EEEEEEEEEEEEEEEEEEE

Applying Test-Driven
Development Methods to
Design Verification
Software

Doug Gibson (doug.gibson@hp.com), Mike Kontz (michael.kontz@hp.com)
Hewlett-Packard Company

7z

DESIGN & VERIFICATION

% Rationale

ONFERENCE

 Hardware DV Engineers are usually not trained software engineers
e DV Software is not the product - it’s only a means to an end
* As small projects become big projects, development needs to become more disciplined

e Reusable DV software should be validated in a usage-independent manner

Block A

Chip B /
Chip C >

High Quality

Block B

Block C

Block D

L= How do we engineer DV software?

* In an effort to improve the quality of our DV
software, we invested in some software
development process training

e Better OO design principles
* Exploration of agile best-practices

e Test-driven development — unit test
Build a testbench for your DV software

APPLYING UML
AND PATTERNS

An Introduction to Object-Oriented Analysis and Design
and Ileratnre Development

“People often ask m kh the best book introduce d‘n 1o IMM:rIddDﬁM
Ever since | came across it Apply r:q L g Pnl“m hat been m v. nreserved
:.s.s Jom mf LML Distiied and Redocion

C hH(I \h‘i“\

V= \What is Test-driven Development?

“Consider the development of a software “feature” — either a new object or a new
method of an existing object:

Conventional Development Test-driven Development

e Design the feature e Design the feature

e Write the code that implements the e Write unit-tests that stimulate the
feature feature in a standalone environment

* Run the code within the RTL e These tests should initially “fail”
testbench if available e Write the code that implements the

* Debug later if defects should arise feature

* Debug tests that fail as necessary
e Continue until all tests “pass”
e Stop coding

What is Unit Testing?

e Test in isolation that a unit of code behaves correctly under different stimuli

e Code behaviors tested can include:

e method return values
method actions

* object final state
* higher level objectives

error detection and messages
no errors if good stimulus
(input

) o output =
input = 5 divided by OL
output = “ERROR: Cannot divide by zero”J

(calc_crc(0Ox5dbe) == 0x6)
TRUE

Testsuites and Testcases

CONFERENCE & EXHIBITION

e A testsuite is a set of testcases

* A testcase creates a set of objects,

performs a set of operations on
those objects, and checks for proper

response from the objects.

o TestSuite
e Each testcase is isolated from all

others. Execution order shouldn’t
matter. TestCase

L Some more terminology

EEEEEEEEEEEEEEEEEEEEE

e Unit/Feature Under Test (UUT/FUT) - component/feature being
tested

 Mock-Up Units - “mock” versions of the required components
to run and test the UUT

e Assertions - helper methods to check the desired UUT behavior

- expect <expr> to be <expr>

- expect_dut_error <string>

- expect_no_more_dut_errors

- wait_for_expected_event <event> <within cycles>

201 4 Cp p U N |t (See http://cppunit.sourceforge.net)

e Originally developed our methodologies around the open-
source CppUnit framework

e Focused on checker/scoreboard development

« Most expensive components in the testbench

« Productivity and schedule are critical

b BUgS have a hUge class ComplexNumberTest @ public CpplUnit: ::TestCase {
. public:
|mpact on prOduct ComplexNunberTest (std::string name } : CppUnit::TestCase(name) {}

schedule and quality = veid zusf=scl

CPPUNIT ASSERT(Complex (10, 1) == Complex (10, 1)):
CEPUNIT ASSERT(! (Complex (1, 1) == Complex (2, 2))):
}
}:

DESIGN 8 VERIFICATION

% So what about UVM-e?

* You can do the same thing in UVM-e, but...

e Some UVM-e objects cannot be created/destroyed, namely UVM-e units.
How do | create a set of testcases?!?

Enter the UVM e-Unit Testing Framework

A standard mocking test framework — testcases contained in testsuites
Each testcase instantiates a new testsuite and mockup unit structure

e Tests can assert result values and “expect” dut_error messages

* Emission of Specman-e events can be tested for

* Astandard framework allows for testsuites to be distributed with VIP

DESIGN 8 VERIFICATION

UVM Reference
Flow from

Accellera

Provides a readily available
working example of UVM-e
code.

UVC’s are reasonably
simple to understand.

About our Examples

Figure 2 - UART Module Verification Environment

4\

-.-.--llllllllllll'

uart_ctrl_sve_u

uart_ctrl_esnv_u

[

TR,
",

Ty
LT__.-....---"..___,,....---.---lllllulll..ll--..,.,-.
*

ECEEEC TR LR LT

'y

Jalik]

1 —

DESIGN 8 VERIFICATION

r

Sens So what does a test look like?

CONFERENCE & EXHIBITION

add testcase calc_parity te uvart_frame with scenario {
var fut_result := p_testsuite vart_frame.uart_frame s.calc parityi
p_testsuite uart_frame.input_payload,
p_testsuite uart_frame. input_parity type):
Check the result) eu_expect fut result to be 1;

DESIGN 8 VERIFICATION

r

5013 How about a TestSuite?

CONFERENCE & EXHIBITION

H unit vart_env_testsuite like eu_testsuite {
Create a TestSuite keep Rind — uart env;

/f The struct under test
uart_env_u : TRUE'has_tx TRUE'has_rx uvart_env_u is instance;
unit_tests setup() is alse {

sig sec_cdma_tx_ datad
Run some setup o ig se cdng P dat o
H

Add add’| mOCk ObJeCtS dummy p_sync : UART ENV MOCKUP'eu kind vart_env uart_sync is instance;
keep soft vart_env_u.p_sync == dummy_p_sync:

1
1

sig_sec_cdma_tx_data : inout simple port of bit is instance;

sig sec_cdma_ctsb ! inout simple_port of bit is instance;

sig_sec_cdma_rx_data : inout simple port of bit is instance;

sig sec_cdma_rfrb ! inout simple_port of bit is instance;
Complete ConStruction connect_ports() is alse {

uart_env_u.tx_agent.ssmp.sig sec_cdma_ctsb, disconnect();
do_bind{uart_env_u.tx_agent.ssmp.sig_sec_cdma ctsb, sig_sec_cdma_ctsb)
uart_env_u.tx_agent.ssmp.sig sec_cdma_tx data, disconnecti];
do_bind{uart_env_u.tx_agent.ssmp.sig sec_cdma_tx data, sig sec_cdma_tx_data);
uart_env_u. r¥_agent.ssmp. sig sec_cdma_rfrb. disconnecti):

do_bind{uart_env_u. rx_agent.ssmp.s5ig_sec_cdma_rfrb, sig_sec_cdma_rfrb);
uart_env_u, ri_agent.ssmp. sig_sec_cdma_rx_data, disconnect(]);
do_bind{uart_env_u. rx_agent.ssmp.sig_sec_cdma_rx_data, sig sec_cdma_rx_data):

iy
T

Monitor Testing

CONFERENCE & EXHIBITION

e Checking and maintaining
the quality of your BFM is
relatively simple.

e Doing the same for your
monitor and its packet level
checking is not. This
checker is critical to quality
verification, and yet may
NEVER report any errors.

uart_env_u

uart_tx
agent

e
EACTVE

uart_rx
agent

icmve

DESIGN 8 VERIFICATION

Packet-level protocol checker testing

CONFERENCE & EXHIBITION

add testcase check receive data to uart_env with scenario {
var frame : uart_frame_s;
var out data : list of bit;
var bfm := p_testsuite _uart_env.uart_env_u. tx_agent.as a{ACTIVE TX wart_agent_u).bfm. a5 a(TH vart_bfm_u);
war monitor = p_ 'tes'tsurte uar‘t Ny, uar‘t EnNV_LI. e agent as_alhas_ monitor RX uart _agent_ u] monitar:
- config = p_te5t5u1te_uart_en'.r uar't_en'.r_u config;
each (parity] in all values{uart_frame_parity t) {
for each (stopbit) im all values{uart_frame_stopbit_t) {
for each (databit) in all values {uart_frame_databit t) {
config. parity_type = parl't'_.r,
config, stopbit_type = stopbit;
config, databit type = databit:
gen frame keeping {

it. parity_type == parity:
it.stopbit_type == stopbit;
it. databit_type == databit;
it.legal_frame == TRUE;
I
var data : list of bit = packipacking. low, frame) ;

var parity loc @ uwint = (1 + databit.as aiint)):
var stop loc : wint = parity_loc + ((parity!=NONE)?1:0);
var orig data := data. copyi);

/4 Check with no error

L= k&

Thré be m;:unltnr he-:k_re-:eix—e_-:latai data) ;

eu_expect_no_more_dut_errors;
no errors!

DESIGN 8 VERIFICATION

Packet-level protocol checker testing

CONFERENCE & EXHIBITION

/f/ Corrupt the parity bit
if(parity!=NONE) {
data = orig data. copy():
data[parity loc] = ~data[parity loc]:
monitor, check receive dataldata):
eu_expect dut error "Frame has bad parity”;
eu_expect no more dut errors;

the parity bit

And ensure /that no-other

dut errors appear i

// Corrupt the stop bit

data = orig_data. copv():

data[stop loc] = ~data[stop loc].

monitor, check receive data(data) .
eu_expect dut error "Frame stop bit is not correct”;
eu_expect no more dut errors;

/\/\/

We found bugs In the reference code!

EEEEEEEEEEEEEEEEEEEEE

e The uart_monitor wasn’t checking anything!

«The do_check configuration flag was getting set to FALSE, likely due to a
refactor. This disabled all uart_frame checking.

e The with parity flag in the packet was not set correctly by the
monitor!

« When the packet contained parity bits, they were not checked for
correctness

- Probably due to a performance enhancement

Let’s test the Scoreboard

CONFERENCE & EXHIBITION

» Like the packet-level
checker, the
Scoreboard is a
critical piece of the
DV strategy.

 How do you know it’s
working?

»

uart_ctrl_env_u

4....1

DESIGN 8 VERIFICATION

2014

CONFERENCE & EXHIBITION

Generate an input
Generate ?q‘outgut apb

bus transaction

Emulate the input frc

Emulate the mput from

B A

cause no dut error

Scoreboard Testing

=
import testsuite uart ctrl_scbd monitor, e;

wWith correc

£ Test vart_frame-=apb path ct payload
add testcase uart_input to uvart_ctrl_scbd with scenario {
var input_apb trans : apb_trans_s;
var vart_frame @ uart_frame_s;
gen uart_frame;
gen input_apb_trans keeping {
.addr == UART_RX_FIFO;
vdirection == READ;
Jdata == pack(NULL ,uart_frame. payload) ;
H
p_testsuite uart_ctrl_scbd, ports_bundle, mock oart
p_testsuite vart ctfl scbd. ports_bundle. mock aph
eu_expect_no_more_dut_errors;

Lrans

Trame

add$
match,

cwritefuart_frame) ;
write{input_apb_trans):

DESIGN 8 VERIFICATION

CONFERENCE & EXHIBITION

Generate an input

Creﬂfr?_fra me
output transaction

Emulate the inout fi
Emulate the input from

tFERGSS B QU EHE0S

from the scoreboard

T~ P I — 1 e . 'R . S — - [
Test uart frame-=apb path with incorrect payload. Expect error

add 'tes'tcase_uar‘t_input_bad_paﬂnad to uart_ctrl_scbd with scenario {

var input_apb trans : apb_trans_s;
var uart_frame : uart_frame s;
gen uart_frame;
gen input_apb trans keeping {
~addr == UART_RX_FIFO;
.direction == READ;
Jdata == (1 ™ pack(NULL,uart_frame. payload)) :

rexpa HOW about a Scoreboard mismatch?

hE
p_testsuite vart ctrl_scbd. ports_bundle, mock vart frame addf,writefuart_frame) ;
p_testsuite uart_ctrl_scbd. ports_bundle, mock apb trans matchf.write({input_apb trans)

eu_expect _dut_error "Mismatch";
eu_expect_no_more_dut_errors;

DESIGN 8 VERIFICATION

Using the tool

* Integrating a tool like AMIQ’s
DVT-Eclipse can improve

2=

Finished after 11.02 seconds : =
"5 @ m T

Runs: & E Errors: 0 H Failures: 0

productivity I

= i Startup (10.98 5)

e How can we add unit testing s 1050
.—_| uart_eny (0.01 s]
to the development flow? Egjhm receive.data (0.01 5
E,'E drive_frame (0.0 s)
. 5—_| uart_ctrl_schd (0.02 5)
* What about continuous 4] uart input (001 5
Eﬂ uart_input_bad_payload (0.0 s)
integration? G apb_nput (0.01 ¢
E,'e'—_|apl:u |n|:n.|t bad_payload (0.0 5]

5—_| uart_frame (0.01 s]

E'l':'—_l calc_parity (0.0 s)

Unlt Tests vs Turnon and Demo tests

'ONFERENCE & EXHIBITION

. It is common for VIP to include standalone demo tests and undergo
turnon testing. How does Unit Test differ from these kinds of tests?

Testbench Full topology with Standalone + Demo Standalone +
RTL Objects Mock-Ups
Configurations 1 configuration per 1 configuration per Iterates through all
topology example configurations
Features tested Core functionality Basic operation e All features

Corner cases
Error reporting
Event signaling

Unit Test Benefits

CONFERENCE & EXHIBITION

e Real Unit Test benefits experienced by our lab:

« Verification IP development starts earlier
- No RTL needed to begin full features and thorough testing.

Shorter development time

— Testing is done coincident or immediately after development while the design is fresh in our heads.

- Development + Testing cycle is continuous as unit test results are quick. Less need to multitask.
- Less debugging in larger, complex environments. Issues found in small unit tests.

Fewer verification holes

- Error detection and messaging has been unit tested. All configurations covered.

RTL turnon really is just RTL turnon

— Verif components are already tested and working. Validation portion of project stays focused on RTL issues and testing.

Faster and better quality fixes for verif components

- Reproduce bug with unit test. Rerun unit test library to make sure fix doesn’t introduce new issue.

Nice learning tool for new component owner

DESIGN 8 VERIFICATION

5014 Other Resources

e Cadence Webinar — Testing the Testbench
http://www.cadence.com/cadence/events/Pages/event.aspx?eventid=864

e SVUnit — a unit test framework in SystemVerilog
http://www.agilesoc.com/open-source-projects/svunit/

e CppUnit Cookbook
http://cppunit.sourceforge.net/doc/lastest/cppunit cookbook.html

http://www.cadence.com/cadence/events/Pages/event.aspx?eventid=864
http://www.agilesoc.com/open-source-projects/svunit/
http://cppunit.sourceforge.net/doc/lastest/cppunit_cookbook.html

	Slide Number 1
	Rationale
	How do we engineer DV software?
	What is Test-driven Development?
	What is Unit Testing?
	Testsuites and Testcases
	Some more terminology
	CppUnit (See http://cppunit.sourceforge.net)
	So what about UVM-e?
	About our Examples
	So what does a test look like?
	How about a TestSuite?
	Monitor Testing
	Packet-level protocol checker testing
	Packet-level protocol checker testing
	We found bugs in the reference code!
	Let’s test the Scoreboard
	Scoreboard Testing
	How about a Scoreboard mismatch?
	Using the tool
	Unit Tests vs Turnon and Demo tests
	Unit Test Benefits
	Other Resources

