
Applying Design Patterns to
Maximize Verification Reuse at

Block, Subsystem and
System-on-Chip Level

Paul Kaunds | Revati Bothe | Jesvin Johnson

© Accellera Systems Initiative 1

Agenda
• Design Patterns
• Features of a Good Software Design
• Good Software Design Principles
• SOLID Principle
• Design Pattern Examples
• Design Pattern Categories
• Design Pattern & UVM
• Design Pattern UVM Applications
• Metric Driven Verification @ Block, Subsystem & SoC-level

– Verification Planning
– Verification Environment Development
– Stimulus Development
– Execution
– Coverage Closure

• Case Study
• Summary

© Accellera Systems Initiative 2

Design Patterns

• What is the Design Pattern?

– Design Patterns are typical solutions to commonly occurring problems in the
software design

– Like pre-crafted blueprints that can be customized to solve re-occurring
design problems

– Like a high-level description of a solution
• Can predict results

• Can inform about its features

• Independent of exact order of implementation

© Accellera Systems Initiative 3

Design Patterns

• What is the Design Pattern?

– A pattern is a proven solution to a problem in a context.

– Christopher Alexander says each pattern is a three-part rule which expresses
a relation between a certain context, a problem, and a solution.

– Design patterns represent a solutions to problems that arise when
developing UVC within a particular context.

– Patterns = problems.solution pairs in a context

© Accellera Systems Initiative 4

Design Patterns

• What is the Design Pattern?

– A Design pattern is a recurring solution to a standard problem, in a context.

– Design patterns are Thought Processes.

– Design Pattern is like Dress Patterns

– Jim Coplein, a software engineer: “I like to relate this definition to dress
patterns…

© Accellera Systems Initiative 5

Design Pattern

• How are Design Patterns described?

– Intent
• Briefly describes the Problem & Solution

– Motivation
• Further details the Problem & Solution that the pattern makes possible

– Structure
• Inter-relation between different classes to show each part of the pattern

© Accellera Systems Initiative 6

Design Pattern

• What Design Pattern is NOT about

– Not a specific piece of code that can be copied into our code

– Not like off-the-shelf tasks/functions/libraries.

– Not an algorithm.
• Has clearly defined steps

© Accellera Systems Initiative 7

Design Pattern

• Categories of Design Patterns

– Creational Pattern
• Handles object creation mechanism

• Increases flexibility & reuse of existing code

– Structural Pattern
• Assembly of the objects & classes in a larger structure

• Keeps the structure flexible and efficient

– Behavioral Pattern
• Effective communication between objects

• Assignment of responsibilities between objects

© Accellera Systems Initiative 8

Features of a Good Software Design

1.

Code re-use

© Accellera Systems Initiative 9

2.

Extensibility

Good Software Design Principles

• Encapsulate what varies

• Program to an interface not an implementation

• Favours composition over inheritance

© Accellera Systems Initiative 10

SOLID Principle

• Single responsibility principle

A class should have one, and only one, reason to change.

• Open/closed principle

“Software entities (classes, modules, functions, etc.) should be open for
extension, but closed for modification.”

• Liskov substitution principle

Objects of a superclass shall be replaceable with objects of its subclasses
without breaking the application.

© Accellera Systems Initiative 11

SOLID Principle

• Interface segregation principle

Clients should not be forced to depend upon interfaces that they do not use

• Dependency inversion principle

It consists of two parts:

1. High-level modules should not depend on low-level modules. Both should
depend on abstractions.

2. Abstractions should not depend on details. Details should depend on
abstractions.

© Accellera Systems Initiative 12

Examples of Design Patterns

• Singleton Pattern –
– Restricts the instantiation of a class to one object

• Factory Pattern –
– Provides an interface for creating families of related or dependent

objects and specifies a policy for how it creates

• Observer Pattern –
– When one object changes state, all its subscribers are notified &

updated automatically

© Accellera Systems Initiative 13

Design Patterns Categories
• Creational
• Structural
• Behavioral
• Factory Method
• Adapter
• Chain of responsibility
• Abstract Factory
• Bridge
• Command
• Builder
• Composite
• Interpreter
• Prototype
• Decorator
• Iterator
• Singleton
• Facade
• Mediator
• Flyweight
• Memento
• Proxy
• Observer
• State
• Strategy
• Template Method
• Visitor

© Accellera Systems Initiative 14

Design Pattern & UVM

• UVM (Universal Verification Methodology) /
OVM (Open Verification Methodology) is based on
CRV (Constrained Random Verification) approach.

• UVM applies Software Best Practices like –

– SOLID principles

– OOPs features

– Various combinations of Design Patterns
• To provide a workable solution for common problems (blueprint)

© Accellera Systems Initiative 15

Design Pattern UVM Applications

• UVM (Universal Verification Methodology)/OVM (Open Verification
Methodology) is based on CRV (Constrained Random Verification)
approach.

• UVM applies the Software Best Practices like –

– SOLID principles

– OOPs features

– Various combinations of Design Patterns
• To provide a workable solution for common problems (blueprint)

© Accellera Systems Initiative 16

Metric Driven Verification (MDV) @ Block,
Subsystem & SoC-level

© Accellera Systems Initiative 17

Metric Driven Verification Phases

• MDV phases

– Verification planning

– Verification environment development

– Stimulus development

– Execution

– Coverage closure

© Accellera Systems Initiative 18

Verification Planning (1/5)

• Strategy development for DUT verification.

– Verification approaches like Constrained random/Directed testcases/Mix of both.

– Testbench architecture

– Vertical/Horizontal/Diagonal re-use
• Re-use of external and internal VIPs/UVCs/Sequence library/Tests

– Block/Sub-system/Chip-level approaches

© Accellera Systems Initiative 19

Verification Planning (2/5)

• Verification Plan Development

– ALPHA
• Basic integration tests, covering clocks, resets, registers and memory interfaces + reviewed

Verification plan

– BETA
• All major functionality tested > 90%, Verification reports delivered as proof

• All integration tests passing at sub-system level should be delivered

• I/O of sub-system Coverage exclusion files provided with reasons of exclusion

– FINAL
• Fully verified Block/Subsystem/SoC with verification plan reports to support

• Exceptions for code coverage documented with reasons + checklist

© Accellera Systems Initiative 20

Verification Planning (3/5)

© Accellera Systems Initiative 21

• HVP Development

SoC

Verification Planning (4/5)
• Testbench Architecture Development

– Vertical, Horizontal & Diagonal Reuse
• Horizontal reuse – one SOC to derivatives

Horizontal typically means using a verification component in a different system or
project but at roughly the same level of abstraction and with the same functional role

• Vertical reuse – IP to SOC

Vertical reuse means using a verification component in a different hierarchy level,
usually with an implied change of role

• Diagonal reuse – various level of abstractions

(Simulation, Emulation, FPGA, Post Silicon)

© Accellera Systems Initiative 22

Verification Planning (5/5)

• Testbench Architecture Development

– Block, Sub-system & SoC Level Testbench
• The environment comprised of:

– VIPs (External/Internal),

– SV test components,

– SV Assertions,

– UVM Components,

– C test-based infrastructure to accomplish the Verification goal.

• The generic TB components:

– BFMs for the bus interfaces like AXI4 interfaces,

– Can be configurable as masters or slaves.

© Accellera Systems Initiative 23

Verification Environment Development (1/9)

• Bottom-up development strategic view (Vertical re-use approach)

– Block level -> Sub-system level -> Top-level

• Key elements

– Testcase reusability

– Effective classification of functions modularity

– Generic Testbench components application

– UVCs to support performance related parameters

– Sign-off metrics implementation

© Accellera Systems Initiative 24

Verification Environment Development (2/9)

© Accellera Systems Initiative 25

Verification Environment Development (3/9)

• Effective classification of functions modularity

– Good software design principles/Design Patterns application

– Immutable functions (fx__ functions)
• Main thread that runs the simulation – fixed in nature

• These functions/tasks do not change for different Testbench and/or platforms.

– Clock setup

– IP configuration

– Functional testing

– Reporting

© Accellera Systems Initiative 26

Verification Environment Development (4/9)

• Effective classification of functions modularity
– Mutable functions (if__ functions)

• These are also called interface functions

• Helps to develop the immutable functions

• Can be redefined based on the selected TB and/or platform
– These interface functions helps desired behavior

» Clock set up task –

• IP level – toggling a signal

• SoC level – configuring the PLL
» TB Driver/Monitor calls to global or common functions

• REG_WRITE

• REG_READ

© Accellera Systems Initiative 27

Verification Environment Development (5/9)

• Generic Testbench components application

– SCEMI transactors
• Supports multiple platforms

– Simulation

– Emulation

– FPGA

– Can be implanted early in the project cycle.

– Maximum stimulus code re-use.

– Generic TB components (different protocol variants) – AXI4/IMG etc.
• Master

• Slave (with memory support)

© Accellera Systems Initiative 28

Generic transactor testbench structure

Generic transactor testbench structure

© Accellera Systems Initiative 29

Generic transactor testbench structure

• Figure depicts a typical generic testbench architecture testbench architecture illustrating the flow of
transactions from testcase (C/C++ / SV) to Scemi pipes and ultimately to a synthesizable transactor
(purple) which fetches transaction from Scemi pipe and drives the test environment .

• These scemi transactor based testbench contains an instance of a testbench control module which
imports a DPI hdl2c() which is invoked within an initial block , similar to having a run_test() for accessing
UVM test form testbench. The hdl2c() call is blocking and will transfers the execution thread control
from HDL testbench side to C and executes the test sequence. C to HDL synchronizations are controlled
via DPI or polling for certain status flags from a testbench register.

© Accellera Systems Initiative 30

Generic transactor testbench structure

• Immutable functions are set of process like for e.g. programming an IP for a certain mode of operation and this
behavior will not change regardless of the platform or whether testing at IP level or system level.

• A Variable function or hook function can morph its behavior based on platform or testbench. For example as a
preamble to programming the IP one may choose to enable the clocks and bring the system out of reset, this
process may vary depending on the testbench as at IP level this can be a signal connected straight to the I/Os of the
IP, although at the subsystem level there might be a clock gate and some external clock controller register needs
configuring to enable the clock to IP . Exposing these hook function will provide the flexibility to adapt the action
for a given platform.

© Accellera Systems Initiative 31

Generic re-usable testbench

© Accellera Systems Initiative 32

Generic re-usable testbench
• Key:

• Light Blue: IPs
• Red: Clock and Reset Blocks
• Orange: Configuration Interfaces (Synthesizable SCEMI BFMs) Yellow: Testbench elements
• Pink: Register Banks
• Peach: C testcases
• Purple: interconnect

• Figure depicts block diagram of Subsystem verification architecture. The IP in case of this particular Image Processing
Subsystem would be delivering the IP level tests and these tests will be re-used at subsystem and SoC level with some
modifications, like commenting the commands which are related to IP’s internal data generator since we will be using the external
imager in form of UVC/models. We also commented the ‘test models’ related commands because we will not be using the IP
delivered test models at the Subsystem, We had to add some additional commands required to access the testbench registers
used for the synchronization between the software and the external imager sequence (uvm) in case of Subsystem and SoC Level.

• Additional verification code was to configure various subcomponents and backdoor access to IPs eg descriptors. A C
framework was used for the backdoor access in the testbench. Also, C testcases are written in a way that the CPU can run them,
however during early integration testing, not all testcases have the CPU live. C part was written with consideration of generic test
bench approach so that same tests can be used for FPGA/Emulator with little modifications.

© Accellera Systems Initiative 33

Generic re-usable testbench

• In order to provide a common verification environment across different SoC, subsystems and different platforms some generic
reusable testbench components have been developed The standard generic components are synthesizable BFMs for AXI4

interfaces, Company Standard Interfaces.

• These BFMs are bus masters and can drive standard slave interfaces that are compliant with AXI4 and Company Standard
Interface. Additional reusable components developed were for clock and reset generation (tb_ctrl),

• In order to re-use tests and test sequences, the Subsystem test sequence are layered where the platform, the testbench and
the subsystem specific code are structured in layers. This allows seamless porting to different platforms like an FPGA or emulator,
ports to a different testbench as well, without expecting any changes to be made to the tests

© Accellera Systems Initiative 34

Verification Environment Development (6/9)

© Accellera Systems Initiative 35

Verification Environment Development (7/9)

• UVCs to support performance & connectivity

– SystemVerilog assertions
• Can be used to predict maximum latency

• Can be used to verify the system clock frequencies/duty cycles.

• Reset tree connectivity

© Accellera Systems Initiative 36

Verification Environment Development (8/9)

• Sign-off metrics implementation

– Assertion coverage

– Group coverage

– Sub-plan coverage

– VSIF vs HVP mapping

– Code coverage (Implicit)

© Accellera Systems Initiative 37

Verification Environment Development (9/9)

• SoC Level Specific components

– TB interconnect

– API based TB regbank generation

– Tb_MFIO configuration via APIs

– DDR BFM model

– Memory backdoor APIs

– Dummy view support

– Efuse control

– Bootstrap control

© Accellera Systems Initiative 38

Stimulus Development (1/3)

• Choice of Stimulus

– C based test for
• maximum vertical re-use

- IP

- Subsystem

- SoC level

• Across platforms

- Simulation

- Emulation

- FPGA

– UVM based fully random testcases ideal for extensive IP verification.

© Accellera Systems Initiative 39

Stimulus Development (2/3)

• Guidelines
– Register macros

• Address must come from header-file defines.

– Self-checking mechanism.
• Data integrity checks with the test, assertion or coverage.

– No use of hard code values.

– Addresses should be passed to register access functions as base_address + any
cumulative offsets.

– Each testcase checks all the features that it has been mapped to in the HVP.

– Correct choice of if__ and fx__ functions.

– No printf calls in code without being wrapped in an if__ function.

© Accellera Systems Initiative 40

Stimulus Development (2/3)

• Promotability mechanism

– Test promotion
• Promoted

– Reusable integration test (toggling boundaries, Does not necessarily covering key features).

– A promoted test should have.

» The attribute “top_level=1” in the Subsystem vplan.

» The correct “milestone = alpha/beta or final” attribute in its vplan.

• Not Promoted

– Exhaustive IP level test (The functional testcases exploring the features of the IP and corner cases).

– Interoperability tests of IPs in the Subsystem.

© Accellera Systems Initiative 41

Execution

• Running the tests in order to cover defined scenarios for different
phases –

– ALPHA

– BETA

– BETA+V

– FINAL

© Accellera Systems Initiative 42

Execution

• Regression is achieved using Jenkins

– Weekly runs for Subsystems and top

– Visibility for all the stakeholders

– Automatic coverage merge.

– Automatic reporting (a coverage dashboard mapped to the verification plan)

© Accellera Systems Initiative 43

Coverage Closure

• Analysis and Tuning

– The RTL code coverage get instrumented using a configuration file.

– The verification plan is merged with the coverage database for annotation.

– Several filter can be applied to fine tune the coverage results based on
• The project milestone (alpha, beta, final),

• The promoted test from subsystem to top (top_level attribute is used).

• Incorrect SS vplan mapping can be resolved using override mechanism.

© Accellera Systems Initiative 44

Coverage Closure

• Coverage tuning – override

– As part of the coverage analysis, verification plan override file can be
implemented and reviewed later:
• It’s as a kind of exclusion file.

• Helps to make the dashboard clean up without waiting for a new subsystem release.

© Accellera Systems Initiative 45

Case Study – Solaris (1/7)

• Compute cluster
– 2 CPU with Quad-core 64-bit processors
– High end GPU
– Multi-core DSP

• Multimedia cluster
– ISP, H.265/H.264/JPEG/Multi standard

encode/decode

• Base Platform
– Booting/Housekeeping CPU
– High speed NoC
– Hi-speed/Low-speed peripherals
– Security subsystem

• Total 29 different complex subsystems

• SoC High Level Block Diagram

© Accellera Systems Initiative 46

Case Study – Solaris (2/7)

• Hierarchical Verification Plan

© Accellera Systems Initiative 47

Case Study – Solaris (3/7)

• Test promotion from sub-system to top-level

© Accellera Systems Initiative 48

Case Study – Solaris (4/7)

• SoC Verification
– Simulation, Emulation & FPGA

– CPU modes
• RTL mode – Booting scenarios

• BFM mode – ALPHA milestone

• VP mode – BETA milestone

– STUB modeling – Dummy views

– Sub-system Test harnesses

– Regression
• VSIF test list structure – classified based on the simulation time.

• Jenkins – weekly, nightly

© Accellera Systems Initiative 49

Case Study – Solaris (5/7)

• CPU mode – BFM

– The (RTL) CPU shall be held,
permanently, in reset; instead an
AXI VIP shall drive the main
memory interface of the CPU.

– The UVM CPU sequencer shall be
active , which shall call write/read
functions to drive transfers on the
CPU memory bus interface.

© Accellera Systems Initiative 50

Case Study – Solaris (6/7)

• CPU mode - RTL

– The (RTL) CPU shall drive the
transfers.

– The C-based test cases shall be
compiled, and the resultant elf file
shall be loaded into the SoC
ROM/SRAM.

© Accellera Systems Initiative 51

Case Study – Solaris (7/7)
• In-progress

Regression result

© Accellera Systems Initiative 52

Summary

• We discussed:
– Design Patterns

• What design patterns are and what not?

• Different types & application

• Design patterns role in advanced functional verification arena

– MDV flow and it’s different associated phases
• Block, Sub-system and SoC level hierarchical approaches

• Vertical, horizontal and diagonal re-usability

– Sondrel case study of a handling a big SoC
• 2 CPU (quad core 64-bit each), CPU for housekeeping, Multicore DSP, 29 subsystems

• Test harness reusability from subsystem to SoC level

• Different SoC Verification modes i.e. RTL, BFM, VP to support different project milestones.
– Stimulus reusability across subsystem, top-level (simulation/emulation)

– VSIF regression results/Sign-off

© Accellera Systems Initiative 53

Questions

Thank You

© Accellera Systems Initiative 54

