
Applying Transaction-level Debug and
Analysis Techniques to DUT Simulated
Activity Using Data-Mining Techniques

DVCon 2014

| Leo Chai, R&D, nVidia | Jun Zhao, R&D, Synopsys |
Bindesh Patel, CAE, Synopsys

Content will be reformatted into a poster for printing

Abstraction of Simulation Activity

• Signal-level waveforms
too fine-grained for
most analysis

• Transaction-level
provides the required
clarity for bus-level
activity for complex
protocols

• Engineers today do the
mapping manually

Right Tool for the Right Job

Signals Transactions

Transactions encapsulate and communicate
chunks of data instead of discrete signals

Anatomy of a Transaction

Attributes can be
• Signals (data, addr, ..)
• Messages
• Strings
• Comments
• Counter
• Payload
• Anything

my_operation_var :
Transaction label

123

45

op1

op2

do_add
attributes

7

2

dividend

divisor

do_div
attributes

43

23

do_add
op1=123
op2=45

do_div
dividend=7
divisor=2

do_div
dividend=43
divisor=23

30 55 85 90 115

Attributes

Begin Time End Time

Representing Transactions in Debug
Tool

Transactions shown
as rectangular box
enclosing attributes

Label {begin, end}
AttributesStreams

Overlapping
transactions

Data Mining from Signal-Level Trace

Simulator

Signal-Level
FSDB File

Transaction
Extraction

Transaction-Level
FSDB File

Description of
the protocol in

SVA

Why SVA?
• Standard language
• Assertion languages have

facilities to specify temporal
sequence of events.

• SVA has local variables
which can map to attributes
for transactions

Example SVA Code
sequence core_memory_write;

logic [10:0] Addr;
logic [31:0] Data;

(1) ## 0
(EN == 1'b1 && WE == 1'b1,
Addr = ADDR, Data = DI) ##1

(!(EN == 1'b1 && WE == 1'b1));
endsequence

sequence core_memory_read;
logic [10:0] Addr;
logic [31:0] Data;

(1) ## 0
(WE == 1'b0 && RST == 1'b0 &&
RDInvalid == 1'b0, Addr = ADDR) ##1

(RDInvalid == 1'b0) ##1
(1, Data = DO);

Endsequence

CORE_MEM_WRITE : assert
property(@(posedge CLK)
core_memory_write);

CORE_MEM_READ : assert
property(@(posedge CLK)
core_memory_read);

nVidia Flow and Code
• Code SVA to describe transaction information.
• Dump trace file which has protocol signal activity
• Data-mine transactions.
• Load new generated trace file with transaction data

property APB_READ;
logic [31 :0] Addr; // local variable to record attribute addr
logic [31 :0] Data; // local variable to record attribute data
logic [127:0] Client; // local variable to record attribute client name

@(posedge pclk) disable iff (disable_ntx_dump)
((psel && !penable && !pwrite), Addr = paddr) |-> ##1
(((psel && penable && !pwrite && pready)[->1]), Data = prdata, Client = "dtv");

endproperty

APB_READ_nTX : assert property(APB_READ);

In Real-Life

Label(begin,end)
attributes list

Stream
name

Extened Label
Value:Attribute name

Transaction related
signal group

Assertion property

* Example from nVidia environment

Filtering and Highlighting

User-defined
highlighting (regular
expression based)

Filtering works in a similar fashion

Relationships

Selected
Transaction

Related
Transactions

Protocols often have complex relationships
between a hierarchy of transactions

Future: A tool designed from the
ground-up for Transaction-Debug

• Next-level Requirements are
different that what a waveform
can provide. User-driven
application-level data mining is
key
– Sorting
– Filtering
– re-arranging

• Similar to commercial DBs and
SQL

• Abstraction will become critical
as the realities push signal-level
analysis out of mainstream

• Research into intelligent
recognition without any user
input

	Applying Transaction-level Debug and Analysis Techniques to DUT Simulated Activity Using Data-Mining Techniques
	Abstraction of Simulation Activity
	Right Tool for the Right Job
	Anatomy of a Transaction
	Representing Transactions in Debug Tool
	Data Mining from Signal-Level Trace
	Example SVA Code
	nVidia Flow and Code
	In Real-Life
	Filtering and Highlighting
	Relationships
	Future: A tool designed from the ground-up for Transaction-Debug

