
Applying Test-Driven
Development Methods to

Design Verification
Software

Doug Gibson (doug.gibson@hp.com), Mike Kontz (michael.kontz@hp.com)
Hewlett-Packard Company

Rationale
• Hardware DV Engineers are usually not trained software engineers

• DV Software is not the product - it’s only a means to an end

• As small projects become big projects, development needs to become more disciplined

• Reusable DV software should be validated in a usage-independent manner

VIP

Block A

Block B

Block C

Block D

High Quality

Configurable

Chip B

Chip D
Chip C

Chip A

How do we engineer DV software?
• In an effort to improve the quality of our DV

software, we invested in some software
development process training

• Better OO design principles

• Exploration of agile best-practices

• Test-driven development – unit test
Build a testbench for your DV software

What is Test-driven Development?

Conventional Development
• Design the feature
• Write the code that implements the

feature
• Run the code within the RTL

testbench if available
• Debug later if defects should arise

Test-driven Development
• Design the feature
• Write unit-tests that stimulate the

feature in a standalone environment
• These tests should initially “fail”
• Write the code that implements the

feature
• Debug tests that fail as necessary
• Continue until all tests “pass”
• Stop coding

Consider the development of a software “feature” – either a new object or a new
method of an existing object:

What is Unit Testing?
• Test in isolation that a unit of code behaves correctly under different stimuli

• Code behaviors tested can include:

input = 5 divided by 0
output = “ERROR: Cannot divide by zero”

• method return values
• method actions (eg state update,

external method calls)
• error detection and messages
• no errors if good stimulus

• object final state
• higher level objectives (eg counting

events, output randomness)

input = (calc_crc(0x5dbe) == 0x6)
output = TRUE

Testsuites and Testcases
• A testsuite is a set of testcases

• A testcase creates a set of objects,
performs a set of operations on
those objects, and checks for proper
response from the objects.

• Each testcase is isolated from all
others. Execution order shouldn’t
matter.

TestCase
TestCase

TestCase

TestSuite
TestSuite

TestSuite

TestRunner

Some more terminology
• Unit/Feature Under Test (UUT/FUT) - component/feature being

tested

• Mock-Up Units - “mock” versions of the required components
to run and test the UUT

• Assertions - helper methods to check the desired UUT behavior
• expect <expr> to be <expr>
• expect_dut_error <string>
• expect_no_more_dut_errors
• wait_for_expected_event <event> <within cycles>

CppUnit (See http://cppunit.sourceforge.net)

• Originally developed our methodologies around the open-
source CppUnit framework

• Focused on checker/scoreboard development
• Most expensive components in the testbench
• Productivity and schedule are critical
• Bugs have a huge

impact on product
schedule and quality

So what about UVM-e?
• You can do the same thing in UVM-e, but…

• Some UVM-e objects cannot be created/destroyed, namely UVM-e units.
How do I create a set of testcases?!?

• A standard mocking test framework – testcases contained in testsuites
• Each testcase instantiates a new testsuite and mockup unit structure
• Tests can assert result values and “expect” dut_error messages
• Emission of Specman-e events can be tested for
• A standard framework allows for testsuites to be distributed with VIP

Enter the UVM e-Unit Testing Framework

About our Examples
UVM Reference
Flow from
Accellera
Provides a readily available
working example of UVM-e
code.

UVC’s are reasonably
simple to understand.

So what does a test look like?

Call the UUT

Check the result

How about a TestSuite?
Create a TestSuite

Add a UUT

Add add’l mock objects

Complete construction

Run some setup

Monitor Testing
• Checking and maintaining

the quality of your BFM is
relatively simple.

• Doing the same for your
monitor and its packet level
checking is not. This
checker is critical to quality
verification, and yet may
NEVER report any errors.

Packet-level protocol checker testing

Loop over
permutations

Make an input
frame packet

Configure the
UUT

Send a legal
frameThere should be

no errors!

Create raw
data for

monitor input

Packet-level protocol checker testing

Validate that a dut_error is
emitted by the checkerAnd ensure that no other

dut_errors appear

Start with legal data and flip
the parity bit

We found bugs in the reference code!
• The uart_monitor wasn’t checking anything!

• The do_check configuration flag was getting set to FALSE, likely due to a
refactor. This disabled all uart_frame checking.

• The with_parity flag in the packet was not set correctly by the
monitor!
• When the packet contained parity bits, they were not checked for
correctness

• Probably due to a performance enhancement

Let’s test the Scoreboard

• Like the packet-level
checker, the
Scoreboard is a
critical piece of the
DV strategy.

• How do you know it’s
working?

Scoreboard Testing

Generate an input
uart_frameGenerate an output apb

bus transaction

Emulate the input from
the uart monitorEmulate the input from

the apb bus monitorThis sequence should
cause no dut_error

How about a Scoreboard mismatch?

Generate an input
uart_frameCreate a corrupted

output transaction

Emulate the input from
the uart monitorEmulate the input from

the apb bus monitorExpect a dut_error
from the scoreboard

Using the tool
• Integrating a tool like AMIQ’s

DVT-Eclipse can improve
productivity

• How can we add unit testing
to the development flow?

• What about continuous
integration?

Unit Tests vs Turnon and Demo tests
• It is common for VIP to include standalone demo tests and undergo

turnon testing. How does Unit Test differ from these kinds of tests?

Turnon Demo

Testbench Full topology with
RTL

Standalone + Demo
Objects

Configurations 1 configuration per
topology

1 configuration per
example

Features tested Core functionality Basic operation

Unit

Standalone +
Mock-Ups

Iterates through all
configurations

• All features
• Corner cases
• Error reporting
• Event signaling

Unit Test Benefits
• Real Unit Test benefits experienced by our lab:

• Verification IP development starts earlier
− No RTL needed to begin full features and thorough testing.

• Shorter development time
− Testing is done coincident or immediately after development while the design is fresh in our heads.
− Development + Testing cycle is continuous as unit test results are quick. Less need to multitask.
− Less debugging in larger, complex environments. Issues found in small unit tests.

• Fewer verification holes
− Error detection and messaging has been unit tested. All configurations covered.

• RTL turnon really is just RTL turnon
− Verif components are already tested and working. Validation portion of project stays focused on RTL issues and testing.

• Faster and better quality fixes for verif components
− Reproduce bug with unit test. Rerun unit test library to make sure fix doesn’t introduce new issue.

• Nice learning tool for new component owner

Other Resources
• Cadence Webinar – Testing the Testbench

http://www.cadence.com/cadence/events/Pages/event.aspx?eventid=864

• SVUnit – a unit test framework in SystemVerilog
http://www.agilesoc.com/open-source-projects/svunit/

• CppUnit Cookbook
http://cppunit.sourceforge.net/doc/lastest/cppunit_cookbook.html

•

http://www.cadence.com/cadence/events/Pages/event.aspx?eventid=864
http://www.agilesoc.com/open-source-projects/svunit/
http://cppunit.sourceforge.net/doc/lastest/cppunit_cookbook.html

	Slide Number 1
	Rationale
	How do we engineer DV software?
	What is Test-driven Development?
	What is Unit Testing?
	Testsuites and Testcases
	Some more terminology
	CppUnit (See http://cppunit.sourceforge.net)
	So what about UVM-e?
	About our Examples
	So what does a test look like?
	How about a TestSuite?
	Monitor Testing
	Packet-level protocol checker testing
	Packet-level protocol checker testing
	We found bugs in the reference code!
	Let’s test the Scoreboard
	Scoreboard Testing
	How about a Scoreboard mismatch?
	Using the tool
	Unit Tests vs Turnon and Demo tests
	Unit Test Benefits
	Other Resources

