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ABSTRACT 
Hewlett Packard’s Systems VLSI Lab has been using 

Test Driven Development (TDD) best–practices to 

develop software in their custom SystemC-based 

verification environment for several years.  Software 

component quality and development times have 

both improved with the addition of this framework.  

During our recent adoption of the UVM-e 

methodology, we wanted to maintain this TDD 

capability.  The new UVM-e unit-test framework 

enables us to continue this valuable development 

process. 

 Keywords—TDD; unit-test; UVM-e; eUnit 

INTRODUCTION 

Origins 
HP’s Enterprise Server division has been developing 

large scale ASICs to support the Integrity 

Superdome and ProLiant DL980 servers for many 

years.  The verification methodology for these 

programs was originally developed in 2004 and was 

based on SystemC and the SystemC Verification 

extension libraries.  This testbench became a large 

C++-based programming effort, being developed 

mainly by electrical and computer engineers.  

Software design methodologies were noticeably 

lacking. 

During a transition 

between programs in the 

summer of 2010, many 

members of the team 

enrolled in “Applying UML 

and Patterns: Hands-on 

Mastery of OOAD, Agile 

Modeling, and Patterns with TDD [1]”, a class 

designed to teach newer Agile programming 

disciplines.  The team recognized that some of the 

methodologies presented in the class could be 

applied in ways unique to the problem of 

verification software development. 

Goals and Solution 
Our organization invests a lot of effort developing 

scoreboards and checkers to verify the correctness 

of the chips we develop.  On most designs, these 

components are staffed early so that they can meet 

the demands of the design team as the RTL is 

turned on.  Unfortunately, this often means that the 

DV engineer starts developing code before they can 

properly stimulate it to ascertain that the 

component is really operating properly.  

Furthermore, as the RTL and checker are both 

turned on together, the feature testing is usually 

geared towards the RTL without as much emphasis 

on validation of the DV component.  Any focus on 

the DV component quality is derived from fixing 

bugs exposed during RTL turn-on.  The 

pseudo-random testing methodology relies heavily 

on the checker/scoreboard catching errors, but 

often the software code behind the flagging of the 

errors has never been explicitly tested! 

Test-driven development can help solve this 

problem of DV component quality and schedule.  It 

allows the DV software developer to build a test jig 

for the software before the RTL is available.  Various 

stimulus scenarios can be applied to the component 

to validate correctness, both for the RTL “correct” 

path, as well as RTL “incorrect” paths.  This gives the 

component developer the ability to get ahead of 

the RTL development, providing a much higher 

quality component at initial RTL turn-on.  It also 
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validates the efficacy of the checks being applied to 

the RTL.  Finally, the DV software developer will 

have a set of qualification tests available to ensure 

that changes made later in the project don’t 

inadvertently break parts of the checking strategy. 

CPPUnit Solution 
Our team’s original foray into TDD was on a 

C++-based testbench.  We developed a unit-test 

capability using CPPUnit, a popular open-source 

Test-Driven Development (TDD) framework.  

Classical TDD specifies that the developer identify a 

feature to be developed and first write a unit-test 

that will verify that the feature meets particular 

specifications.  Initially the tests will fail, as the 

feature does not meet the test specification.  Then 

the developer codes the feature until all of the tests 

pass, at which point the feature is complete and 

development stops.  Our testbench software is not 

the primary product, so our team has not been 

quite so dogmatic about following the TDD 

methodology.  Instead, we’ve chosen to apply the 

capabilities inherent in a unit-testing methodology 

to enhance the quality and productivity of our 

software development process. 

Unit tests are organized as a series of individual 

tests, each housed within a testsuite (see Figure 1).  

The testsuite is a specialization of the test 

framework’s base class and enables instantiation of 

the object to be tested.  Each testcase within the 

testsuite will cause a new, unique object under test 

to be created.  The testcase will be run against that 

object, producing a pass-fail result, after which the 

object under test is destroyed.  In this way, each 

testcase is isolated from all others and execution 

order of the tests is irrelevant.  The unit test 

framework provides assertion capabilities so that 

the test writer can code result expectations and 

trap program exceptions without disturbing any 

other tests during the run.  Typically, this type of 

framework can run many simple tests in a few 

seconds, although long tests are not unacceptable.  

The goal is to provide quick feedback to the 

software developer confirming the quality of their 

code. 

UNIT TEST FRAMEWORK IN UVM-E 
The e language is object-oriented and thus should 

be able to support a unit-test framework similar to 

CPPUnit.  We initially looked at developing a 

framework, but ran into a fundamental Specman 

design constraint.  In Specman-e, all units are 

constructed at time zero when the testbench is 

generated.  This is at odds with the unit-test 

concept where the object to be tested is 

constructed at the beginning of a test and 

destroyed at the end.  Tests cannot be truly 

independent if the unit they are testing is preserved 

across testcases.  Further, a testsuite trying to 

iterate through numerous configurations of the 

same unit would run into name collisions and 

wasteful memory usage. 

We approached Cadence looking for a solution, 

“Please give us the ability to construct and destroy 

units at will when we’re running unit tests.”  They 

responded that they were interested in developing 

an entire unit-test framework, and the eUnit 

Testing Framework was born. 

Testsuite and Testcases 
The eUnit framework mimics the structure found in 

many industry unit-test frameworks, with a set of 

Figure 1

 

 eu_testsuites, each of which homes one or more 

testcases, as shown in Figure 1.  A key attribute of 
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the framework is that it can generate and run all 

tests without the need to reload the code.  The test 

throughput is much more acceptable in this mode, 

while the isolation of each test from all others is 

preserved.  In addition, the test runner implements 

a watchdog timer so that tests that hang will be 

aborted, allowing following tests to run. 

Mock Objects and Subtypes 
Many verification components are built to operate 

in the context of a complete testbench and not in 

isolation.  As will be shown in later examples, the 

ease of unit testing an object has a lot to do with 

how its ability to be instantiated and run in 

isolation.  To enable unit testing of objects with 

external dependencies, some modifications to their 

implementation may be needed.  The natural way 

to do this in e is with when subtypes.  The objects 

to be created in the unit test are given a new MOCK 

subtype with which they can add to or modify the 

existing object’s implementation to facilitate unit 

test.  This could be something as simple as a 

checker not probing an internal RTL path if in unit 

test/MOCK mode.  The objects instantiated in the 

testsuite and/or testcase are often referred to as 

“mock” objects.  One or more of the mock objects 

will be the unit under test.  Other mock objects may 

be needed to fulfill requirements of the unit under 

test.  A checker may need a register model object 

for instance. 

Unit Test Assertions 
Different types of assertions are provided by the 

unit test framework.  In the case of UVM-e, the 

assertions target verification operations like error 

signalling with dut_error and emitting events.  As 

will be seen in examples, these assertion 

statements are strategically placed in the unit test 

testcase to implement the desired checking. 

Assertions in eUnit: 

 expect <expr> to be <expr> - Verify that the 

two expressions are equal at this point in 

the test.  The <expr> fields can be any value 

returning expression such as a value 

returning method call, an internal state 

variable or a constant value.  

 expect_dut_error <str> - Verify a dut_error 

containing the error message <str> has 

been thrown by this point in the test. 

 expect_no_more_dut_errors – Verify that 

no unmatched dut_errors have occurred up 

to this point in the test.  A matched 

dut_error is one that has been captured by 

expect_dut_error. 

 wait_for_expected_event <event> <within 

cycles> - Verify the <event> has been 

emitted <within_cycles> from this point in 

the test. 

Terminology 
Here is a summary of unit-test and eUnit 

terminology before covering use cases and example 

code. 

Unit Under Test – Similar to a Device Under Test 

(DUT) in an RTL testbench, the unit test framework 

has a Unit Under Test which is the verification 

component/feature being tested. 

Mock-Up Units – Since the Unit Under Test may 

have dependencies on other verification 

components and even RTL components to function 

properly, the unit test testbench must create 

“mock” versions of these missing components to 

enable the desired testing.  The Unit Under Test 

itself is also considered a mock object.  Different 

testcases may target different mock objects within 

the same testsuite. 

TestSuite – The testbench the Unit Under Test and 

any required Mock-Up Units reside in. 

TestCase – A single test run on a TestSuite. 

Assertions – Methods which aide in checking the 

desired Unit Under Test behaviour.  Error 

expectation is one important type provided. 
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VIP COMPONENT TESTING 
 

In the following examples we’ve developed tests 

based upon the UVM Reference Flow [2].  This 

testbench applies UVM-e to a sample subsystem 

which implements an APB to UART controller 

design.  This relatively simple testbench still has 

most of the structures that appear in standard 

UVM-e environments, but gives us a readily 

available sample to which we can apply the unit test 

concepts. 

Transaction Structs 
Some of the first verification code to be written in a 

project is often the structs which represent the 

transactions for the DUT.  These range from a single 

cycle, low level payload object to a multi-cycle, 

layered protocol packet.  Besides physical storage 

for the transaction payload, these objects typically 

contain methods for use by other verification 

components in the testbench.  These methods can 

often be easily unit tested since they use only 

information contained in the transaction struct 

itself.  Some examples are: 

 Packing/Unpacking the transaction to/from 

a raw bit stream or lower level transaction 

type. 

 Validating the correctness and legality of 

the transaction field values. 

 Calculating and checking protection codes 

like parity, CRC, and ECC. 

 Printing the transaction in specific formats. 

Figure 2 demonstrates an UVM-e unit test on the 

UART frame struct.  The first frame created is 

completely legal and all the respective check 

functions pass along with no dut_errors being 

thrown.  The second frame created is full of 

problems and the unit test verifies that all methods 

and error messages recognize the errors.  This unit 

test is very much a directed test and would 

probably be used at the very start of development.  

It’s also not a bad way to get familiar with the UART 

frame struct object if the user were new to the 

code. 

A pure TDD approach to using this test would be to 

code the dut_error expectations while the UART 

frame struct methods were just empty shells.  The 

test would fail when run and the developer could 

then iterate until the desired error messages were 

all emitted. 

One could picture making this unit test a bit more 

rigorous by randomizing or enumerating all the 

different control settings relevant to this frame 

class. 

 

Benefits to Transaction Structs 
If the checking in this example code looks too 

mundane, picture more complicated stacks like a 

layered packet protocol requiring correct assemble 

add testcase test_uart_frame_methods to uart_frame with 
scenario { 
 
    // frame object to test 
    var uframe : uart_frame_s = new; 
    gen uframe keeping { 
        .databit_type == EIGHT; 
        .parity_type  == ODD; 
        .stopbit_type == TWO; 
    }; 
 
    // test a good frame 
    var bs_good : list of bit = %{0b111101010100}; 
    unpack(packing.low,bs_good,uframe); 
    print "UFRAME_GOOD: ",uframe; 
    eu_expect uframe.get_payload() to be %{0xaa}; 
    eu_expect uframe.calc_parity(bs_good,uframe.parity_type) 

to be 0; 
    eu_expect uframe.parity_ok()   to be TRUE; 
    eu_expect uframe.stopbit_ok()  to be TRUE;             
    uframe.unpack_check_frame(bs_good,TRUE); 
    eu_expect_no_more_dut_errors; 
     
    // test a bad frame 
    var bs_bad : list of bit = %{0b000101010101}; 
    unpack(packing.low,bs_bad,uframe); 
    print "UFRAME_BAD: ",uframe; 
    eu_expect uframe.parity_ok()   to be FALSE; 
    eu_expect uframe.stopbit_ok()  to be FALSE; 
    uframe.unpack_check_frame(bs_bad,TRUE); 
    eu_expect_dut_error "Frame start bit is not 0"; 
    eu_expect_dut_error "Frame has bad parity"; 
    eu_expect_dut_error "Frame stop bit is not correct"; 
    eu_expect_no_more_dut_errors; 
}; 

Figure 2 - UART frame methods testing 
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and disassemble methods at each layer transition.  

Making such methods robust before monitors and 

drivers rely on these methods would certainly 

benefit the development process.  Debugging a 

pack or unpack problem or errant error message in 

a full-fledged interface UVC with RTL will definitely 

take more time than the quick unit test testbench. 

Module UVC Development 

Scoreboard Checking 
In our legacy testbench environment, most of our 

unit testing work was focused on developing and 

verifying scoreboards and block checkers.  These 

components are at the heart of our design 

verification strategy and must be of very high 

quality.  They also require significant development 

time and effort, so engineer productivity is crucial.  

The reference environment implements a 

uart_ctrl_scoreboard to verify that the dataflow 

across the DUT from the APB interface to the UART 

interface is correct.  Most of the functionality of the 

scoreboard is implemented using the UVM 

scoreboard package.  We’ve implemented unit tests 

(Figure 3) to demonstrate how a simple scoreboard 

unit test would work. 

  The first test generates a uart_frame_s and a 

corresponding apb_trans_s.  The uart frame is 

driven into the scoreboard by writing to the TLM 

analysis port.  This mimics an incoming frame being 

driven into the DUT.  Then the APB transaction is 

driven to the TLM match port.  This imitates the 

testbench driving a read to the uart’s RX FIFO 

register.  This particular sequence of stimulus will 

cause the scoreboard to attempt to match the 

contents of the two transactions and compare the 

payloads.  The eu_expect_no_more_dut_errors call 

asks the unit test framework to verify that no DUT 

errors have been detected during the test. 

In the second test, the same sequence of 

scoreboard stimulus is applied, but the payload of 

the apb_trans_s transaction is corrupted.  This 

mimics a design flaw in the DUT that should be 

detected by the checker.  After the apb_trans_s is 

written to the scoreboard, we see 

eu_expect_dut_error "Mismatch" indicating that a 

dut_error call with the string “Mismatch” in it 

should’ve been observed.  Failure to see this error 

will cause the test to fail, indicating that the 

scoreboard has not detected an error that it should 

have. 

Benefits to Module UVC components 
Checkers are a primary candidate to benefit from 

unit test from our point of view.  Their main 

function is to detect and report errant functionality 

of the RTL DUT.  Explicitly testing this error detect 

and report functionality makes a lot of sense given 

this viewpoint.  Further, executing this verification 

coincident with or immediately following 

development has the engineer in a better mind-set 

import testsuite_uart_ctrl_scbd_monitor.e; 
 
// Test uart_frame->apb path with correct payload 
add testcase uart_input to uart_ctrl_scbd with scenario { 
   var input_apb_trans : apb_trans_s; 
   var uart_frame : uart_frame_s; 
   gen uart_frame; 
   gen input_apb_trans keeping { 
      .addr == UART_RX_FIFO; 
      .direction == READ; 
      .data == pack(NULL,uart_frame.payload); 
   }; 
   p_testsuite_uart_ctrl_scbd.ports_bundle. 

mock_uart_frame_add$.write(uart_frame); 
   p_testsuite_uart_ctrl_scbd.ports_bundle. 

mock_apb_trans_match$.write(input_apb_tran
s); 

   eu_expect_no_more_dut_errors; 
}; 
// Test uart_frame->apb path with incorrect payload.  Expect 

error 
add testcase uart_input_bad_payload to uart_ctrl_scbd with 

scenario { 
   var input_apb_trans : apb_trans_s; 
   var uart_frame : uart_frame_s; 
   gen uart_frame; 
   gen input_apb_trans keeping { 
      .addr == UART_RX_FIFO; 
      .direction == READ; 
      .data == (1 ^ pack(NULL,uart_frame.payload)); 
   }; 
   p_testsuite_uart_ctrl_scbd.ports_bundle. 

mock_uart_frame_add$. write(uart_frame); 
   p_testsuite_uart_ctrl_scbd.ports_bundle. 

mock_apb_trans_match$. 
write(input_apb_trans); 

   eu_expect_dut_error "Mismatch"; 
   eu_expect_no_more_dut_errors; 
}; 
 

Figure 3 - APB to UART scoreboard checking 
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for finding software errors while the code 

development is fresh in their minds. 

Besides verifying the main purpose of the checkers, 

unit tests allow the entire checker to be tested 

before any RTL is available.  This is a common 

situation in our experience since design specs are 

usually available to both the RTL and DV engineers 

at the same time.  How nice would it be if the RTL 

turn-on had a proven checker ready to go day one?  

The benefit we’ve observed is less time wasted 

back-tracking in the verification software during the 

middle and later phases of the project and more 

time spent identifying and debugging the 

implementation flaws in the RTL. 

Interface UVC Development 

Wire-level Checking 
Developing a unit test for wire-level functionality of 

an interface UVC requires some judgement.  These 

tests can be tricky to get right and may be less 

useful than the standard example topology and 

demo.sh script.  Where unit tests for BFMs or 

monitors may be highly effective is when the env is 

configurable.  Turning on the BFM may end up 

being simpler when all of the possible configuration 

options can be quickly iterated through while 

testing for correct operation.  This can be a lot less 

tedious than other methods. 

Note Figure 4, a unit test in which the uart_env 

mockup is setup for each possible set of 

configuration parameters.  A uart_frame_s is then 

generated and driven by the BFM by calling the 

drive_frame() method.  While drive_frame() is 

running, another thread is running to collect the 

output of the uart’s TX port.  At the end of the 

frame, the output collected is compared to an 

expected bitstream looking for discrepancies.  

Simultaneously, the TX monitor has been enabled 

to perform protocol checking of the frame.  This 

test quickly checks all permutations of the 

parameter set for correctness for little extra cost 

relative to testing one particular configuration. 

A similar unit test could be developed for the uart 

monitor code where the state machine is somewhat 

more interesting.  We will discuss a unit test of the 

protocol checking of the received uart frame in 

Packet Checking in the UVC Monitor.  This testsuite 

would be more targeted at validating the 

correctness of frame detection and creation by 

add testcase drive_frame to uart_env with scenario { 
   var frame : uart_frame_s; 
   var out_data : list of bit; 
   watchdog_timer = 10000;  // Keep the test running for 10K 

cycles 
   var bfm := p_testsuite_uart_env.uart_env_u.tx_agent. 

as_a(ACTIVE TX uart_agent_u).bfm.as_a(TX 
uart_bfm_u); 

   
p_testsuite_uart_env.uart_env_u.tx_agent.as_
a(has_monitor TX 
uart_agent_u).monitor.do_check = TRUE; 

   var config := p_testsuite_uart_env.uart_env_u.config; 
   for each (parity) in all_values(uart_frame_parity_t) { 
      for each (stopbit) in all_values(uart_frame_stopbit_t) { 
         for each (databit) in all_values(uart_frame_databit_t) { 
            config.parity_type = parity; 
            config.stopbit_type = stopbit; 
            config.databit_type = databit; 
            gen frame keeping { 
               it.parity_type  == parity; 
               it.stopbit_type == stopbit; 
               it.databit_type == databit; 
               it.legal_frame  == TRUE; 
               it.delay_to_next_frame == 0; 
            }; 
            var parity : list of bit = frame.with_parity ? 

{frame.as_a(with_parity uart_frame_s).parity} : 
{}; 

            var expected : list of bit = %{frame.start_bit, 
frame.payload, parity, frame.stop_bit}; 

            p_testsuite_uart_env.sig_sec_cdma_ctsb$ = 0; 
            p_testsuite_uart_env.clk(); 
            out_data.clear(); 
            all of { 
               {   // Packet stimulus thread 
                  bfm.drive_frame(frame); 
                  p_testsuite_uart_env.sig_sec_cdma_tx_data$ = 1; 
               }; 
               {   // Clock & wire thread 
                  for i from 1 to expected.size() { 
                     p_testsuite_uart_env.clk(); 
                     out_data.add0(p_testsuite_uart_env. 

sig_sec_cdma_tx_data$); 
                  }; 
                  p_testsuite_uart_env.clk(); 
               }; 
            }; 
            eu_expect_no_more_dut_errors; 
            eu_expect out_data to be expected; 
         }; 
      }; 
   }; 
}; 

Figure 4 - Wire level checking test 
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varying input signal timing.  If written prior to 

development of the monitor, this testsuite could be 

incorporated as part of the BFM testsuite to enable 

holistic testing of all of the wire-level components 

of the UVC.  In more complex protocols, this 

methodology would be very useful to ensure that 

the UVC can detect and recover from errors, both 

intentional and unexpected, on the interface.  Often 

testing of these error conditions is started later in 

the hardware development cycle, leading to 

unexpected and hasty development work on the 

part of the UVC developer. 

Packet Checking in the UVC Monitor 
In our legacy environment, we did not expend any 

effort validating packet-level checkers as most of 

these were either complete, or incorporated in 

other, higher-level checkers.  In UVM, packet 

checking is considered to be an integral part of the 

UVC monitor and needs to be tested for 

high-quality testing of packets.    As a sample, we’ve  

developed a set of unit tests to verify the quality of 

the check_receive_data method of the 

uart_monitor_u unit.  The testsuite constructs a 

uart_env and our test generates a random 

uart_frame packet which is packed and sent to the 

check_receive_data method.  The test first calls the 

method with an unmodified frame and expects no 

errors to occur.  We then corrupt the start bit, data, 

parity, and stop bits in turn, testing to ensure that 

the appropriate DUT error is reported by the check 

method.  This basic flow is iterated over all 

permutations of payload size, parity setting, and 

number of stop bits to ensure that the checker will 

work under all conditions.  The code for the test can 

be seen in Figure 5. 

Development of this testcase took approximately 

two hours and involved debugging two latent 

defects in the checker code.  Both of these defects 

were “silent” in that they caused the checker to not 

report errors, for instance when bad parity was sent 

from the DUT.  One of the defects appears as 

though it may have been introduced when a 

developer modified the code to enhance the 

performance of the checker.  These kinds of 

changes can be dangerous in that the checker’s 

correctness might have been visually confirmed 

during initial development, but subsequently 

broken.  Unit tests serve a valuable function in this 

instance, allowing the developer to re-check the 

correctness of the code after every change.  Well 

written tests should expose any unintended 

side-effects of any changes made.  This is where 

unit tests shine – verifying that all of the checks 

add testcase check_receive_data to uart_env with scenario { 
   
   var frame : uart_frame_s; 
   var monitor := p_testsuite_uart_env.uart_env_u.rx_agent. 

as_a(has_monitor RX uart_agent_u). monitor; 
   var config = p_testsuite_uart_env.uart_env_u.config; 
 
   // Iterate all combinations of parity, stop bit and data width 
   for each (parity) in all_values(uart_frame_parity_t) { 
      for each (stopbit) in all_values(uart_frame_stopbit_t) { 
         for each (databit) in all_values(uart_frame_databit_t) { 
            config.parity_type = parity; 
            config.stopbit_type = stopbit; 
            config.databit_type = databit; 
            gen frame keeping { 
               it.parity_type  == parity; 
               it.stopbit_type == stopbit; 
               it.databit_type == databit; 
               it.legal_frame  == TRUE; 
            }; 
            var data : list of bit = pack(packing.low,frame); 
            var parity_loc : uint = (1 + databit.as_a(int)); 
            var stop_loc : uint = parity_loc + ((parity != NONE) ?  1 

: 0); 
            var orig_data := data.copy(); 
 
            // Check with no error 
            monitor.check_receive_data(data); 
            eu_expect_no_more_dut_errors; 
 
            // Corrupt the start bit 
            data = orig_data.copy(); 
            data[0] = ~data[0]; 
            monitor.check_receive_data(data); 
            eu_expect_dut_error "Frame start bit is not 0"; 
            eu_expect_no_more_dut_errors; 
… 
            // Corrupt the parity bit 
            if(parity!=NONE) { 
               data = orig_data.copy(); 
               data[parity_loc] = ~data[parity_loc]; 
               monitor.check_receive_data(data); 
               eu_expect_dut_error "Frame has bad parity"; 
               eu_expect_no_more_dut_errors; 
            }; 
         }; 
      }; 
   }; 
};  
 

Figure 5 - Packet protocol checker test 
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work at original development time and that none of 

the checks are subsequently broken.  

Other Usage Models 

Test Replay 
In our C++-based environment, we developed unit 

testsuites for some of our existing software 

components.  The goal was not to do classic 

test-driven development, but to apply some of the 

productivity enhancements to maintenance of 

those components.  A good example of this was test 

replay.  We instrumented the monitor ports of the 

component to be unit tested so that we could 

capture all of the input stimulus to the checker 

during a normal testcase run.  The unit test was 

designed to read that input stimulus and apply it to 

the checker in the unit test environment.  By doing 

this, we could rerun a long simulation in seconds, 

allowing the checker owner to easily develop a fix 

for the code while not having to wait for long tests 

to be rerun each time they made a change.  

Although there was overhead to develop the 

framework, it had a clear ROI on components which 

were actively being changed during the program. 

We’ve not explored this concept within the eUnit 

Testing Framework to date.  Specman provides 

more effective replay mechanisms than were 

available in the C++ environment, and this 

technique seems to be more appropriate to apply 

with existing components that don’t have a unit test 

capability. 

Generating Unit Tests from Simulation 
Extending the replay concept, we added the ability 

to annotate and modify the trace taken from the 

simulation in our C++ environment.  By changing a 

transaction in the trace and adding an annotation to 

“expect the following error at this time”, you can 

develop checker validation tests that are much 

more sophisticated than those written completely 

by hand.  This kind of checker validation can be very 

powerful in the right context, although we did find 

issues with it that would need to be addressed.  

Specifically, the tests developed this way may or 

may not remain valid as the RTL becomes more 

mature.  Also, it can be somewhat time consuming 

to find appropriate traces and modify them.  One 

area where this could be of considerable use is in 

capturing particular bugs to ensure that the checker 

will still detect them once the RTL is corrected. 

Stimulus/Constraints 
In our previous environment, another successful 

use of unit testing was for traffic generation.  We 

had the equivalent of an interface UVC with many 

knobs to control various aspects of the traffic 

generation.  Unit tests were coded to generate 

traffic under various knob settings and validate the 

resulting traffic did indeed obey the knobs.  We 

believe a similar approach may be applicable to 

UVM-e interface UVC’s at the get_next_txn() 

interface between the sequence_driver and the 

BFM.  The knobs in this case would be constraints. 

One addition to this idea is to incorporate cover 

groups into these unit tests.  The hope is coverage 

holes may be identified early by looking at the 

resulting coverage after running the core set of 

sequences for this interface UVC. 

BENEFITS 

Verification IP development starts earlier 
No RTL is needed to begin full development and 

thorough testing of Verification IP. 

Shorter development time 
Testing of your VIP coincident with or immediately 

following development has the engineer in a better 

mind-set for finding software errors while the 

software design is fresh in the head. 

The VIP development and test cycle is continuous as 

unit test results are available quickly.  There is less 

need to multitask while waiting for simulation 

results. 

Less debugging of VIP in larger, complex 

environments.  Most issues will be found in small 

unit tests. 
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Fewer verification holes 
Error detection and messaging has been unit tested.  

All configurations covered.  Critical verification 

components can be adequately tested for quality 

before exposure to RTL. 

RTL turnon really is just RTL turnon 
Verification components are already tested and 

turned on before RTL.  The validation portion of the 

project stays focused on RTL issues and testing. 

Faster and better quality fixes for verification 
IP components 
Reproduce a VIP bug with a unit test and use it to 

validate the software fix.  Then rerun the unit test 

library to make sure your fix doesn’t introduce any 

new issues. 

Excellent learning tool for new component 
owner  
When the component is turned over to a new 

owner, these tests provide excellent training tools 

and help keep the quality of the UVC high during 

the learning phase. 

CONCLUSIONS 
In our experience, using an architected framework 

to apply TDD practices to verification software 

improves its quality and accelerates the overall 

design schedule.  The new unit test framework in 

UVM-e allows us to continue this important design 

practice on our next generation verification 

environment. 
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