
Applying Design Patterns to
accelerate development of

reusable, configurable and portable
UVCs.

© Accellera Systems Initiative 1

About the presenter…
Paul Kaunds
 Paul Kaunds is a Verification Consultant at EnSilica Ltd, with over 16 years experience

in the industry.

 Extensive knowledge of advanced verification (including SystemVerilog, UVM, eRM)
and the use of new methodologies, tools and flows to deliver the best possible
verification solution.

EnSilica Ltd
 EnSilica was founded in 2001 and has a strong track record of success in delivering

semiconductor IP and providing ASIC and FPGA design services to semiconductor
companies and OEMs worldwide. The company is a specialist in low-power ASIC
design and complex FPGA-based embedded systems, including hardware and
embedded software development.

 Our portfolio of IP includes eSi-RISC, a highly configurable 16/32 bit embedded
processor and families of IP covering communications, processor peripherals and
encryption

 For further information about EnSilica, visit http://www.ensilica.com.

© Accellera Systems Initiative 2

http://www.ensilica.com/

© Accellera Systems Initiative 3

“Each pattern describes a problems which occurs over
and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use the solution again a million times
over, without ever doing it the same twice”

Christopher Alexander (Architect),
A Pattern Language: Towns, Buildings, Construction, 1977

Design Patterns

© Accellera Systems Initiative 4

“The pattern is, in short, at the same time a thing,
which happens in the world, and the rule which tells us
how to create that thing, and when we must create it.
It is both a process and a thing; both a description of a
thing which is alive, and a description of the process
which will generate that thing.”

Christopher Alexander (Architect),
A Pattern Language: Towns, Buildings, Construction, 1977

Design Patterns

© Accellera Systems Initiative 5

 A Design Pattern systematically names, explains, and
implements an important recurring design.

 These are define well-engineered design solutions that
practitioners can apply when crafting their applications.

What is Design Patterns

© Accellera Systems Initiative 6

 A pattern is a proven solution to a problem in a context.

 Christopher Alexander says each pattern is a three-part rule
which expresses a relation between a certain context, a
problem, and a solution.

 Design patterns represent a solutions to problems that arise
when developing UVC within a particular context.

 Patterns = problems.solution pairs in a context

Design Patterns

© Accellera Systems Initiative 7

Design Patterns
 A Design pattern is a recurring solution to a standard problem,

in a context.

 Design patterns are Thought Processes.

 Design Pattern is like Dress Patterns

 Jim Coplein, a software engineer:
“I like to relate this definition to dress patterns…”

 “.. I could tell you how to make a dress by specifying the route
of a scissors through a piece of cloth in terms of angles and
lengths of cut. Or, I could give you a pattern. Reading the
specification, you would have no idea what was being built or if
you had built the right thing when you were finished. The
pattern foreshadows the product: it is the rule for making the
thing, but it is also, in many respects, the thing itself.”

© Accellera Systems Initiative 8

Design Patterns History
 Started in 1987 by Ward Cunningham and Ken Beck who were

working with Smalltalk and designing GUIs.

 Popularized by Gamma, Helm, Johnson and Vlissides (The gang
of four, Go4)

 Design pattern use a consistent documentation approach

 Design pattern are granular and applied at different levels
such as frameworks, subsystems and systems

 Design patterns are often organized as creational, structural or
behavioral

© Accellera Systems Initiative 9

Design Patterns elements
Design patterns have 4 essential elements

 Pattern name: increases vocabulary of designers

 Problem: intent, context, when to apply

 Solution: UML-like structure, abstract code

 Consequences: results and tradeoffs

© Accellera Systems Initiative 10

Why Design Patterns
 Good designers do not solve every problem from

first principles. They reuse solutions.

 Practitioners do not do a good job of recording
experience in Verification Environment design for
others to use. Patterns help solve this problem

© Accellera Systems Initiative 11

Design Patterns are NOT
They are NOT:

 Data structures that can be encoded in classes and
reused as is (i.e., linked lists, hash tables)

 Complex domain-specific designs
(for an entire application or subsystem)

© Accellera Systems Initiative 12

3 Type of Design Patterns
Erich Gamma, Richard Helm, Ralph Johnson and John Vlisides in
their Design Patterns book define 23 design patterns divided into
three types:

 Creational patterns are ones that create objects for you, rather
than having you instantiate objects directly. This gives your
Verification Environment more flexibility in deciding which
objects need to be created for a given case.

 Structural patterns help you compose groups of objects into
larger structures, such as complex UVM SOC Verification
Environment

 Behavioral patterns help you define the communication
between objects in your system and how the flow is controlled in
a complex UVM SOC Verification Environment

© Accellera Systems Initiative 13

Design Patterns Catalogue

CREATIONAL
PATTERNS

1. Factory Method

2. Abstract Factory

3. Builder

4. Prototype

5. Singleton

STRUCTURAL
PATTERNS

1. Adapter

2. Bridge

3. Composite

4. Decorator

5. Façade

6. Flyweight

7. Proxy

BEHAVIORAL PATTERNS

1. Chain of Responsibility

2. Command

3. Interpreter

4. Iterator

5. Mediator

6. Memento

7. Observer

8. State

9. Strategy

10. Template Method

11. Visitor

© Accellera Systems Initiative 14

Benefits of Design Patterns

 Design patterns enable large-scale reuse of UVC
architectures and also help document.

 Patterns explicitly capture expert knowledge and
design tradeoffs and make it more widely available

 Patterns help improve developer communication

 Pattern names form a common vocabulary

© Accellera Systems Initiative 15

Drawbacks of Design Patterns

 Patterns are validated by experience and discussion
rather than by automated testing

© Accellera Systems Initiative 16

Anti-Patterns

 Anti-patterns are certain patterns in Environment
development that is considered as bad programming
practice.

 As opposed to design patterns which are common
approaches to common problems which have been
formalized, and are generally considered a good
development practice, anti-patterns are the opposite
and are undesirable.

© Accellera Systems Initiative 17

Anti-Patterns

 For example, in object-oriented programming, the
idea is to separate the software into small pieces
called objects. An anti-pattern in object-oriented
programming is One Single huge object which
performs a lot of functions which would be better
separated into different objects.

© Accellera Systems Initiative 18

Architecture Patterns Vs Design Patterns

 An architectural pattern is a general, reusable
solution to a commonly occurring problem in
architecture within a given context.

 Architectural patterns are similar to design pattern
but have a broader scope

 An architectural pattern is a concept that solves and
delineates some essential cohesive elements of a
architecture.

© Accellera Systems Initiative 19

Architecture Patterns Vs Design Patterns

 Design patterns: Solves reoccurring problems in
software construction

 UVM Usecase: Factory Method, UVM Configuration
Object.

 Architectural patterns: Fundamental structural
organization for software systems

 UVM Usecase: UVM Agent, UVM Scoreboard

© Accellera Systems Initiative 20

 Abstraction

It is the process of taking away or removing characteristics from something in order
to reduce it to a set of essential characteristics

 Encapsulation

It is the inclusion within a program object of all the resources need for the object to
function - basically, the methods and the data.

 Polymorphism

It is the ability of an object to take on many forms. The most common use of
polymorphism in OOP occurs when a parent class reference is used to refer to a
child class object.

 Inheritance

when a class of objects is defined, any subclass that is defined can inherit the
definitions of one or more general classes.

Object Oriented Programming Basics

© Accellera Systems Initiative 21

 Classes should be open for extension but closed for
modification (Open Close Principle)

 Subclasses should be substitutable for their base classes

(Liskov Substitution Principle)

 Depend on abstractions. Do not depend on concrete classes

(Dependency Inversion Principle)

 Encapsulate what varies

 Favor composition over inheritance

 Loosely coupled designs between interacting objects

Guiding Principles Of OOP

© Accellera Systems Initiative 22

"software entities like Classes should be open for extension, but closed for
modification"; that is, such an entity can allow its behaviour to be extended without
modifying its source code.

Meyer's open/closed principle

 Implementation of a class could only be modified to correct errors; new or
changed features would require that a different class be created. That class
could reuse coding from the original class through inheritance. The derived
subclass might or might not have the same interface as the original class.

Polymorphic open/closed principle

 Implementations can be changed and multiple implementations could be
created and polymorphic ally substituted for each other.

 In Inheritance from abstract base classes, Interface specifications can be reused
through inheritance but implementation need not be. The existing interface is
closed to modifications and new implementations must, at a minimum,
implement that interface.

Open-closed Principle (OCP)

© Accellera Systems Initiative 23

 It states that, in a computer program, if S is a subtype of T, then objects
of type T may be replaced with objects of type S (i.e., objects of type S
may substitute objects of type T) without altering any of the desirable
properties of that program (correctness, task performed, etc.)

 It defines a notion of substitutability for mutable objects;

Liskov Substitution Principle

© Accellera Systems Initiative 24

 It refers to a specific form of decoupling software modules.

 When following this principle, the
conventional dependency relationships established from high-
level, policy-setting modules to low-level, dependency modules
are inverted (i.e. reversed), thus rendering high-level modules
independent of the low-level module.

 High-level modules should not depend on low-level modules.
Both should depend on abstractions

 Abstractions should not depend on details. Details should
depend on abstractions

Dependency Inversion Principle (DIP)

© Accellera Systems Initiative 25

 Looks for behaviours that (may) change, e.g. different
algorithms

 Encapsulate what changes in a class

 Aims to allow changes to be made without affecting dependent
code

Encapsulate what varies

© Accellera Systems Initiative 26

“Each pattern describes a problems which occurs over
and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use the solution again a million times
over, without ever doing it the same twice”

Christopher Alexander (Architect),
A Pattern Language: Towns, Buildings, Construction, 1977

Design Patterns

© Accellera Systems Initiative 27

 Patterns tell us how to structure classes and objects to solve
certain problems.

 We need to fit that to our application and programming
language

 Embody Object Oriented Principles

 Show you how to write code with good Object oriented design
qualities

 Most patterns address change

Design Patterns

© Accellera Systems Initiative 28

Creational

 Factory Method

It Defines an interface for creating a single object, but let subclasses
decide which class to instantiate. Factory Method lets a class defer
instantiation to subclasses

Using this method, objects are constructed dynamically based on the
specification type of the object. User can alter the behavior of the pre-
build code without modifying the code. From the testcase or UVM
Commandline, user can replace any object which is at any hierarchy level
with the user defined object.

This is mainly for UNPLANNED Changes in UVM. Configuration is used for
planned changes.

How Architecture reacts to Changes is very important from reusability
perspective.

F Factory + Configurations = Flexibility.

UVM Usecase: UVM FACTORY

Design Patterns

© Accellera Systems Initiative 29

Creational

 Singleton

Ensure a class has only one instance, and provide a global point of access
to it.

Benefits:

• Controlled access to sole instance

• Reduced name Space

• Permits refinement of operations and representation

UVM Usecases: UVM Pool, UVM Resource Pool, UVM Global report server,
UVM command line processor

Design Patterns

© Accellera Systems Initiative 30

Creational

 Abstract Factory

Provide an interface for creating families of related or dependent objects

without specifying their concrete classes.

UVM Usecases: Polymorphic Interfaces, Abstract Checker Environment

Design Patterns

© Accellera Systems Initiative 31

Structural

 Composite

Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly.

UVM Usecases: UVM Component Hierarchy- UVM Env, UVM Sequence
Library-UVM Sequence , UVM Configuration

Factory + Configuration = Flexibility

Design Patterns

© Accellera Systems Initiative 32

Structural

 Facade

The name is by analogy to an architectural facade.

A facade is an object that provides a simplified interface to a larger body of
code, such as a class library.

A facade can

• make a software library easier to use, understand and test, since the
facade has convenient methods for common tasks;

• make the library more readable, for the same reason;

• reduce dependencies of outside code on the inner workings of a library,
since most code uses the facade, thus allowing more flexibility in
developing the system;

UVM Usecases: TLM Ports. TLM Ports used in UVM Agent, UVM
Scoreboards

Design Patterns

© Accellera Systems Initiative 33

Structural

 Adapter

Convert the interface of a class into another interface clients expect. An
adapter lets classes work together that could not otherwise because of
incompatible interfaces.

UVM Usecases: UVM Reg Adapter

Design Patterns

© Accellera Systems Initiative 34

Structural

 Bridge

Decouple an abstraction from its implementation so that the two can vary
independently.

UVM Usecases: UVM Sequencer and UVM Driver

Design Patterns

© Accellera Systems Initiative 35

Behavioral

 Observer

Define a one-to-many dependency between objects where a state change
in one object results in all its dependents being notified and updated
automatically.

UVM Usecases: UVM Subscriber, UVM Monitor, UVM Coverage, UVM
Scoreboards.

Design Patterns

© Accellera Systems Initiative 36

Behavioral

 Template Method

Define the skeleton of an algorithm in an operation, deferring some steps
to subclasses. Template method lets subclasses redefine certain steps of an
algorithm without changing the algorithm's structure.

UVM Usecases: UVM Transaction (do_copy, do_compare), UVM Phase

Design Patterns

© Accellera Systems Initiative 37

Behavioral

 Command

Encapsulate a request as an object, thereby letting you parameterize
clients with different requests, queue or log requests, and support
undoable operations.

UVM Usecases: UVM Sequence Item

Design Patterns

© Accellera Systems Initiative 38

Behavioral

 Strategy

Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it.

UVM Usecases: UVM Sequence, UVM Driver

Design Patterns

© Accellera Systems Initiative 39

Behavioral

 Mediator

Define an object that encapsulates how a set of objects interact. Mediator
promotes loose coupling by keeping objects from referring to each other
and it lets you vary their interaction independently.

UVM Usecases: UVM Virtual Sequencer

Design Patterns

© Accellera Systems Initiative 40

Problem:

I want to instantiate different versions of Interface protocol like USB/PCIe,
depending on the Product being used. I don’t want my environment
change when new version of Interface protocol are added.

Solution: Abstract Factory

Provides and interface for creating families of related or dependent objects
without specifying their concrete classes

Example: 1. Configurable Bus Functional Models-Polymorphic Interfaces.
2. Polymorphic Interface binding used in UVM Test harness makes block
level environment reusable at multi-block or system level verification

Environments.

Abstract Factory Pattern (Creational)

© Accellera Systems Initiative 41

Problem:

I want to build a tree structure, where objects can be leafs or other nodes
to build flexible configurable systems.

Solution: Composite Pattern

Allows you to compose objects into tree structures to represent part-
whole hierarchies. Composite lets client treat individual objects or
compositions of objects uniformly

Example: UVM Env Hierarchy, UVM Configurations.

Composite Pattern (Structural)

© Accellera Systems Initiative 42

Problem:

I have code that uses an algorithm that can change or new ones can be
added. I want to allow the algorithm to change without breaking my code.

Example: Moving from USB 2.1 to USB 3.0 or PCIe 3.0 to PCIe 4.0

Solution: Strategy Pattern

Defines a family of algorithms, encapsulates each one and makes them
interchangeable.

Strategy lets the algorithm vary independently from the system using it.

Example: 1. UVM Sequence - Protocol specific stress/congestion
scenarios.

2. UVM Driver – Conversion of Transactions into Protocol specific frame
formats at bit level.

Strategy Pattern (Behavioural)

© Accellera Systems Initiative 43

1. Design patterns : elements of reusable object-oriented software by
ErichGamma, RichardHelm, RalphJohnson, JohnVlissides

2. Flexible UVM Components: Configuring Bus Functional Models by
Gunther Clasen, Ensilica

References

Questions

© Accellera Systems Initiative 44

