
Applying High-Level Synthesis for
Synthesizing Hardware Runtime STL

Monitors of Mission-Critical Properties

Konstantin Selyunin1, Thang Nguyen2

Andrei-Daniel Basa2, Ezio Bartocci1

Dejan Nickovic3, Radu Grosu1

1Vienna University of Technology, Vienna, Austria
2Infineon Technologies Austria AG, Villach, Austria

3AIT Austrian Institute of Technology, Vienna, Austria

Challenges/Motivations

Data/Information Evaluation:

Pos-SIM/Pos-MEAS

Root-cause Analysis

System Properties Monitoring

Specification Formalization using Temporal Logic:

Formal rigorous semantics

No ambiguities about the intended
meaning of requirements

Minimizes information losses due to
different interpretation

Challenges/Motivations

Data/Information Evaluation:

Pos-SIM/Pos-MEAS

Root-cause Analysis

System Properties Monitoring

Specification Formalization using Temporal Logic:

Formal rigorous semantics

No ambiguities about the intended
meaning of requirements

Minimizes information losses due to
different interpretation

Online Monitoring Framework Concept
Online Monitoring Framework Concept

Page 2 set date Copyright © Infineon Technologies AG 2013. All rights reserved.

System
Requirements

Formal
Requirements

(STL)

System Properties
Monitoring Tool

AMT

Properties are
Satisfied/
Violated

Properties are
Satisfied/
Violated

Online

Online

Runtime Verification

Main features [Leu12]:

Check correctness properties based on the actual execution of
a software or hardware system

Make sure that the implementation really meets its
correctness properties (apart from the model)

Use information available at runtime

Monitor behavior or properties that have been statically
proved or tested: employ RV as a redundancy mechanism in
safety-critical systems

Hardware / Software
System

Monitor Verdict

Runtime Verification

Main features [Leu12]:

Check correctness properties based on the actual execution of
a software or hardware system

Make sure that the implementation really meets its
correctness properties (apart from the model)

Use information available at runtime

Monitor behavior or properties that have been statically
proved or tested: employ RV as a redundancy mechanism in
safety-critical systems

Hardware / Software
System

Monitor Verdict

Runtime Verification

Main features [Leu12]:

Check correctness properties based on the actual execution of
a software or hardware system

Make sure that the implementation really meets its
correctness properties (apart from the model)

Use information available at runtime

Monitor behavior or properties that have been statically
proved or tested: employ RV as a redundancy mechanism in
safety-critical systems

Hardware / Software
System

Monitor Verdict

Runtime Verification

Main features [Leu12]:

Check correctness properties based on the actual execution of
a software or hardware system

Make sure that the implementation really meets its
correctness properties (apart from the model)

Use information available at runtime

Monitor behavior or properties that have been statically
proved or tested: employ RV as a redundancy mechanism in
safety-critical systems

Hardware / Software
System

Monitor Verdict

Temporal Logic 101

You already know Temporal Logic (TL)

when you say

“It is always the case that the violation must not occur”
“Eventually the system must recover”
“The presentation until the coffee break”

We already used Temporal Logic without knowing it!

TL is a structured way to reason about events on a time axis

Advantages of using Temporal Logic:

removing ambiguity

operating with mathematical objects

allowing automation

Temporal Logic 101

You already know Temporal Logic (TL)

when you say

“It is always the case that the violation must not occur”
“Eventually the system must recover”
“The presentation until the coffee break”

We already used Temporal Logic without knowing it!

TL is a structured way to reason about events on a time axis

Advantages of using Temporal Logic:

removing ambiguity

operating with mathematical objects

allowing automation

Temporal Logic 101

You already know Temporal Logic (TL)

when you say

“It is always the case that the violation must not occur”
“Eventually the system must recover”
“The presentation until the coffee break”

We already used Temporal Logic without knowing it!

TL is a structured way to reason about events on a time axis

Advantages of using Temporal Logic:

removing ambiguity

operating with mathematical objects

allowing automation

Temporal Logics 101

Temporal logics: from LTL to STL1

Linear Temporal Logic (LTL)
(A.Pnueli 1977)

logical time, unbounded

Metric Temporal Logic (MTL)
(R.Koymans 1990, T.Henzinger 1993)

continuous/discrete time, bounded, with punctual intervals

Metric Interval Temporal Logic (MITL)
(R.Alur, T.Feder, T.Henzinger 1996)

continuous/discrete time, bounded, without punctual intervals

Signal Temporal Logic (STL)
(O.Maler, D.Nickovic 2004)

continuous/discrete time, bounded, comparison with reals

1thanks to A.Rodionova

Temporal Logics 101

Temporal logics: from LTL to STL1

Linear Temporal Logic (LTL)
(A.Pnueli 1977)

logical time, unbounded

Metric Temporal Logic (MTL)
(R.Koymans 1990, T.Henzinger 1993)

continuous/discrete time, bounded, with punctual intervals

Metric Interval Temporal Logic (MITL)
(R.Alur, T.Feder, T.Henzinger 1996)

continuous/discrete time, bounded, without punctual intervals

Signal Temporal Logic (STL)
(O.Maler, D.Nickovic 2004)

continuous/discrete time, bounded, comparison with reals

1thanks to A.Rodionova

Temporal Logics 101

Temporal logics: from LTL to STL1

Linear Temporal Logic (LTL)
(A.Pnueli 1977)

logical time, unbounded

Metric Temporal Logic (MTL)
(R.Koymans 1990, T.Henzinger 1993)

continuous/discrete time, bounded, with punctual intervals

Metric Interval Temporal Logic (MITL)
(R.Alur, T.Feder, T.Henzinger 1996)

continuous/discrete time, bounded, without punctual intervals

Signal Temporal Logic (STL)
(O.Maler, D.Nickovic 2004)

continuous/discrete time, bounded, comparison with reals

1thanks to A.Rodionova

Temporal Logics 101

Temporal logics: from LTL to STL1

Linear Temporal Logic (LTL)
(A.Pnueli 1977)

logical time, unbounded

Metric Temporal Logic (MTL)
(R.Koymans 1990, T.Henzinger 1993)

continuous/discrete time, bounded, with punctual intervals

Metric Interval Temporal Logic (MITL)
(R.Alur, T.Feder, T.Henzinger 1996)

continuous/discrete time, bounded, without punctual intervals

Signal Temporal Logic (STL)
(O.Maler, D.Nickovic 2004)

continuous/discrete time, bounded, comparison with reals
1thanks to A.Rodionova

STL Spec: Ingredients
ϕ := p | x ∼ a |

notϕ |ϕ1 orϕ2 |ϕ1 until[t1,t2] ϕ2

STL formula

predicate

comparison with real value

logical operators

temporal operators

Temporal operators

eventually[t1,t2] ϕ = true until[t1,t2] ϕ

always[t1,t2] ϕ = not eventually[t1,t2] notϕ

nextϕ = eventually{1} ϕ = always{1} ϕ

STL Spec: Ingredients
ϕ := p | x ∼ a | notϕ |ϕ1 orϕ2 |

ϕ1 until[t1,t2] ϕ2

STL formula

predicate

comparison with real value

logical operators

temporal operators

Temporal operators

eventually[t1,t2] ϕ = true until[t1,t2] ϕ

always[t1,t2] ϕ = not eventually[t1,t2] notϕ

nextϕ = eventually{1} ϕ = always{1} ϕ

STL Spec: Ingredients
ϕ := p | x ∼ a | notϕ |ϕ1 orϕ2 |ϕ1 until[t1,t2] ϕ2

STL formula

predicate

comparison with real value

logical operators

temporal operators

Temporal operators

eventually[t1,t2] ϕ = true until[t1,t2] ϕ

always[t1,t2] ϕ = not eventually[t1,t2] notϕ

nextϕ = eventually{1} ϕ = always{1} ϕ

STL Spec: Ingredients
ϕ := p | x ∼ a | notϕ |ϕ1 orϕ2 |ϕ1 until[t1,t2] ϕ2

STL formula

predicate

comparison with real value

logical operators

temporal operators

Temporal operators

eventually[t1,t2] ϕ = true until[t1,t2] ϕ

always[t1,t2] ϕ = not eventually[t1,t2] notϕ

nextϕ = eventually{1} ϕ = always{1} ϕ

STL Spec: Ingredients
ϕ := p | x ∼ a | notϕ |ϕ1 orϕ2 |ϕ1 until[t1,t2] ϕ2

STL formula

predicate

comparison with real value

logical operators

temporal operators

Temporal operators

eventually[t1,t2] ϕ = true until[t1,t2] ϕ

always[t1,t2] ϕ = not eventually[t1,t2] notϕ

nextϕ = eventually{1} ϕ = always{1} ϕ

STL Spec: Ingredients
ϕ := p | x ∼ a | notϕ |ϕ1 orϕ2 |ϕ1 until[t1,t2] ϕ2

STL formula

predicate

comparison with real value

logical operators

temporal operators

Temporal operators

eventually[t1,t2] ϕ = true until[t1,t2] ϕ

always[t1,t2] ϕ = not eventually[t1,t2] notϕ

nextϕ = eventually{1} ϕ = always{1} ϕ

STL: Past and Future

Evaluation of an STL formula on a time axis

t = 0 tstart

we are here

Future STL
next, eventually[t1,t2]

always[t1,t2] , until[t1,t2]

Past STL
previous, once[t1,t2]

historically[t1,t2] , since[t1,t2]

time

clock

Past

Looking backward from tstart

Always bounded
(there is t = 0)

Future

Looking forward from tstart

Can be unbounded
(future might be infinite)

STL Temporal Operators

Next:

(w , i) |= nextϕ ↔ (w , i + 1) |= ϕ

The signal w satisfies an STL formula nextϕ at a time step i iff
at a time step i + 1 w satisfies ϕ.

Eventually:

(w , i) |= eventually[a,b]ϕ ↔ ∃j ∈ i +[a, b]∩T : (w , j) |= ϕ2

The signal w satisfies eventually[a,b]ϕ at a time step i if there
exist a time point j in the interval [a, b] where w satisfies ϕ.

time

ϕti

a b

time []
ϕti

STL Temporal Operators

Next:

(w , i) |= nextϕ ↔ (w , i + 1) |= ϕ

The signal w satisfies an STL formula nextϕ at a time step i iff
at a time step i + 1 w satisfies ϕ.

Eventually:

(w , i) |= eventually[a,b]ϕ ↔ ∃j ∈ i +[a, b]∩T : (w , j) |= ϕ2

The signal w satisfies eventually[a,b]ϕ at a time step i if there
exist a time point j in the interval [a, b] where w satisfies ϕ.

time

ϕti

a b

time []
ϕti

STL Temporal Operators

Always:

(w , i) |= always[a,b]ϕ ↔ ∀j ∈ i + [a, b] ∩ T : (w , j) |= ϕ2

The signal w satisfies an STL formula always[a,b]ϕ at a time step
i if for all time points j in the interval [a, b] w satisfies ϕ.

Until:

(w , i) |= ϕ1until[a,b]ϕ2 ↔ ∃j ∈ (i +[a, b])∩T : (w , j) |= ϕ2

and ∀k : i < k < j , (w , k) |= ϕ1

The signal w satisfies an STL formula ϕ1until[a,b]ϕ2 at a time
step i if there exists a time point j in the interval [a, b] where ϕ2

holds and for all previous time steps ϕ1 holds.

a b

time []
ϕ ϕ ϕ ϕ ϕti

a b

time []
ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ2ti

STL Temporal Operators

Always:

(w , i) |= always[a,b]ϕ ↔ ∀j ∈ i + [a, b] ∩ T : (w , j) |= ϕ2

The signal w satisfies an STL formula always[a,b]ϕ at a time step
i if for all time points j in the interval [a, b] w satisfies ϕ.

Until:

(w , i) |= ϕ1until[a,b]ϕ2 ↔ ∃j ∈ (i +[a, b])∩T : (w , j) |= ϕ2

and ∀k : i < k < j , (w , k) |= ϕ1

The signal w satisfies an STL formula ϕ1until[a,b]ϕ2 at a time
step i if there exists a time point j in the interval [a, b] where ϕ2

holds and for all previous time steps ϕ1 holds.

a b

time []
ϕ ϕ ϕ ϕ ϕti

a b

time []
ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ2ti

Let’s Do an Example

Tfall Trise
low

trans

high

Req.123

Fall time should be

maximum 1.0us

Define regions

exit(high)→
trans until[0,1.0us] enter(low)

Let’s Do an Example

Tfall Trise

low

trans

high

Req.123

Fall time should be

maximum 1.0us

Define regions

exit(high)→
trans until[0,1.0us] enter(low)

Let’s Do an Example

Tfall Trise
low

trans

high

Req.123

Fall time should be

maximum 1.0us

Define regions

exit(high)→
trans until[0,1.0us] enter(low)

Let’s Do an Example

Tfall Trise
low

trans

high

Req.123

Fall time should be

maximum 1.0us

Define regions

exit(high)→
trans until[0,1.0us] enter(low)

Monitor Generation Flow

Behavioral Temporal
Operator Models

(C++)

HW Runtime
Monitors TopLevel

HW Runtime
Monitors Generation

 Realization on a specific
HW Platform

PastificationSimplification

System
Requirements

STL Formula
Sets

Formalized System
Properties in STL

System
Requirements

Formal
Requirements

(STL)

System Properties
Monitoring Tool

AMT

Properties are
Satisfied/
Violated

Properties are
Satisfied/
Violated

Ref: Thang et. Dejan

STL Validation Formal
System Evaluation

Offline MON
Framework

Time Invariant

High-Level
Synthesis

STL Temporal
Operators Modeling

Applied HLS to generate
Application Specific STL Hardware Runtime Monitor

Runtime Lab
Evaluation

Pos-SI Verification Support

Requirements

Behavioral Temporal
Operator Models

(C++)

HW Runtime
Monitors TopLevel

HW Runtime
Monitors Generation

 Realization on a specific
HW Platform

PastificationSimplification

System
Requirements

STL Formula
Sets

Formalized System
Properties in STL

System
Requirements

Formal
Requirements

(STL)

System Properties
Monitoring Tool

AMT

Properties are
Satisfied/
Violated

Properties are
Satisfied/
Violated

Ref: Thang et. Dejan

STL Validation Formal
System Evaluation

Offline MON
Framework

Time Invariant

High-Level
Synthesis

STL Temporal
Operators Modeling

Applied HLS to generate
Application Specific STL Hardware Runtime Monitor

Runtime Lab
Evaluation

Pos-SI Verification Support

Pastification & Simplification

Behavioral Temporal
Operator Models

(C++)

HW Runtime
Monitors TopLevel

HW Runtime
Monitors Generation

 Realization on a specific
HW Platform

PastificationSimplification

System
Requirements

STL Formula
Sets

Formalized System
Properties in STL

System
Requirements

Formal
Requirements

(STL)

System Properties
Monitoring Tool

AMT

Properties are
Satisfied/
Violated

Properties are
Satisfied/
Violated

Ref: Thang et. Dejan

STL Validation Formal
System Evaluation

Offline MON
Framework

Time Invariant

High-Level
Synthesis

STL Temporal
Operators Modeling

Applied HLS to generate
Application Specific STL Hardware Runtime Monitor

Runtime Lab
Evaluation

Pos-SI Verification Support

Offline Monitoring

Behavioral Temporal
Operator Models

(C++)

HW Runtime
Monitors TopLevel

HW Runtime
Monitors Generation

 Realization on a specific
HW Platform

PastificationSimplification

System
Requirements

STL Formula
Sets

Formalized System
Properties in STL

System
Requirements

Formal
Requirements

(STL)

System Properties
Monitoring Tool

AMT

Properties are
Satisfied/
Violated

Properties are
Satisfied/
Violated

Ref: Thang et. Dejan

STL Validation Formal
System Evaluation

Offline MON
Framework

Time Invariant

High-Level
Synthesis

STL Temporal
Operators Modeling

Applied HLS to generate
Application Specific STL Hardware Runtime Monitor

Runtime Lab
Evaluation

Pos-SI Verification Support

STL Primitives

Behavioral Temporal
Operator Models

(C++)

HW Runtime
Monitors TopLevel

HW Runtime
Monitors Generation

 Realization on a specific
HW Platform

PastificationSimplification

System
Requirements

STL Formula
Sets

Formalized System
Properties in STL

System
Requirements

Formal
Requirements

(STL)

System Properties
Monitoring Tool

AMT

Properties are
Satisfied/
Violated

Properties are
Satisfied/
Violated

Ref: Thang et. Dejan

STL Validation Formal
System Evaluation

Offline MON
Framework

Time Invariant

High-Level
Synthesis

STL Temporal
Operators Modeling

Applied HLS to generate
Application Specific STL Hardware Runtime Monitor

Runtime Lab
Evaluation

Pos-SI Verification Support

High Level Synthesis

Behavioral Temporal
Operator Models

(C++)

HW Runtime
Monitors TopLevel

HW Runtime
Monitors Generation

 Realization on a specific
HW Platform

PastificationSimplification

System
Requirements

STL Formula
Sets

Formalized System
Properties in STL

System
Requirements

Formal
Requirements

(STL)

System Properties
Monitoring Tool

AMT

Properties are
Satisfied/
Violated

Properties are
Satisfied/
Violated

Ref: Thang et. Dejan

STL Validation Formal
System Evaluation

Offline MON
Framework

Time Invariant

High-Level
Synthesis

STL Temporal
Operators Modeling

Applied HLS to generate
Application Specific STL Hardware Runtime Monitor

Runtime Lab
Evaluation

Pos-SI Verification Support

STL: from Future to Past

Future temporal operators reason about events in the future

every bounded future formula can be converted to past
(so-called pastification)

the verdict of a specification satisfaction is shifted in time

High Level Synthesis

HDL Generation

compare HW & SW implementations (HW specific data types)

apply optimization directives (optimize for throughput or area:
e.g. array partition, pipelining)

synthesize the HDL

co-simulate the synthesized code

export IP

Case Study: Specification

Missile property: Specification

at most 4

at least 5

detonation

fire en

launch en

STL formalization: Future formula

Detonation must not happen within 5 time units after rise of fire en
↑ launch en→1[0;4]

(
↑ fire en ∧0[0;5] ¬detonation

)

“When the missile received the launch
enable signal, it must see the fire
enable signal followed within the next
four time points. After fire en has
arrived, no detonation is allowed for
the next five time points.”

Case Study: Specification

Missile property: Specification

at most 4

at least 5

detonation

fire en

launch en

STL formalization: Future formula

Detonation must not happen within 5 time units after rise of fire en
↑ launch en→1[0;4]

(
↑ fire en ∧0[0;5] ¬detonation

)

“When the missile received the launch
enable signal, it must see the fire
enable signal followed within the next
four time points. After fire en has
arrived, no detonation is allowed for
the next five time points.”

Monitor Generation

Pastified property:

Pastified specification

Q{9} ↑ `→Q[0,4]

(
Q{5} ↑ f ∧`[0;5] ¬d

)

Recap

The takeaway message:

From system level requirements to hardware monitors

Signal Temporal Logic as a specification language

High Level Synthesis for HDL generation

IP

Mon(Req.123)

H
L
S

References I

Martin Leucker.
Teaching Runtime Verification.
In Sarfraz Khurshid and Koushik Sen, editors, Runtime
Verification, volume 7186 of Lecture Notes in Computer
Science, pages 34–48. Springer Berlin Heidelberg, 2012.

	Motivation

