and saved to the specified
file. After the extraction, this FSDB file will
automatically be loaded into Verdi and you can start
using all transaction viewing and analysis commands
for debug in addition to the standard Verdi capability.

- Detailed Transaction View
Load the transaction FSDB file into nWave the same
way as a general FSDB file. A stream name will be
shown in the signal pane; begin time, end time, and
attributes are shown in the value pane; and the
transaction will be shown in the waveform pane as
rectangles enclosing all the attributes.

- Linking between Transaction and Signals
Double click the transaction stream in the signal
pane, and then all the signals related to this
stream are displayed below the stream. These are
the signals used by the transaction evaluator to
generate the transaction stream. This way, we
have access to this level of detail if and when
needed.

Figure 10 shows extracted transactions in waveform
in our (nVidia) environment. As illustrated, the
transaction-level waveform provides a clear view into the
bus in the context of protocol transaction activity.

In addition to waveform-based debug and analysis,
the Verdi platform also includes spreadsheet-based
review for deeper analysis. This is shown in Figure 11.

The spreadsheet tool has capabilities similar to a
traditional spreadsheet, such as sorting, filtering, etc.
Both the waveform and spreadsheet provides filtering and
color highlighting of transactions that match a user-
specified expression, allowing our users to focus on the
transactions of interest.

B. Data Logging
As previously discussed, transaction-level data can be

natively dumped from a UVM environment –
specifically, sequencer, driver, and monitor transaction-
level activity can be recorded for debug and analysis at
the transaction-level. This provides much-needed
visibility into a UVM testbench during post-simulation
debug. This recording is accomplished by way of a
recorder module that is specific to the debug database
that the user is aiming for (see Figure 12).

Figure 11. Deeper analysis of transaction data using spreadsheet-based tool

Figure 12. Automated flow for recording transaction activity from a

UVM-based environment

The user simply includes this recorded module in their
simulation and the data is recorded into a database, such
as FSDB. Now, the user can utilize the transaction-based
applications that the debugger of choice affords.

VII. CONCLUSION AND FUTURE WORK
While there are natural areas of application for high-

level abstraction, or transaction-based, debug such as
UVM and SystemC, the concepts and techniques are
equally applicable and provide productivity gains for
DUT buses. This requires mining transaction-level data
from signal-level debug databases. SystemVerilog’s
assertion (SVA) component is a key aspect of this flow,
and provides the syntax and semantics for users to

specify or code the protocol transactions. This flow and
resulting capabilities have been used in a real-life case at
nVidia and proven to provide productivity gains in debug
and analysis of SoC-based designs built around buses,
standard or custom.

Much of future research and work in this area will be
focused on the applications. While existing techniques
that have origins in debugging discrete signal-level
activity, such as waveforms, have been thus far
leveraged, it is clear that any future innovations will have
to rely on new and separate platforms geared especially
for debug and analysis of high-level abstraction data.
Even at the application level, the user will likely want to
re-organize the data in various ways (2nd level of data-
mining, but now at the application-level). For example,
the user may want to see all the transactions that have the
same address attribute together. Further possibilities may
lie in the analysis aspects, such as performance analysis.
Users may want to do performance-related analysis on
the various bus transactions, which they may then be
useful in optimizing the design itself.

Another area of research interest has the tracing back
of transactions, in a somewhat similar fashion to tracing
signal activity back logic level by logic level. This is non-
trivial in that relationships between transactions have to
exist and be recorded into the debug database.

REFERENCES

[1] YC. Hsu, B. Tabbara, YA. Chen, F. Tsai, “Advanced Techniques for

RTL Debugging”, DAC Proceedings, 2003

[2] UVM User Guide and Reference Manual, http://
http://www.accellera.org/downloads/standards/uvm

[3] R. Chen, B. Patel, and J. Zhao, “UVM Transaction Recording
Enhancements”, DVCon Proceedings, 2011

