Applying Design Patterns to
Maximize Verification Reuse at
Block, Subsystem and
System-on-Chip Level

Paul Kaunds | Revati Bothe | Jesvin Johnson

IIIIIIIIIIIIIIIIIIIIIII

accellera DV

Agenda

* Design Patterns

* Features of a Good Software Design
* Good Software Design Principles

e SOLID Principle

e Design Pattern Examples

* Design Pattern Categories

* Design Pattern & UVM

e Design Pattern UVM Applications

* Metric Driven Verification @ Block, Subsystem & SoC-level
— Verification Planning
— Verification Environment Development
— Stimulus Development
— Execution
— Coverage Closure

* Case Study
* Summary

2019

DESIGN AND VERIFICATION™

accellera - DV
© Accellera Systems Initiative 2

SYSTEMS INITIATIVE

Design Patterns

 What is the Design Pattern?

— Design Patterns are typical solutions to commonly occurring problems in the
software design

— Like pre-crafted blueprints that can be customized to solve re-occurring
design problems
— Like a high-level description of a solution
e Can predict results

e Caninform about its features
* Independent of exact order of implementation

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 3

SYSTEMS INITIATIVE

Design Patterns

 What is the Design Pattern?
— A pattern is a proven solution to a problem in a context.

— Christopher Alexander says each pattern is a three-part rule which expresses
a relation between a certain context, a problem, and a solution.

— Design patterns represent a solutions to problems that arise when
developing UVC within a particular context.

— Patterns = problems.solution pairs in a context

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 4

SYSTEMS INITIATIVE

Design Patterns

 What is the Design Pattern?
— A Design pattern is a recurring solution to a standard problem, in a context.

— Design patterns are Thought Processes.

— Design Pattern is like Dress Patterns

— Jim Coplein, a software engineer: “| like to relate this definition to dress
patterns...

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 5

SYSTEMS INITIATIVE

Design Pattern

 How are Design Patterns described?

— Intent
* Briefly describes the Problem & Solution

— Motivation

* Further details the Problem & Solution that the pattern makes possible

— Structure

* Inter-relation between different classes to show each part of the pattern

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 6

SYSTEMS INITIATIVE

Design Pattern

 What Design Pattern is NOT about

— Not a specific piece of code that can be copied into our code
— Not like off-the-shelf tasks/functions/libraries.

— Not an algorithm.

* Has clearly defined steps

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 7

SYSTEMS INITIATIVE

Design Pattern

e Categories of Design Patterns
— Creational Pattern

* Handles object creation mechanism
* Increases flexibility & reuse of existing code

— Structural Pattern
* Assembly of the objects & classes in a larger structure
» Keeps the structure flexible and efficient

— Behavioral Pattern
» Effective communication between objects
* Assignment of responsibilities between objects

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 8

SYSTEMS INITIATIVE

accellera

Features of a Good Software Design

1.
Code re-use

¢

2.
Extensibility

+

© Accellera Systems Initiative

IIIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

Good Software Design Principles

* Encapsulate what varies
* Program to an interface not an implementation

e Favours composition over inheritance

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 10

SYSTEMS INITIATIVE

SOLID Principle

* Single responsibility principle
A class should have one, and only one, reason to change.

* Open/closed principle

“Software entities (classes, modules, functions, etc.) should be open for
extension, but closed for modification.”

* Liskov substitution principle

Objects of a superclass shall be replaceable with objects of its subclasses
without breaking the application.

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 11

SYSTEMS INITIATIVE

SOLID Principle

* Interface segregation principle
Clients should not be forced to depend upon interfaces that they do not use

* Dependency inversion principle
It consists of two parts:

1. High-level modules should not depend on low-level modules. Both should
depend on abstractions.

2. Abstractions should not depend on details. Details should depend on
abstractions.

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 12

SYSTEMS INITIATIVE

Examples of Design Patterns

* Singleton Pattern —
— Restricts the instantiation of a class to one object

* Factory Pattern —

— Provides an interface for creating families of related or dependent
objects and specifies a policy for how it creates

e QObserver Pattern —

— When one object changes state, all its subscribers are notified &
updated automatically

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 13

SYSTEMS INITIATIVE

Design Patterns Categories

Factory Method Adapter
Abstract Factory Bridge
Builder Composite
Prototype Decorator
Singleton Facade
Flyweight
Proxy

Visitor

accellera -
© Accellera Systems Initiative 14

SYSTEMS INITIATIVE

Chain of responsibility
Command
Interpreter
Iterator
Mediator
Memento
Observer

State

Strategy
Template Method
Visitor

2019

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

Design Pattern & UVM

 UVM (Universal Verification Methodology) /
OVM (Open Verification Methodology) is based on
CRV (Constrained Random Verification) approach.

 UVM applies Software Best Practices like —
— SOLID principles
— OOPs features

— Various combinations of Design Patterns
* To provide a workable solution for common problems (blueprint)

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 15

SYSTEMS INITIATIVE

Design Pattern UVM Applications

Factory Method
Abstract Factory
Singleton
Composite
Facade
Command
Adapter

Bridge
Observer
Template Method
Strategy
Mediator

SYSTEMS INITIATIVE

© Accellera Systems Initiative

Factory mechanism
Polymorphic Interface

UVM pool, UVM resource pool
UVM Component Hierarchy; UVM Sequence Library
TLM ports

UVM sequence item

UVM reg adapter

UVM driver and UVM sequencer
UVM subscriber

UVM transaction

UVM sequence, UVM driver

UVM virtual sequencer

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

16

Metric Driven Verification (MDV) @ Block,
Su bsystem & SoC-level

Metnc-Basod
or g | s’m&m
OVM/UVM
mmummm"bn POYtlszO AN\ ™S
VM UVM

‘ Measure/ ‘ Coverq ge
Analyze Assertions
VN

Reuse

Failure and
Metric Analysis m

Msﬁﬂ

Testbench Simulation, Formal, DES.GN\;NDVEEFQJZ,N._
HW/SW Co-Sim, LPV, MSV, DVLCON
accellera e s,m Acw,e!auon E"’l"auon EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

Metric Driven Verification Phases

* MDV phases

SYSTEMS INITIATIVE

Verification planning

Verification environment development
Stimulus development

Execution

Coverage closure

© Accellera Systems Initiative 18

IIIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

Verification Planning (1/5)

* Strategy development for DUT verification.
— Verification approaches like Constrained random/Directed testcases/Mix of both.

— Testbench architecture

— Vertical/Horizontal/Diagonal re-use

* Re-use of external and internal VIPs/UVCs/Sequence library/Tests

— Block/Sub-system/Chip-level approaches

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 19

SYSTEMS INITIATIVE

Verification Planning (2/5)

* Verification Plan Development
— ALPHA

* Basic integration tests, covering clocks, resets, registers and memory interfaces + reviewed
Verification plan

— BETA

* All major functionality tested > 90%, Verification reports delivered as proof
* All integration tests passing at sub-system level should be delivered
* |/O of sub-system Coverage exclusion files provided with reasons of exclusion

— FINAL

 Fully verified Block/Subsystem/SoC with verification plan reports to support
* Exceptions for code coverage documented with reasons + checklist

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 20

SYSTEMS INITIATIVE

Verification Planning (3/5)

 HVP Development

SoC

loia\'/\lfg'a" Block Local SS vplan
S vplan. —_+ + Blocks vplan

vplan

Top feature

Subsystems vplan

vplans.

accellera o DV
© Accellera Systems Initiative 21

SYSTEMS INITIATIVE

Verification Planning (4/5)

e Testbench Architecture Development

— Vertical, Horizontal & Diagonal Reuse
e Horizontal reuse — one SOC to derivatives

Horizontal typically means using a verification component in a different system or
project but at roughly the same level of abstraction and with the same functional role

e Vertical reuse — IP to SOC

Vertical reuse means using a verification component in a different hierarchy level,
usually with an implied change of role

* Diagonal reuse — various level of abstractions
(Simulation, Emulation, FPGA, Post Silicon)

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 22

SYSTEMS INITIATIVE

Verification Planning (5/5)

* Testbench Architecture Development
— Block, Sub-system & SoC Level Testbench

* The environment comprised of:
— VIPs (External/Internal),
— SV test components,
— SV Assertions,
— UVM Components,

— C test-based infrastructure to accomplish the Verification goal.

* The generic TB components:
— BFMis for the bus interfaces like AXI4 interfaces,
— Can be configurable as masters or slaves.

accellera -
© Accellera Systems Initiative 23

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

Verification Environment Development (1/9)

* Bottom-up development strategic view (Vertical re-use approach)
— Block level -> Sub-system level -> Top-level

* Key elements
— Testcase reusability
— Effective classification of functions modularity
— Generic Testbench components application
— UVCs to support performance related parameters
— Sign-off metrics implementation

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 24

SYSTEMS INITIATIVE

Verification Environment Development (2/9)

e Testcase re-usability

Testcase

Testbench (e.g RTLtb / class based tb / IP level
bench / SS level bench / SoC level bench)

Platform (e.g Simulation, emulation ,FPGA)

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 25

SYSTEMS INITIATIVE

Verification Environment Development (3/9)

» Effective classification of functions modularity

— Good software design principles/Design Patterns application

— Immutable functions (fx__ functions)
* Main thread that runs the simulation — fixed in nature

* These functions/tasks do not change for different Testbench and/or platforms.
— Clock setup
— IP configuration
— Functional testing
— Reporting

accellera . DV
© Accellera Systems Initiative 26

SYSTEMS INITIATIVE

Verification Environment Development (4/9)

e Effective classification of functions modularity

— Mutable functions (if __ functions)
* These are also called interface functions
* Helps to develop the immutable functions

* Can be redefined based on the selected TB and/or platform
— These interface functions helps desired behavior
» Clock set up task —

* |P level —toggling a signal
* SoC level — configuring the PLL
» TB Driver/Monitor calls to global or common functions

« REG_WRITE
« REG_READ

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 27

SYSTEMS INITIATIVE

Verification Environment Development (5/9)

* Generic Testbench components application
— SCEMI transactors

e Supports multiple platforms
— Simulation
— Emulation
— FPGA

— Can be implanted early in the project cycle.
— Maximum stimulus code re-use.
— Generic TB components (different protocol variants) — AX14/IMG etc.

* Master
* Slave (with memory support)

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 28

SYSTEMS INITIATIVE

Generic transactor testbench structure

Generic transactor testbench structure

Tests|
System.cpp main.c API_layer EDA implemntation
IIMemory Map of the System int bfm_run(void) #include <scemi22_cpp-h>
{ class BusMaster : public Bus {
#include <bfm.h> set_clock();
#include <buses/apb_bus.h> Il Portable API write();
#include <buses/axi_bush> WRITE_REG(addr,data); read();
READ_REG(addr data);
using namespace bfm; Il General macros)
I llexample bus master inheritance
const SystemConfig bim_config = { READ_REG_NAMED(address, name) ; class AxiBus : public BusMaster<uint8_t{
1/ Clock path WRITE_REG_NAMED(_address, _name, _val);)
"th_ctrl_inst", READ_REG_DIRECT(_address) ;
I/ Clock Ratio WRITE_REG_DIRECT(_address, val) ; Il Initial callback (DPIimport from th_ctrl.sv)
1000, Il Common macros Il Entry point to Ctest .
I/ Buses I intc_tb_task(void)
i _ READ_REG_FIELD(regval, field) { (
Il Bus Constructor Base address WRITE_REG_FIELD(regval, field, _val) Ml i
{ new ApbBus('th.i_ddr_gen_th_comp.bfm_aph0", 0), b IIBus Specific API \
{ new AxiBus(‘th.i_ddr_gen tb_comp.bfm_axi0®, 16), 0x bfm::AxiBus *bus = bfm:find_bus<bfm:AxiBus>(1); e ‘
{NULL) bfm:write_register(uinté4 | tad&ess, uintf4_t value, uhm_ti\ia); i \
) b!m read_register(uint64 | taddreas, uint32_tsizel;))
m.wwdte(add', data, datn_slze);
bus->read(addr, result, data_size);
}

accellera

SYSTEMS INITIATIVE

© Accellera Systems Initiative

29

mode th_ct

import DPEC"

=

Testbench(Synthesizable)

2019

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

Generic transactor testbench structure

* Figure depicts a typical generic testbench architecture testbench architecture illustrating the flow of
transactions from testcase (C/C++ / SV) to Scemi pipes and ultimately to a synthesizable transactor
(purple) which fetches transaction from Scemi pipe and drives the test environment .

These scemi transactor based testbench contains an instance of a testbench control module which
imports a DPI hdl2c() which is invoked within an initial block, similar to having a run_test() for accessing
UVM test form testbench. The hdl2c() call is blocking and will transfers the execution thread control
from HDL testbench side to C and executes the test sequence. C to HDL synchronizations are controlled
via DPI or polling for certain status flags from a testbench register.

accellera . DV
© Accellera Systems Initiative 30

SYSTEMS INITIATIVE

Generic transactor testbench structure

* Immutable functions are set of process like for e.g. programming an IP for a certain mode of operation and this
behavior will not change regardless of the platform or whether testing at IP level or system level.

e A \Variable function or hook function can morph its behavior based on platform or testbench. For example as a
preamble to programming the IP one may choose to enable the clocks and bring the system out of reset, this
process may vary depending on the testbench as at IP level this can be a signal connected straight to the I/Os of the
IP, although at the subsystem level there might be a clock gate and some external clock controller register needs

configuring to enable the clock to IP . Exposing these hook function will provide the flexibility to adapt the action
for a given platform.

2019
accellera . DV
© Accellera Systems Initiative 31

SYSTEMS INITIATIVE

Generic re-usable testbench

SV DPI

Scemi Xtor DUT!

I
request_pipe . i
1
1
I
1

{response_pipd).¢ |
j
DUT
Scemi xtor TB|
I
]
! »| request pipe i
C testcase i Ny i
= response_pip ! I 4 IPO IP1 > Frame grabber
' }1|Configbus NoC| p—
uvm_test! v
]
uvm_env Subsystem Regbank | | v i
> " N oC Interim frame grabef
>| UVM MIPI AGENT | Y
.|
| to_reg_handshake vit | /
| Frame predictor+scoreboard :l§
\ v
\ eference | >
P Reference image AXI Memory
Backdoor memonyread DP|
Backdoor Memroy Write DPT >

2019

DESIGN AND VERIFICATION™

accellera DV

© Accellera Systems Initiative 32
SYSTEMS INITIATIVE

Generic re-usable testbench

* Key:

* LightBlue: IPs
e Red: Clock and Reset Blocks

* Orange: Configuration Interfaces (Synthesizable SCEMI BFMs) Yellow: Testbench elements
* Pink: Register Banks

* Peach: C testcases

* Purple: interconnect

* Figure depicts block diagram of Subsystem verification architecture. The IP in case of this particular Image Processing
Subsystem would be delivering the IP level tests and these tests will be re-used at subsystem and SoC level with some
modifications, like commenting the commands which are related to IP’s internal data generator since we will be using the external
imager in form of UVC/models. We also commented the ‘test models’ related commands because we will not be using the IP
delivered test models at the Subsystem, We had to add some additional commands required to access the testbench registers
used for the synchronization between the software and the external imager sequence (uvm) in case of Subsystem and SoC Level.

* Additional verification code was to configure various subcomponents and backdoor access to IPs eg descriptors. A C
framework was used for the backdoor access in the testbench. Also, C testcases are written in a way that the CPU can run them,
however during early integration testing, not all testcases have the CPU live. C part was written with consideration of generic test
bench approach so that same tests can be used for FPGA/Emulator with little modifications.

2019
accellera . DV
© Accellera Systems Initiative 33

SYSTEMS INITIATIVE

Generic re-usable testbench

* Inorder to provide a common verification environment across different SoC, subsystems and different platforms some generic

reusable testbench components have been developed The standard generic components are synthesizable BFMs for AXI4
interfaces, Company Standard Interfaces.

* These BFMs are bus masters and can drive standard slave interfaces that are compliant with AXI4 and Company Standard
Interface. Additional reusable components developed were for clock and reset generation (tb_ctrl),

* Inorder to re-use tests and test sequences, the Subsystem test sequence are layered where the platform, the testbench and
the subsystem specific code are structured in layers. This allows seamless porting to different platforms like an FPGA or emulator,
ports to a different testbench as well, without expecting any changes to be made to the tests

2019
accellera - DV
© Accellera Systems Initiative 34

SYSTEMS INITIATIVE

Verification Environment Development (6/9)

_ _ HVL site DPI-C
* UVM <->C communication SystemVerilog, UVM C, C++
— SystemVerilog is the master of the test
case, b.ut the C perfor.ms all the (run_phase() Main.c N
scenario steps/behavior. extern start_c. test()
— C test needs also SV task mainly for start_c_test(test_case call
clocking timing, reset interface control >
and all register access transactions \
driven by an SV BFM/transactor. testcase.c
— Another mechanism is using some extem setup_clocks()
GPIO ports on the SoC connected to D°““°ff0“r“°ti°"' setup()
"registers” in the testbench to monitor i zz‘t«f:psiiitg(‘?pe()
SoC white box signal through signal Restore scope
mirroring.

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 35

SYSTEMS INITIATIVE

Verification Environment Development (7/9)

 UVCs to support performance & connectivity

— SystemVerilog assertions

e Can be used to predict maximum latency
* Can be used to verify the system clock frequencies/duty cycles.

* Reset tree connectivity

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 36

SYSTEMS INITIATIVE

Verification Environment Development (8/9)

* Sign-off metrics implementation
— Assertion coverage

— Group coverage
— Sub-plan coverage
— VSIF vs HVP mapping

— Code coverage (Implicit)

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 37

SYSTEMS INITIATIVE

Verification Environment Development (9/9)

* SoC Level Specific components
— TB interconnect
— API based TB regbank generation
— Tb_MFIO configuration via APIs
— DDR BFM model
— Memory backdoor APIs
— Dummy view support
— Efuse control
— Bootstrap control

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 38

SYSTEMS INITIATIVE

Stimulus Development (1/3)

e Choice of Stimulus

— C based test for
* maximum vertical re-use
- P
- Subsystem

- SoC level

* Across platforms
- Simulation

- Emulation
- FPGA

— UVM based fully random testcases ideal for extensive IP verification.

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 39

SYSTEMS INITIATIVE

Stimulus Development (2/3)

e Guidelines

— Register macros
e Address must come from header-file defines.

— Self-checking mechanism.
* Data integrity checks with the test, assertion or coverage.

— No use of hard code values.

— Addresses should be passed to register access functions as base_address + any
cumulative offsets.

— Each testcase checks all the features that it has been mapped to in the HVP.
— Correct choice of if _and fx__ functions.
— No printf calls in code without being wrapped in anif _ function.

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 40

SYSTEMS INITIATIVE

Stimulus Development (2/3)

* Promotability mechanism
— Test promotion

* Promoted
— Reusable integration test (toggling boundaries, Does not necessarily covering key features).
— A promoted test should have.
» The attribute “top_level=1" in the Subsystem vplan.

|II

» The correct “milestone = alpha/beta or final” attribute in its vplan.
* Not Promoted
— Exhaustive IP level test (The functional testcases exploring the features of the IP and corner cases).

— Interoperability tests of IPs in the Subsystem.

2019

DESIGN AND VERIFICATION™

accellera - DV
© Accellera Systems Initiative 41

SYSTEMS INITIATIVE

Execution

* Running the tests in order to cover defined scenarios for different
phases —
— ALPHA
— BETA
— BETA+V
— FINAL

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 42

SYSTEMS INITIATIVE

Execution

* Regression is achieved using Jenkins
— Weekly runs for Subsystems and top
— Visibility for all the stakeholders
— Automatic coverage merge.
— Automatic reporting (a coverage dashboard mapped to the verification plan)

Summary_ Test list Signature list SY"UPSYS HVP Hierarﬂhy

dashboard | hierarchy | modiist | groups | tests | asserts | userdata | hvp

X Test results for merged Expand Al | | Collapse Al

MAME sl pass. tail wanm unknan sl perienlpass

= s0¢_top_latest 203 200 1 0 2 9852
Regression report HTML VIF soc_lop_desc 203 200 1 0 2 9p.52
Testbench post_review_full_regression + Specification 56 53 1 0 2 04,64
DCONFIG none

% Code Coverage
PASS 153 99.35% Veriicaion_Categories 6 6 0 0 0 10000
1 65% I

FAIL - < Promoted Integraton Tests Sub-Plans 141 141 0 0 0 10000
SIGNATURES 1
HUNG 0 0.00% 20] 9

DESIGN ANL VE RIFICATION"™

accellera - DV
© Accellera Systems Initiative 43

SYSTEMS INITIATIVE

Coverage Closure

* Analysis and Tuning

— The RTL code coverage get instrumented using a configuration file.
— The verification plan is merged with the coverage database for annotation.

— Several filter can be applied to fine tune the coverage results based on
* The project milestone (alpha, beta, final),
* The promoted test from subsystem to top (top_level attribute is used).
SYNOPSYS Dashboard

dashboard | hierarchy | modlist | groups | tests | asserts | userdata | hvp

Date: Thu May 16 05:47:22 2019

User: yxob

Version: M-201 Z83-SP2-1

Command linef irg full64 Jca -group show_in_design -show ratios -dir Juseryxob.tmp/merged_vesimerged.vdb -report Juserfyxob.tmp/merged_ves/COUSTAGEIMEIGEaNEPON plan juserlyxobNVERIFICATIONAverification/plafifiop_plan -format both
-full64 -atribute /projectsiverification planshvpfilter libiree atiributes tt-hvp score missing -userdata /userfyxob/VERIFICATIONNerification/plan/no_requirement_metric.txt -mod Juserfyxob/NVERIFICATION/verification/plan/nhvpmod

Isoc_subsystem_ovemide hvpmod -mod /projectsiverification_plans/hvpfilier_lib/alpha hvpmeog -mod /fprojects iverification_plans/hvp/fitter_li bl.l -userdata /userfyxob.tmp/VERIFICATION/verification/sim/work/ftest. data
Number of tests: 1

Scores for Verification Plan
SCORE Test pass tail warm assert unknown N 11 percent pass NAME
94.86 203 200 1 0 2 94.86 9852 soc_top_latest

Total Coverage Summary

SCORE LINE COND TOGGLE F5M BRANCH ASSERT

= 2019

accellera - DV
© Accellera Systems Initiative 44

SYSTEMS INITIATIVE

Coverage Closure

 Coverage tuning — override

— As part of the coverage analysis, verification plan override file can be

o >
accellera
_/

SYSTEMS INITIATIV.

implemented and reviewed later:

* |t’s as a kind of exclusion file.

* Helps to make the dashboard clean up without waiting for a new subsystem release.

-display_overr ide;

//DISPLAY//

soc_top_latest.soc_top_desc."Promoted
soc_top_latest.soc_top_desc.'Promoted
soc_top_latest.soc_top_desc."Promote

SYNOPSYS

HVP Hierarchy

dashboard | hierarchy | modlist | groups | tests | asserts | userdata | hvp

NAME test
{ = Promoted Integration Tests Sub-Plans

pass

-

+ cpu_subsystem 00

+ ddr_subsystem_sp

+ display_subsystem

+ gpu_subsystem

#isp subsystem

+ peie_subsystem_sp
vpenph_a_subsystem_sp
v penph_b_subsystem_sp

+ usb_subsystem_sp

QAFFFH—E)S

..l:».-u.-a.:&

© © o ©o 0 o o o ©o|o

5EEERE E.EEE

Name

15" .display_subsystem.display_verif plan.Clocks.'Frequencies ".top_level = 0;
15" .display subsystem.display verif plan.Resets. pdc reset. top level = 0;
".display subsystem.display verif plan.Resets."Asynchror

cl

w | == P soc_top latest

=« 21 soc_top_dex

.
{

1
|

.

i

f 1.2 Code Coverage

.

7 1.4 Promoted Integration Tests Sub-Plans
% ¥ 1.4.1 cpu_subsystem
+ ¥ 1.4.3 ddr_subsystem_sp
- #1.4.4 dimlay_subsystem
= ¥ 14.4.1 dwplay_Plan
+- 1 1.4.4.1.1 Resets
+- ¥11.4.4.1.2 Clocks
r 1.4.4.1.3 Registers Access
| 24144232 register access(read and write)
-« 1 1.4.4.1.3.1.1 register test
| - -f‘ Testcase
| 5 ${HVP_ROOT} display_ss_Integration_register_test.tst
+- 1 1.4.4.1.7 Functional tests

ous active low primary

2019

3IGN AND VERIFICATION"™

VIO

JFERENCE AND EXHIBITION

Case Study — Solaris (1/7)

 Compute cluster SoC High Level Block Diagram
— 2 CPU with Quad-core 64-bit processors
— High end GPU |
_ |\/|u|t|-core DSP |___Compute cluster | | Multimedia cluster |
e Multimedia cluster {] []
— ISP, H.265/H.264/JPEG/Multi standard
encode/decode [m I N }
* Base Platform _oo<) ooR_
— Booting/Housekeeping CPU | Base Platform |

— High speed NoC
— Hi-speed/Low-speed peripherals
— Security subsystem
Total 29 different complex subsystems

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 46

SYSTEMS INITIATIVE

Case Study — Solaris (2/7)

 Hierarchical Verification Plan

- Top vplan 1 plan soc_top_desc; .
2 metric integer no_requirement;
wrapper 3 aggregator = min;

= » Top vplan
= description

g 4 goal = (no_requirement >= 1);
1- “include "stubs_latest.hvp" 5 endmetric
2 ~include "soc_top_desc.hvp! 6 metric aggregate {Line, Cond, FSM, Toggle, Branch, Assert, test.percent.pass} soc_score;
B 7 apply = global;
g plan soc_top_latest; 8 goal = (soc_score >= (.99);
: o 9 endmetric
6 description = "RELAT SP 10
i subplan soc_top_desc 11 annotation string implementation notes = "';
- endplan 12 attribute enum{PRE_ALPHA, ALPHA, BETA, BETA V,FINAL} milestone = PRE_ALPHA;
13 attribute integer promoted_test = 0;
14
[Stub wrapper] 15 feature Specification;
16 description = "This feature set mirrors the verification strategy section, capturing

! “include "stubs_latest/cpu_subsystem.hvp" eature Clocks;
2 "include "stubs_latest/ddr_subsystem.hvp" feature "External Clock Sources“'
3 "include "stubs_latest/display_subsystem.hvp" 1 7
4 “include "stubs_latest/gpu_subsystem.hvp"
5 "include "stubs_latest/isp_ subsystem.hvpl
6 “include "stubs_latest/pcie_subsystemn.
7 “include "stubs_latest/perip_a_subs em.hvp"
& “include "stubs_latest/perip b_su stem.hvp"
3 “include "stubs_latest/usb_subs em.hvp"
]

=

o

1

I'
1 flan stubs_latest; . m

b b

;k‘endplan

?plan display_subsystem;
8 // Only when ready,
5 // referenced:

10 subplan display_verif plan;
11 endplan

should the target plan be

—
accellera)

SYSTEMS INITIATIVE

© Accellera Systems Initiative 47

feature "Promoted Integration Tests Sub-Plans';

subplan cpu_subsystem;
subplan ddr_subsystem_sp;
subplan display_subsystem;
subplan gpu_subsystem;
subplan isp_subsystem;
subplan Rie_subsystem sp;
subplanperiph_a_subsystem_sp;
subplanperiph_b_subsystem_sp;
subplan usbsubsystem sp;

N

Promoted

tests

endfeature
E“1nclude "/pro;ects/subsystems/dlsplay_subsys 1ib/4.10.1.2/verification/plan/display_verif plan.hvp"

2019

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

_:=2 = Top vplan <
= wrapper

Hle View Pan Exclusion Dols Window Help

DU FEHEHE .

“include "stubs_latest.hwvp"
2 “include "soc top_desc.hvp"

5}p1an soc_top_latest;

description = "RELATED SP

Case Study — Solaris (3/7)

e Test promotion from sub-system to top-level

Summary

subplan soc_top_desc;

1 endplan

[Stub wrapper J

1 “include

“include
i “include
1 "include
5 “include

“include
7 Tinclude
3 Tinclude
9 “include

11

15 endplan

accellerd)

SYSTEMS INITIATIVE

"stubs_latest/cpu_subsystem.hvp"
"stubs_latest/ddr_ subsystem.hvp"
"stubs_latest/display_subsystem.hvp"
"stubs_latest/gpu_subsystem.hvp"
"stubs_latest/isp_subsystem.hvp"
"stubs_latest/pcie subsystem.hvp"
"stubs_latest/perip_a_ subsystem.hvp"
"stubs_latest/perip_b_subsystem.hvp"
"stubs_latest/usb_subsystem.hwvp"

iﬂtflan stubs_latest;

© Accellera Systems Initiative

<Verdi:vdCoverage:1> (on h

9 J -T'-:-:. 4 [L\‘;“ii J ;i.;,
2/&|- o] &
Qagnajgﬁv M X,*;'H@’lilm:i
Name

= p) soc_top_latest

L Y soc op e
+ £

+ F] 1.2 Code Coverage

LIS

=
[t

- F| 1.4 Promoted Integration Tests Sub-Plans
¢~ 5° 1.4.1 cpu_subsystem

-1 1.4.3 ddr_subsystem_sp

B = # 1.4.4 diplay subsystem

11 g
| . ,£1.4.4.1 display_Pian

- F 1.4.4.1.1 Resets
- F 1.4.4.1.2 Clocks
=~ F 1.4.4.1.3 Registers Access
-] 1.4.4.1.3.1 register access(read and write)
i. F1.4.4.1.3.1.1 register test
=3 | Testcase
o S] $ {HVP_ROOT }display_ss_integration_register_test.tst
1 1.4.4.1.7 Functional tests

|
-

[[X &

'@ Name

“ :__ luser/yxobjverification plans_1.8.3_hvp_filter_lib/alpha hvpmod
jIZ ,_:/uscr/yxob/vcn'h(abonylans_l.8.3_2vp_hl!cr_hbnop.hvpmod

48

1
1
0
1
1
B

| milestone

PRE_ALP..

ALPHA

PRE ALP..
PRE ALP..
PRE_ALP..
PRE_ALP..

BETA V
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA

2019

DESIGN AND VERIFICATION"™

DVCOIN

CONFERENCE AND EXHIBITION

Case Study — Solaris (4/7)

e SoC Verification
— Simulation, Emulation & FPGA
— CPU modes

* RTL mode — Booting scenarios
* BFM mode — ALPHA milestone
VP mode — BETA milestone

— STUB modeling — Dummy views
— Sub-system Test harnesses

— Regression
e VSIF test list structure — classified based on the simulation time.
* Jenkins — weekly, nightly

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 49

SYSTEMS INITIATIVE

Case Study — Solaris (5/7)

e CPU mode —-BFM

— The (RTL) CPU shall be held,
permanently, in reset; instead an N
AXI VIP shall drive the main 1o s
memory interface of the CPU.

— The UVM CPU sequencer shall be
active , which shall call write/read
functions to drive transfers on the
CPU memory bus interface.

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 50

SYSTEMS INITIATIVE

Case Study — Solaris (6/7)

* CPU mode - RTL
— The (RTL) CPU shall drive the

transfers. - N

Subsystem

Test Harnesses

— The C-based test cases shall be
compiled, and the resultant elf file
shall be loaded into the SoC
ROM/SRAM.

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 51

SYSTEMS INITIATIVE

Case Study — Solaris (7/7)

Reg reSS i O n res u |t Start Date: FriAug9 17:26:11 BST 2019
Report Date: Mon Aug 12 10:11:33 BST 2019
Report User: xbw
Work: /projects/solaris/verification/jenkins/workspace/HwVsif_Solaris_top_full_ves_TESTS_full/regression_results/vsif_magic/current
VSIF: solaris_top_rtl_freeze.vsif - processed
UGE Sesslon: laris_top_full_vcs_T0O5 772239
Domailns: merged

S umma ry: Test list Signature list

Test results for merged

Regression report HTML VIF

Testhbench solaris_top_rtl_freeze
DCONFIG none

PASS 196 48.64%
FAIL 206 51.12%
SIGNATURES 20

HUNG 1 0.25%
RUNNING 0 0.00%

DESIGN AND VERIFICATION™

accellera - DV
© Accellera Systems Initiative 52

SYSTEMS INITIATIVE

Summary

* We discussed:

— Design Patterns
* What design patterns are and what not?
» Different types & application
* Design patterns role in advanced functional verification arena

— MDV flow and it’s different associated phases
* Block, Sub-system and SoC level hierarchical approaches
* Vertical, horizontal and diagonal re-usability

— Sondrel case study of a handling a big SoC
e 2 CPU (quad core 64-bit each), CPU for housekeeping, Multicore DSP, 29 subsystems
* Test harness reusability from subsystem to SoC level

» Different SoC Verification modes i.e. RTL, BFM, VP to support different project milestones.
— Stimulus reusability across subsystem, top-level (simulation/emulation)
— VSIF regression results/Sign-off 2019

DESIGN AND VERIFICATION™

accellera . DV
© Accellera Systems Initiative 53

SYSTEMS INITIATIVE

Questions

Thank You
oo 2019

SYSTEMS INITIATIVE

