

Copyright © 2014 Hewlett Packard Company

Applying Test-Driven Development Methods to

Design Verification Software in UVM-e

Doug Gibson (doug.gibson@hp.com) - Hewlett Packard Company

Mike Kontz (michael.kontz@hp.com) - Hewlett Packard Company

ABSTRACT
Hewlett Packard’s Systems VLSI Lab has been using

Test Driven Development (TDD) best–practices to

develop software in their custom SystemC-based

verification environment for several years. Software

component quality and development times have

both improved with the addition of this framework.

During our recent adoption of the UVM-e

methodology, we wanted to maintain this TDD

capability. The new UVM-e unit-test framework

enables us to continue this valuable development

process.

 Keywords—TDD; unit-test; UVM-e; eUnit

INTRODUCTION

Origins
HP’s Enterprise Server division has been developing

large scale ASICs to support the Integrity

Superdome and ProLiant DL980 servers for many

years. The verification methodology for these

programs was originally developed in 2004 and was

based on SystemC and the SystemC Verification

extension libraries. This testbench became a large

C++-based programming effort, being developed

mainly by electrical and computer engineers.

Software design methodologies were noticeably

lacking.

During a transition

between programs in the

summer of 2010, many

members of the team

enrolled in “Applying UML

and Patterns: Hands-on

Mastery of OOAD, Agile

Modeling, and Patterns with TDD [1]”, a class

designed to teach newer Agile programming

disciplines. The team recognized that some of the

methodologies presented in the class could be

applied in ways unique to the problem of

verification software development.

Goals and Solution
Our organization invests a lot of effort developing

scoreboards and checkers to verify the correctness

of the chips we develop. On most designs, these

components are staffed early so that they can meet

the demands of the design team as the RTL is

turned on. Unfortunately, this often means that the

DV engineer starts developing code before they can

properly stimulate it to ascertain that the

component is really operating properly.

Furthermore, as the RTL and checker are both

turned on together, the feature testing is usually

geared towards the RTL without as much emphasis

on validation of the DV component. Any focus on

the DV component quality is derived from fixing

bugs exposed during RTL turn-on. The

pseudo-random testing methodology relies heavily

on the checker/scoreboard catching errors, but

often the software code behind the flagging of the

errors has never been explicitly tested!

Test-driven development can help solve this

problem of DV component quality and schedule. It

allows the DV software developer to build a test jig

for the software before the RTL is available. Various

stimulus scenarios can be applied to the component

to validate correctness, both for the RTL “correct”

path, as well as RTL “incorrect” paths. This gives the

component developer the ability to get ahead of

the RTL development, providing a much higher

quality component at initial RTL turn-on. It also

Copyright © 2014 Hewlett Packard Company

validates the efficacy of the checks being applied to

the RTL. Finally, the DV software developer will

have a set of qualification tests available to ensure

that changes made later in the project don’t

inadvertently break parts of the checking strategy.

CPPUnit Solution
Our team’s original foray into TDD was on a

C++-based testbench. We developed a unit-test

capability using CPPUnit, a popular open-source

Test-Driven Development (TDD) framework.

Classical TDD specifies that the developer identify a

feature to be developed and first write a unit-test

that will verify that the feature meets particular

specifications. Initially the tests will fail, as the

feature does not meet the test specification. Then

the developer codes the feature until all of the tests

pass, at which point the feature is complete and

development stops. Our testbench software is not

the primary product, so our team has not been

quite so dogmatic about following the TDD

methodology. Instead, we’ve chosen to apply the

capabilities inherent in a unit-testing methodology

to enhance the quality and productivity of our

software development process.

Unit tests are organized as a series of individual

tests, each housed within a testsuite (see Figure 1).

The testsuite is a specialization of the test

framework’s base class and enables instantiation of

the object to be tested. Each testcase within the

testsuite will cause a new, unique object under test

to be created. The testcase will be run against that

object, producing a pass-fail result, after which the

object under test is destroyed. In this way, each

testcase is isolated from all others and execution

order of the tests is irrelevant. The unit test

framework provides assertion capabilities so that

the test writer can code result expectations and

trap program exceptions without disturbing any

other tests during the run. Typically, this type of

framework can run many simple tests in a few

seconds, although long tests are not unacceptable.

The goal is to provide quick feedback to the

software developer confirming the quality of their

code.

UNIT TEST FRAMEWORK IN UVM-E
The e language is object-oriented and thus should

be able to support a unit-test framework similar to

CPPUnit. We initially looked at developing a

framework, but ran into a fundamental Specman

design constraint. In Specman-e, all units are

constructed at time zero when the testbench is

generated. This is at odds with the unit-test

concept where the object to be tested is

constructed at the beginning of a test and

destroyed at the end. Tests cannot be truly

independent if the unit they are testing is preserved

across testcases. Further, a testsuite trying to

iterate through numerous configurations of the

same unit would run into name collisions and

wasteful memory usage.

We approached Cadence looking for a solution,

“Please give us the ability to construct and destroy

units at will when we’re running unit tests.” They

responded that they were interested in developing

an entire unit-test framework, and the eUnit

Testing Framework was born.

Testsuite and Testcases
The eUnit framework mimics the structure found in

many industry unit-test frameworks, with a set of

Figure 1

 eu_testsuites, each of which homes one or more

testcases, as shown in Figure 1. A key attribute of

Copyright © 2014 Hewlett Packard Company

the framework is that it can generate and run all

tests without the need to reload the code. The test

throughput is much more acceptable in this mode,

while the isolation of each test from all others is

preserved. In addition, the test runner implements

a watchdog timer so that tests that hang will be

aborted, allowing following tests to run.

Mock Objects and Subtypes
Many verification components are built to operate

in the context of a complete testbench and not in

isolation. As will be shown in later examples, the

ease of unit testing an object has a lot to do with

how its ability to be instantiated and run in

isolation. To enable unit testing of objects with

external dependencies, some modifications to their

implementation may be needed. The natural way

to do this in e is with when subtypes. The objects

to be created in the unit test are given a new MOCK

subtype with which they can add to or modify the

existing object’s implementation to facilitate unit

test. This could be something as simple as a

checker not probing an internal RTL path if in unit

test/MOCK mode. The objects instantiated in the

testsuite and/or testcase are often referred to as

“mock” objects. One or more of the mock objects

will be the unit under test. Other mock objects may

be needed to fulfill requirements of the unit under

test. A checker may need a register model object

for instance.

Unit Test Assertions
Different types of assertions are provided by the

unit test framework. In the case of UVM-e, the

assertions target verification operations like error

signalling with dut_error and emitting events. As

will be seen in examples, these assertion

statements are strategically placed in the unit test

testcase to implement the desired checking.

Assertions in eUnit:

 expect <expr> to be <expr> - Verify that the

two expressions are equal at this point in

the test. The <expr> fields can be any value

returning expression such as a value

returning method call, an internal state

variable or a constant value.

 expect_dut_error <str> - Verify a dut_error

containing the error message <str> has

been thrown by this point in the test.

 expect_no_more_dut_errors – Verify that

no unmatched dut_errors have occurred up

to this point in the test. A matched

dut_error is one that has been captured by

expect_dut_error.

 wait_for_expected_event <event> <within

cycles> - Verify the <event> has been

emitted <within_cycles> from this point in

the test.

Terminology
Here is a summary of unit-test and eUnit

terminology before covering use cases and example

code.

Unit Under Test – Similar to a Device Under Test

(DUT) in an RTL testbench, the unit test framework

has a Unit Under Test which is the verification

component/feature being tested.

Mock-Up Units – Since the Unit Under Test may

have dependencies on other verification

components and even RTL components to function

properly, the unit test testbench must create

“mock” versions of these missing components to

enable the desired testing. The Unit Under Test

itself is also considered a mock object. Different

testcases may target different mock objects within

the same testsuite.

TestSuite – The testbench the Unit Under Test and

any required Mock-Up Units reside in.

TestCase – A single test run on a TestSuite.

Assertions – Methods which aide in checking the

desired Unit Under Test behaviour. Error

expectation is one important type provided.

Copyright © 2014 Hewlett Packard Company

VIP COMPONENT TESTING

In the following examples we’ve developed tests

based upon the UVM Reference Flow [2]. This

testbench applies UVM-e to a sample subsystem

which implements an APB to UART controller

design. This relatively simple testbench still has

most of the structures that appear in standard

UVM-e environments, but gives us a readily

available sample to which we can apply the unit test

concepts.

Transaction Structs
Some of the first verification code to be written in a

project is often the structs which represent the

transactions for the DUT. These range from a single

cycle, low level payload object to a multi-cycle,

layered protocol packet. Besides physical storage

for the transaction payload, these objects typically

contain methods for use by other verification

components in the testbench. These methods can

often be easily unit tested since they use only

information contained in the transaction struct

itself. Some examples are:

 Packing/Unpacking the transaction to/from

a raw bit stream or lower level transaction

type.

 Validating the correctness and legality of

the transaction field values.

 Calculating and checking protection codes

like parity, CRC, and ECC.

 Printing the transaction in specific formats.

Figure 2 demonstrates an UVM-e unit test on the

UART frame struct. The first frame created is

completely legal and all the respective check

functions pass along with no dut_errors being

thrown. The second frame created is full of

problems and the unit test verifies that all methods

and error messages recognize the errors. This unit

test is very much a directed test and would

probably be used at the very start of development.

It’s also not a bad way to get familiar with the UART

frame struct object if the user were new to the

code.

A pure TDD approach to using this test would be to

code the dut_error expectations while the UART

frame struct methods were just empty shells. The

test would fail when run and the developer could

then iterate until the desired error messages were

all emitted.

One could picture making this unit test a bit more

rigorous by randomizing or enumerating all the

different control settings relevant to this frame

class.

Benefits to Transaction Structs
If the checking in this example code looks too

mundane, picture more complicated stacks like a

layered packet protocol requiring correct assemble

add testcase test_uart_frame_methods to uart_frame with
scenario {

 // frame object to test
 var uframe : uart_frame_s = new;
 gen uframe keeping {
 .databit_type == EIGHT;
 .parity_type == ODD;
 .stopbit_type == TWO;
 };

 // test a good frame
 var bs_good : list of bit = %{0b111101010100};
 unpack(packing.low,bs_good,uframe);
 print "UFRAME_GOOD: ",uframe;
 eu_expect uframe.get_payload() to be %{0xaa};
 eu_expect uframe.calc_parity(bs_good,uframe.parity_type)

to be 0;
 eu_expect uframe.parity_ok() to be TRUE;
 eu_expect uframe.stopbit_ok() to be TRUE;
 uframe.unpack_check_frame(bs_good,TRUE);
 eu_expect_no_more_dut_errors;

 // test a bad frame
 var bs_bad : list of bit = %{0b000101010101};
 unpack(packing.low,bs_bad,uframe);
 print "UFRAME_BAD: ",uframe;
 eu_expect uframe.parity_ok() to be FALSE;
 eu_expect uframe.stopbit_ok() to be FALSE;
 uframe.unpack_check_frame(bs_bad,TRUE);
 eu_expect_dut_error "Frame start bit is not 0";
 eu_expect_dut_error "Frame has bad parity";
 eu_expect_dut_error "Frame stop bit is not correct";
 eu_expect_no_more_dut_errors;
};

Figure 2 - UART frame methods testing

Copyright © 2014 Hewlett Packard Company

and disassemble methods at each layer transition.

Making such methods robust before monitors and

drivers rely on these methods would certainly

benefit the development process. Debugging a

pack or unpack problem or errant error message in

a full-fledged interface UVC with RTL will definitely

take more time than the quick unit test testbench.

Module UVC Development

Scoreboard Checking
In our legacy testbench environment, most of our

unit testing work was focused on developing and

verifying scoreboards and block checkers. These

components are at the heart of our design

verification strategy and must be of very high

quality. They also require significant development

time and effort, so engineer productivity is crucial.

The reference environment implements a

uart_ctrl_scoreboard to verify that the dataflow

across the DUT from the APB interface to the UART

interface is correct. Most of the functionality of the

scoreboard is implemented using the UVM

scoreboard package. We’ve implemented unit tests

(Figure 3) to demonstrate how a simple scoreboard

unit test would work.

 The first test generates a uart_frame_s and a

corresponding apb_trans_s. The uart frame is

driven into the scoreboard by writing to the TLM

analysis port. This mimics an incoming frame being

driven into the DUT. Then the APB transaction is

driven to the TLM match port. This imitates the

testbench driving a read to the uart’s RX FIFO

register. This particular sequence of stimulus will

cause the scoreboard to attempt to match the

contents of the two transactions and compare the

payloads. The eu_expect_no_more_dut_errors call

asks the unit test framework to verify that no DUT

errors have been detected during the test.

In the second test, the same sequence of

scoreboard stimulus is applied, but the payload of

the apb_trans_s transaction is corrupted. This

mimics a design flaw in the DUT that should be

detected by the checker. After the apb_trans_s is

written to the scoreboard, we see

eu_expect_dut_error "Mismatch" indicating that a

dut_error call with the string “Mismatch” in it

should’ve been observed. Failure to see this error

will cause the test to fail, indicating that the

scoreboard has not detected an error that it should

have.

Benefits to Module UVC components
Checkers are a primary candidate to benefit from

unit test from our point of view. Their main

function is to detect and report errant functionality

of the RTL DUT. Explicitly testing this error detect

and report functionality makes a lot of sense given

this viewpoint. Further, executing this verification

coincident with or immediately following

development has the engineer in a better mind-set

import testsuite_uart_ctrl_scbd_monitor.e;

// Test uart_frame->apb path with correct payload
add testcase uart_input to uart_ctrl_scbd with scenario {
 var input_apb_trans : apb_trans_s;
 var uart_frame : uart_frame_s;
 gen uart_frame;
 gen input_apb_trans keeping {
 .addr == UART_RX_FIFO;
 .direction == READ;
 .data == pack(NULL,uart_frame.payload);
 };
 p_testsuite_uart_ctrl_scbd.ports_bundle.

mock_uart_frame_add$.write(uart_frame);
 p_testsuite_uart_ctrl_scbd.ports_bundle.

mock_apb_trans_match$.write(input_apb_tran
s);

 eu_expect_no_more_dut_errors;
};
// Test uart_frame->apb path with incorrect payload. Expect

error
add testcase uart_input_bad_payload to uart_ctrl_scbd with

scenario {
 var input_apb_trans : apb_trans_s;
 var uart_frame : uart_frame_s;
 gen uart_frame;
 gen input_apb_trans keeping {
 .addr == UART_RX_FIFO;
 .direction == READ;
 .data == (1 ^ pack(NULL,uart_frame.payload));
 };
 p_testsuite_uart_ctrl_scbd.ports_bundle.

mock_uart_frame_add$. write(uart_frame);
 p_testsuite_uart_ctrl_scbd.ports_bundle.

mock_apb_trans_match$.
write(input_apb_trans);

 eu_expect_dut_error "Mismatch";
 eu_expect_no_more_dut_errors;
};

Figure 3 - APB to UART scoreboard checking

Copyright © 2014 Hewlett Packard Company

for finding software errors while the code

development is fresh in their minds.

Besides verifying the main purpose of the checkers,

unit tests allow the entire checker to be tested

before any RTL is available. This is a common

situation in our experience since design specs are

usually available to both the RTL and DV engineers

at the same time. How nice would it be if the RTL

turn-on had a proven checker ready to go day one?

The benefit we’ve observed is less time wasted

back-tracking in the verification software during the

middle and later phases of the project and more

time spent identifying and debugging the

implementation flaws in the RTL.

Interface UVC Development

Wire-level Checking
Developing a unit test for wire-level functionality of

an interface UVC requires some judgement. These

tests can be tricky to get right and may be less

useful than the standard example topology and

demo.sh script. Where unit tests for BFMs or

monitors may be highly effective is when the env is

configurable. Turning on the BFM may end up

being simpler when all of the possible configuration

options can be quickly iterated through while

testing for correct operation. This can be a lot less

tedious than other methods.

Note Figure 4, a unit test in which the uart_env

mockup is setup for each possible set of

configuration parameters. A uart_frame_s is then

generated and driven by the BFM by calling the

drive_frame() method. While drive_frame() is

running, another thread is running to collect the

output of the uart’s TX port. At the end of the

frame, the output collected is compared to an

expected bitstream looking for discrepancies.

Simultaneously, the TX monitor has been enabled

to perform protocol checking of the frame. This

test quickly checks all permutations of the

parameter set for correctness for little extra cost

relative to testing one particular configuration.

A similar unit test could be developed for the uart

monitor code where the state machine is somewhat

more interesting. We will discuss a unit test of the

protocol checking of the received uart frame in

Packet Checking in the UVC Monitor. This testsuite

would be more targeted at validating the

correctness of frame detection and creation by

add testcase drive_frame to uart_env with scenario {
 var frame : uart_frame_s;
 var out_data : list of bit;
 watchdog_timer = 10000; // Keep the test running for 10K

cycles
 var bfm := p_testsuite_uart_env.uart_env_u.tx_agent.

as_a(ACTIVE TX uart_agent_u).bfm.as_a(TX
uart_bfm_u);

p_testsuite_uart_env.uart_env_u.tx_agent.as_
a(has_monitor TX
uart_agent_u).monitor.do_check = TRUE;

 var config := p_testsuite_uart_env.uart_env_u.config;
 for each (parity) in all_values(uart_frame_parity_t) {
 for each (stopbit) in all_values(uart_frame_stopbit_t) {
 for each (databit) in all_values(uart_frame_databit_t) {
 config.parity_type = parity;
 config.stopbit_type = stopbit;
 config.databit_type = databit;
 gen frame keeping {
 it.parity_type == parity;
 it.stopbit_type == stopbit;
 it.databit_type == databit;
 it.legal_frame == TRUE;
 it.delay_to_next_frame == 0;
 };
 var parity : list of bit = frame.with_parity ?

{frame.as_a(with_parity uart_frame_s).parity} :
{};

 var expected : list of bit = %{frame.start_bit,
frame.payload, parity, frame.stop_bit};

 p_testsuite_uart_env.sig_sec_cdma_ctsb$ = 0;
 p_testsuite_uart_env.clk();
 out_data.clear();
 all of {
 { // Packet stimulus thread
 bfm.drive_frame(frame);
 p_testsuite_uart_env.sig_sec_cdma_tx_data$ = 1;
 };
 { // Clock & wire thread
 for i from 1 to expected.size() {
 p_testsuite_uart_env.clk();
 out_data.add0(p_testsuite_uart_env.

sig_sec_cdma_tx_data$);
 };
 p_testsuite_uart_env.clk();
 };
 };
 eu_expect_no_more_dut_errors;
 eu_expect out_data to be expected;
 };
 };
 };
};

Figure 4 - Wire level checking test

Copyright © 2014 Hewlett Packard Company

varying input signal timing. If written prior to

development of the monitor, this testsuite could be

incorporated as part of the BFM testsuite to enable

holistic testing of all of the wire-level components

of the UVC. In more complex protocols, this

methodology would be very useful to ensure that

the UVC can detect and recover from errors, both

intentional and unexpected, on the interface. Often

testing of these error conditions is started later in

the hardware development cycle, leading to

unexpected and hasty development work on the

part of the UVC developer.

Packet Checking in the UVC Monitor
In our legacy environment, we did not expend any

effort validating packet-level checkers as most of

these were either complete, or incorporated in

other, higher-level checkers. In UVM, packet

checking is considered to be an integral part of the

UVC monitor and needs to be tested for

high-quality testing of packets. As a sample, we’ve

developed a set of unit tests to verify the quality of

the check_receive_data method of the

uart_monitor_u unit. The testsuite constructs a

uart_env and our test generates a random

uart_frame packet which is packed and sent to the

check_receive_data method. The test first calls the

method with an unmodified frame and expects no

errors to occur. We then corrupt the start bit, data,

parity, and stop bits in turn, testing to ensure that

the appropriate DUT error is reported by the check

method. This basic flow is iterated over all

permutations of payload size, parity setting, and

number of stop bits to ensure that the checker will

work under all conditions. The code for the test can

be seen in Figure 5.

Development of this testcase took approximately

two hours and involved debugging two latent

defects in the checker code. Both of these defects

were “silent” in that they caused the checker to not

report errors, for instance when bad parity was sent

from the DUT. One of the defects appears as

though it may have been introduced when a

developer modified the code to enhance the

performance of the checker. These kinds of

changes can be dangerous in that the checker’s

correctness might have been visually confirmed

during initial development, but subsequently

broken. Unit tests serve a valuable function in this

instance, allowing the developer to re-check the

correctness of the code after every change. Well

written tests should expose any unintended

side-effects of any changes made. This is where

unit tests shine – verifying that all of the checks

add testcase check_receive_data to uart_env with scenario {

 var frame : uart_frame_s;
 var monitor := p_testsuite_uart_env.uart_env_u.rx_agent.

as_a(has_monitor RX uart_agent_u). monitor;
 var config = p_testsuite_uart_env.uart_env_u.config;

 // Iterate all combinations of parity, stop bit and data width
 for each (parity) in all_values(uart_frame_parity_t) {
 for each (stopbit) in all_values(uart_frame_stopbit_t) {
 for each (databit) in all_values(uart_frame_databit_t) {
 config.parity_type = parity;
 config.stopbit_type = stopbit;
 config.databit_type = databit;
 gen frame keeping {
 it.parity_type == parity;
 it.stopbit_type == stopbit;
 it.databit_type == databit;
 it.legal_frame == TRUE;
 };
 var data : list of bit = pack(packing.low,frame);
 var parity_loc : uint = (1 + databit.as_a(int));
 var stop_loc : uint = parity_loc + ((parity != NONE) ? 1

: 0);
 var orig_data := data.copy();

 // Check with no error
 monitor.check_receive_data(data);
 eu_expect_no_more_dut_errors;

 // Corrupt the start bit
 data = orig_data.copy();
 data[0] = ~data[0];
 monitor.check_receive_data(data);
 eu_expect_dut_error "Frame start bit is not 0";
 eu_expect_no_more_dut_errors;
…
 // Corrupt the parity bit
 if(parity!=NONE) {
 data = orig_data.copy();
 data[parity_loc] = ~data[parity_loc];
 monitor.check_receive_data(data);
 eu_expect_dut_error "Frame has bad parity";
 eu_expect_no_more_dut_errors;
 };
 };
 };
 };
};

Figure 5 - Packet protocol checker test

Copyright © 2014 Hewlett Packard Company

work at original development time and that none of

the checks are subsequently broken.

Other Usage Models

Test Replay
In our C++-based environment, we developed unit

testsuites for some of our existing software

components. The goal was not to do classic

test-driven development, but to apply some of the

productivity enhancements to maintenance of

those components. A good example of this was test

replay. We instrumented the monitor ports of the

component to be unit tested so that we could

capture all of the input stimulus to the checker

during a normal testcase run. The unit test was

designed to read that input stimulus and apply it to

the checker in the unit test environment. By doing

this, we could rerun a long simulation in seconds,

allowing the checker owner to easily develop a fix

for the code while not having to wait for long tests

to be rerun each time they made a change.

Although there was overhead to develop the

framework, it had a clear ROI on components which

were actively being changed during the program.

We’ve not explored this concept within the eUnit

Testing Framework to date. Specman provides

more effective replay mechanisms than were

available in the C++ environment, and this

technique seems to be more appropriate to apply

with existing components that don’t have a unit test

capability.

Generating Unit Tests from Simulation
Extending the replay concept, we added the ability

to annotate and modify the trace taken from the

simulation in our C++ environment. By changing a

transaction in the trace and adding an annotation to

“expect the following error at this time”, you can

develop checker validation tests that are much

more sophisticated than those written completely

by hand. This kind of checker validation can be very

powerful in the right context, although we did find

issues with it that would need to be addressed.

Specifically, the tests developed this way may or

may not remain valid as the RTL becomes more

mature. Also, it can be somewhat time consuming

to find appropriate traces and modify them. One

area where this could be of considerable use is in

capturing particular bugs to ensure that the checker

will still detect them once the RTL is corrected.

Stimulus/Constraints
In our previous environment, another successful

use of unit testing was for traffic generation. We

had the equivalent of an interface UVC with many

knobs to control various aspects of the traffic

generation. Unit tests were coded to generate

traffic under various knob settings and validate the

resulting traffic did indeed obey the knobs. We

believe a similar approach may be applicable to

UVM-e interface UVC’s at the get_next_txn()

interface between the sequence_driver and the

BFM. The knobs in this case would be constraints.

One addition to this idea is to incorporate cover

groups into these unit tests. The hope is coverage

holes may be identified early by looking at the

resulting coverage after running the core set of

sequences for this interface UVC.

BENEFITS

Verification IP development starts earlier
No RTL is needed to begin full development and

thorough testing of Verification IP.

Shorter development time
Testing of your VIP coincident with or immediately

following development has the engineer in a better

mind-set for finding software errors while the

software design is fresh in the head.

The VIP development and test cycle is continuous as

unit test results are available quickly. There is less

need to multitask while waiting for simulation

results.

Less debugging of VIP in larger, complex

environments. Most issues will be found in small

unit tests.

Copyright © 2014 Hewlett Packard Company

Fewer verification holes
Error detection and messaging has been unit tested.

All configurations covered. Critical verification

components can be adequately tested for quality

before exposure to RTL.

RTL turnon really is just RTL turnon
Verification components are already tested and

turned on before RTL. The validation portion of the

project stays focused on RTL issues and testing.

Faster and better quality fixes for verification
IP components
Reproduce a VIP bug with a unit test and use it to

validate the software fix. Then rerun the unit test

library to make sure your fix doesn’t introduce any

new issues.

Excellent learning tool for new component
owner
When the component is turned over to a new

owner, these tests provide excellent training tools

and help keep the quality of the UVC high during

the learning phase.

CONCLUSIONS
In our experience, using an architected framework

to apply TDD practices to verification software

improves its quality and accelerates the overall

design schedule. The new unit test framework in

UVM-e allows us to continue this important design

practice on our next generation verification

environment.

REFERENCES

[1] C. Larman, Applying UML and Patterns:

Hands-on Mastery of OOAD, Agile Modeling, and

Patterns with TDD, 2010.

[2] Cadence, “UVMWorld Contribution,” May 2013.

[Online].

Available:

http://forums.accellera.org/files/file/99-uvm-ref

-flow-soc-kit-originally-from-cadence-modified-t

o-work-with-vcs-questa-ius/.

