
Application Optimized HW/SW Design &
Verification of a Machine Learning SoC

Lauro Rizzatti – Rizzatti LLC
Russell Klein – Mentor, A Siemens Business

Stephen Bailey – Mentor, A Siemens Business
Andrew Meier – Mentor, A Siemens Business

Agenda
§ Software to Systems - Lauro Rizzatti

§ High-Level Synthesis (HLS) – Russell Klein

§ Verification:
– Hybrid Verification – Andrew Meier
– Accelerated Verification – Stephen Bailey, John Stickley

§ Conclusion and Q & A

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
1

SOFTWARE TO SYSTEMS
Lauro Rizzatti

2

Tutorial Objective & Contents
■ This tutorial details the process of migrating an ML algorithm from generic software

to a hardware implementation customized to the specific requirements of a system

■ The migration advances through 5 steps:
– #1: Design and verify an ML algorithm to be embedded in an application specific SoC
– #2: Partition the algorithm in HW/SW and optimize it for performance/power/area in the context

of the SoC and the accompanying software stack
– #3: Verify the SoC at different levels of abstraction
– #4: Analyze the SoC for power, performance, formal and coverage at the RT level
– #5: Perform system validation via FPGA prototyping

Algorithm
Partitioning &
Optimization

Algorithm
Design Verification Analysis Validation

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
3

What Problem Do We Address?

■ Today, many embedded systems embody algorithms that were originally developed
as software applications
– Either on general purpose computers or on embedded systems

■ Migrating these algorithms to demanding applications running on embedded
systems is hitting a roadblock
– Substantial increases in compute requirements cannot be met by slow performance

enhancements of traditional embedded computing
– Power constraints defeat conventional CPU-based architectures

■ The algorithms must be accelerated in hardware
– This tutorial will describe how to achieve this objective

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
4

Many Possible Architectures
■ Algorithms are still evolving in leading edge technological domains, such as

Machine Learning, 5G and state-of-the-art Video
– What architecture is best?
– No way to try very many alternatives in RTL

■ Optimize for Power, Energy, Performance, Area
– All need to be optimized
– Finding the best trade-off is challenging
– Having a SW-driven or application-driven methodology at the start in continued use in

the flow is important
– Data movement is key

− Memory, bandwidth, and caching significantly impact all of these

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
5

Software-driven system design
Existing Approach

SoC-Driven System Design
• Design objective defined by system architect
• HW/SW partitioning planned
• Virtual platform created and validated
• Power/performance optimization based on sub-

system TB
• SW application optimized to run on HW platform

New Approach
Software-Driven System Design

• SW available at day one of project
• SW used to explore HW architecture
• Platforms evolve in parallel (HW/SW)
• SoC optimized in context of SW (power/performance)
• Pre-silicon SoC validated with SW
• Apps/benchmarks optimized for HW/SW platform

SW Platform

HW Platform

Modeling/Exploration System Integration System Validation

SoC ValidationPower AnalysisArchitectural
Analysis

Architecture Platform Hybrid Prototype

Perf AnalysisSW
Development

SW
Driven

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
6

Case-Study: Tiny YOLO V2 Algorithm
■ Our tutorial is based on “Tiny YOLO V2*”,

a low computational object recognition algorithm
implemented in the TensorFlow framework

– Tiny YOLO V2 is a 23-layer convolution neural network
that reads a small format image and detects objects within
the frame

– It executes approximately 3.2 billion multiply accumulate
(MAC) operations per inference

– It can classify 20 objects, it is well studied, and has
implementations in several machine learning frameworks

■ Tiny YOLO is used in compute constrained or power
constrained devices, such as cell phones or other devices
where computational and battery power is concerned

* See: https://pjreddie.com/darknet/yolov2/)

Tiny YOLO V2

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
7

https://pjreddie.com/darknet/yolov2/

Our Embedded SoC
■ Our over simplified SoC embeds the Tiny YOLO V2 algorithm, already

trained, a CPU, memory, interconnect and two peripherals
■ The SoC receives a feed from a video camera and outputs bounding

boxes and labels of objects classified in the input feed

Tiny YOLO V2

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
8

Our Story in Five Steps

Algorithm

Partitioning &

Optimization

Algorithm

Design
Verification Analysis Validation

• Tiny YOLO algorithm, written
in Python, executed in
TensorFlow on a desktop or
laptop as stand alone

• It inferences a camera input
and it displays processed
output on a screen
• Verify algorithm works

properly

• Manual conversion of Tiny
YOLO to C for HLS
• Target wide variety of

implementation architectures
without re-coding

• Common testbench for
different abstraction levels

• Automated creation of bus
interfaces to surrounding
system

• Block-level verification at C and
RT levels with a reusable
verification environment

• Exploiting hybrid platform to
maximize flexibility in
verification

• And, enable earliest SW
development and SW-driven
verification

• Utilize HW-assisted verification
for large dataset tests and full
SoC verification

• Early & continuous power,
performance analysis from
algorithm through full SoC

• Utilize hybrid to focus analysis
at block or broader levels

• Execute platform with same
software stack from Hybrid
platform
• Realistic Performance
• Accurate Power
• Functional Coverage

• Block-level validation in SoC
context with hybrid

• Prototype full SOC
• Enable complete SW stack

& system validation
• Using real-world stimulus

• Pre-Si Validation
• Connect to real interfaces, at

speed
• Prepare post-Si validation

environment, tests and
debug capabilities

• Speed ~ 0.4 sec/inference • Speed ~ 4 sec/inference Speed:

• 21,000 sec/inf RTL SW sim

• 10 sec/inf emulation

• 0.03 sec/inf prototype

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
9

Algorithm Partitioning
§ A quick profile of Tiny Yolo shows 5.2 billion floating point operations

are needed for an inference
§ To produce multiple inferences per second requires greater throughput

than software can deliver

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
10

Algorithm Partitioning
§ Some aspects of the algorithm need to remain in software
§ Some are appropriately targeted to hardware
§ Hardware to be created by High-Level Synthesis (HLS) can be defined in

C and linked into the larger algorithm
§ Post HLS code (RTL) can be linked into the same algorithm for

verification purposes

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
11

Yolo Tiny Example
§ Image from camera is preprocessed to scale the pixel values and resize

the image to meet the requirements of the algorithm
§ Object recognition algorithm processes the image

− Produces a table of results

§ High confidence recognitions are annotated on the image and the image
is displayed

class : car, [x,y,w,h]=[571,133,231,142], Confidence = 0.92238536775112152
class : dog, [x,y,w,h]=[266,362,261,299], Confidence = 0.86217708349227905

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
12

Yolo Tiny Python Implementation
def detect_from_cvmat(self,img):

s = time.time()
self.h_img,self.w_img,_ = img.shape
img_resized = cv2.resize(img, (416, 416))
img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB)
img_resized_np = np.asarray(img_RGB)
inputs = np.zeros((1,416,416,3),dtype='float32')
inputs[0] = (img_resized_np/255.0)*2.0-1.0
in_dict = {self.x: inputs}
net_output = self.sess.run(self.fc_19,feed_dict=in_dict)
self.result = self.interpret_output(net_output[0])
self.show_results(img,self.result)
strtime = str(time.time()-s)
if self.disp_console : print('Elapsed time : ' + strtime + ' secs' + '\n')

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
13

Verify at a Higher Level with Reusable Environment

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

maxpool

stage layer

1

2

3

4

5

6

7

8

9

1
2

3
4

5
6

7
8

9
10

11
12

13

14

15

input
tensor

x

output
tensor

o9

§ 9 stage CNN with 9 conv2d layers the first 6 of which are separated by maxpool
layers which then feed densely connected conv2d layers

§ First conv2d layer is fed an input tensor ‘x’ which is the 2-dimensional

preprocessed_image from the top level python3 test.py testbench

§ 9th stage provides recognized images in the output tensor ‘o9’ which is fed back

up to top the level test.py for post processing of the output image, with

classification and bounding box info included

§ Each conv2d layer is fed learned weights and biases for that stage

§ Where preceded by a maxpool layer, it is fed by the output of that layer,

otherwise simply the output of the preceding conv2d layer

TensorFlow
testbench

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
14

Yolo Tiny implementation with HLS inference
def detect_from_cvmat(self,img):

s = time.time()
self.h_img,self.w_img,_ = img.shape
img_resized = cv2.resize(img, (416, 416))
img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB)
img_resized_np = np.asarray(img_RGB)
inputs = np.zeros((1,416,416,3),dtype='float32')
inputs[0] = (img_resized_np/255.0)*2.0-1.0
in_dict = {self.x: inputs}

net_output = self.sess.run(self.fc_19,feed_dict=in_dict)
catapult_net_output = C_library.catapult_yolo_tiny(inputs)
self.diff(net_output, catapult_net_output)

self.result = self.interpret_output(catapult_net_output[0])
self.show_results(img,self.result)
strtime = str(time.time()-s)
if self.disp_console : print('Elapsed time : ' + strtime + ' secs' + '\n')

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
15

Replace Layers one at a Time

16
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

TensorFlow
testbench

stage layer

1

2

3

4

5

6

7

8

9

3
4

5
6

7
8

9
10

11
12

13

14

15

input
tensor

x

output
tensor

o9

conv2dHls 1
2

layer

maxpoolHls

stage

1

HLS C++
code block

1
2

conv2d
maxpool

Replace Layers one at a Time

17
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

TensorFlow
testbench

stage layer

1

2

3

4

5

6

7

8

9

3
4

5
6

7
8

9
10

11
12

13

14

15

input
tensor

x

output
tensor

o9

layerstage

HLS C++
code block

1
2

conv2d
maxpool

3
4

conv2dHls
maxpoolHls

2

Replace Layers one at a Time

18
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

TensorFlow
testbench

stage layer

1

2

3

4

5

6

7

8

9

3
4

5
6

7
8

9
10

11
12

13

14

15

input
tensor

x

output
tensor

o9

layerstage

HLS C++
code block

1
2

conv2d
maxpool

5
6maxpoolHls

3 conv2dHls

Then Replace All Layers

19
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

TensorFlow
testbench

stage layer

1

2

4

5

6

7

8

9

3
4

7
8

9
10

11
12

13

14

15

input
tensor

x

output
tensor

o9

layerstage

5
6

conv2dHls
maxpoolHls

3

HLS C++
code block

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

1

2

3

4

5

6

7

8

9

3
4

5
6

7
8

9
10

11
12

13

14

15

1
2

conv2d
maxpool

Path to Implementation
§ Once the algorithmic C is shown to match the original python, then it

can be used as a starting point for RTL development

20
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

HIGH-LEVEL SYNTHESIS
Russell Klein

21

What is High-Level Synthesis
§ Transformation of algorithm to synthesizable RTL

– Typically C, C++, or SystemC
– Handles low-level details for designer

§ Technology aware
– Understands target silicon technology or FPGA device
– Generates RTL based on technology library

and target frequency

void func (short a[N],
for (int i=0; i<N; i++) {

if (cond)
z+=a[i]*b[i];

else

RTL

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
22

Benefits of HLS
§ Improved developer productivity

– Design at a higher level of abstraction
– Automate away a lot of the detailed work in creating RTL

§ Reduced verification effort
– Verifying an abstract algorithm is much faster and easier than verifying RTL
– Prove that the resulting RTL is equivalent to the original algorithm

− HLS tools enable this with dynamic simulation and formal proofs

§ Exploration of design alternatives
– Implementing different architectures in RTL is prohibitively expensive
– At the algorithmic level it fast and easy

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
23

Design at a Higher Level
§ Generate high quality RTL from higher level descriptions

– Manual RTL coding errors and ECO’s are avoided
– Designs are correct-by-construction
– Time-consuming RTL design iterations are eliminated
– Estimate and optimize power and performance before RTL synthesis

§ Key applications designed with HLS
– Video Compression/Decompression (H.265/HEVC, VP9)
– Image processing (Mobile/4K/Ultra HD/3D)
– Wireless/Wireline (Bluetooth, 5G, 802.11 Gb optical, DOCSIS)

void func (short a[N],
for (int i=0; i<N; i++) {

if (cond)
z+=a[i]*b[i];

else

RTL

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
24

Original
Algorithm HLS RTL

Original
Testbench

Verification of RTL
§ Dynamic verification

– Common input to algorithm and RTL
– Compares output from RLT with output

from original algorithm
– Covered later

§ Formal verification
– Precise semantics and machine readable

format for algorithm and RTL
– Supports formal equivalency proof

Transactor

Transactor

Compare

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
25

Coverage and Assertions
§ Assertions and Cover Points can be put

in source C++ & SystemC
§ Assertions and cover points propagate

from source to RTL
§ Enables verification at higher level

int alu(int a, int b, uint2 opcode) {
cover(opcode==ADD);
cover(opcode==SUB);
cover(opcode==MUL);
cover(opcode==DIV);

short r;

switch(opcode) {
case ADD: r = a+b;

break;
case SUB: r = a-b;

break;
case MUL: r = a*b;

break;
case DIV: assert(b!=0);

r = a/b;
break;

}
return r;

}

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
26

+x

+
x

x

x

x

+

+

Ar
ch

ite
ct

ur
e

Co
ns

tr
ai

nt
s

Design Alternatives
§ User control over the micro-architecture implementation

– Parallelism, Throughput, Area, Latency (loop unrolling & pipelining)
– Memories (DPRAM/SPRAM/split/bank) vs Registers (Resource allocation)

§ Exploration is accomplished by applying constraints
– Not by changing the source code

int mac(
char data[N],
char coef[N]

) {
int accum=0;
for (int i=0; i<N; i++)
accum += data[i] * coef[i];

return accum;
}

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
27

HLS Optimizations
§ Automatic Arithmetic optimizations and bit-width trimming
§ Multi-objective scheduling

– Area/Latency driven datapath scheduling

§ Eliminates RTL technology penalty of I.P. reuse

for (int i=0; i<8; i++){
tmp+=a[i];

}

Technology Neutral
Description

Faster Process
Delay of a 16bit add: 0.3 ns

Latency: 1 cycles

500MHz / 2ns

FPGA or SLOW ASIC
Delay of a 16bit add: 2.1 ns

Latency: 3 cycles

250MHz / 4ns

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
28

Yolo Tiny (v2)
§ Algorithm for detecting and classifying objects in pictures

– Used on cell phones and computationally limited systems
– Over 5.2 billion floating point operations per inference
– Over 25 million weight values
– Neural network has 24 layers (full Yolo has 106) https://pjreddie.com/darknet/yolo

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
29

Yolo-Tiny Profile

30
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

What is convolution?

Source: Embedded-Vision.com

Multiply one array by
another, element by
element, and sum the
results

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
31

Convolution used in CNNs
§ Each output channel uses 2-d convolutions across all input channels

– Billions of Multiply/Accumulate operations

§ Embarrassingly parallel
OUT_CHAN:for(int oc=0;oc<OUT_CHANNELS;oc++){
IN_CHAN:for(int ic=0;ic<IN_CHANNELS;ic++){
FMAP_HEIGHT:for(int r=0;r<IN_HEIGHT;r++){
FMAP_WIDTH:for(int c=0;c<IN_WIDTH;c++){
KERNEL_Y:for(int i=0;i<3;i++){
KERNEL_X:for(int j=0;j<3;j++){
acc[r][c] += fmap[ic][r-i/2][c-j/2]

* kernel[ic][oc][i][j];
}

}
}
fmap_out[oc][r][c] = acc[r][c];

}
}

}

Pure 4-D Convolution Algorithm

Filter weights are
different for each input
/output channel

+

Each filter kernel
produces one output
pixel

Input Channels

Output Channel

Filters across all input
channels are summed
for each output
channel

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
32

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
33

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
34

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
35

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
36

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
37

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
38

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
39

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
40

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
41

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
42

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
43

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
44

TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
45

Architecture Alternatives
§ Feature map constant

– Read in each feature map, and apply all convolution kernels to it
– Requires memory large enough to hold all output channels (partial sums)

§ Output channel constant
– Complete computation for each output channel in order
– Requires memory large enough for only one output channel
– Requires re-reading feature maps

§ Tiled architecture
– Compute outputs for a region of each input feature map
– Requires even less memory, but more re-reads both feature maps and kernels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
46

Different Architectures
§ By simply reordering the loops different architectures can be created

FMAP_HEIGHT:for(int r=0;r<IN_HEIGHT;r++){
IN_CHAN:for(int ic=0;ic<IN_CHANNELS;ic++){
FMAP_WIDTH:for(int c=0;c<IN_WIDTH+1;c++){
< Read feature map data stream >
< Sliding window of feature map data >
< stationary data over output channels >
OUT_CHAN:for(int oc=0;oc<OUT_CHANNELS;oc++){
< Read kernel weights from SRAM >
KERNEL_Y:for(int i=0;i<3;i++){
KERNEL_X:for(int j=0;j<3;j++){
acc += fmap_window[i][j] * kernel[i*3+j];

}
}
< Write out partial output channel sums >

}

OUT_CHAN:for(int oc=0;oc<OUT_CHANNELS;oc++){
FMAP_HEIGHT:for(int r=0;r<IN_HEIGHT;r++){
FMAP_WIDTH:for(int c=0;c<IN_WIDTH+1;c++){
IN_CHAN:for(int ic=0;ic<IN_CHANNELS;ic++){
KERNEL_Y:for(int i=0;i<3;i++){
KERNEL_X:for(int j=0;j<3;j++){

acc+=fmap[ic][r-i/2][c-j/2]*kernel[ic][oc][i][j]
}

}
}
fmap_out[d][r][c] = acc;

}
}

}

Output Channel Constant Feature Map Constant

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
47

Synthesis considerations
§ Synthesizing “as-is” results in one multiplication per clock

– Faster than software, but does not take advantage of parallelism in the algorithm

§ The feature_map and kernels variables are mapped to memories
– Each memory can perform one read per clock cycle

§ Possible solutions
– Multi-port the memories (expensive in area, routing resources)
– Promote memories to registers (very expensive in area, power)
– Partition memories
– Map into a shift register

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
48

Shift Register

49
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Create a shift register 2 lines + 3 pixels

Shift Register

50
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Create a shift register 2 lines + 3 pixels

Shift Register

51
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Create a shift register 2 lines + 3 pixels

Shift Register

52

Create a shift register 2 lines + 3 pixels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Shift Register

53

0 1 N-1N-22

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Parallel multipliers

54

7 8 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

4 5 6

1 2 3

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Parallel multipliers

55

0 1 2

For large feature maps this can be too many registers to
be efficient. Add memories where there are no multiplier taps

11 12 13 21 22 23

1 2 3

* m
em

or
y

m
em

or
y

**

4 5 6

7 8 9

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Multi-channel Sliding Window
2-D convolution can be efficiently built by separating into vertical and horizontal sliding windowing plus
accumulation buffers

Pixel stream

Line Buffer

Line Buffer

Multi-channel Vertical Windowing

Line Buffer

Line Buffer

Line Buffer

+

*

*

*

+ +

* *

* *

* *

+

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
56

C++ Class for Processing Element (PE)
§ PE is explicitly described

in a C++ class
– Multiply-add
– Shift registers

§ Class can then be re-used
in an array

Shift registers

Multiply-add

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
57

Scalable PE Array Architecture
§ Multiply-add tree convolution can be transformed

into a chain of processing elements (PE)
– FPGA routing friendly

§ Systolic array is the simplest PE array
– Simpler interconnect and easy to understand
– There are better ones in use today (SCNN, Eyeriss, Chain)

1x3 Traditional convolution

x[2]

*h0

+ y0 y1

x[1]

*h1

+ y0 y1

x[0]

*h2

+ y0 y1
0

Data

1x3 PE Array convolution
Processing Element (PE)

Partial sum input

Shifted input

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
58

x[2]

*h0

+ y0 y1

x[1]

*h1

+ y0 y1

x[0]

*h2

+ y0 y1
0

Row(i+2)

x[2]

*h0

+ y0 y1

x[1]

*h1

+ y0 y1

x[0]

*h2

+ y0 y1
0

Row(i+1)

x[2]

*h0

+ y0 y1

x[1]

*h1

+ y0 y1

x[0]

*h2

+ y0 y1
0

Row(i)

+

Matrix of PEs
§ Multiple 1-d convolutions

– Easy, just another array of classes

Need 3 Rows
simultaneously

(windowing)
3x3 result

Array of 3 1x3 PE
convolutions , N=3

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
59

Multiple Matrices of PEs

§ Multiple output channels

produced from single input

channel

– N=64 gives 576 parallel

multiplications

– ~690 Billions ops/sec @600MHz

§ Minimal routing

congestion

§ Significantly less

memory bandwidth

required

§ Still must accumulate

partial sums in local

memory

0

Output fmap 1
0 1

43

2

5

86 7

1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

+ + +

3x3
convolution
kernel

Output fmap 2 Output fmap N

1x3 systolic
array

Input fmap 1

Partial
sum

Single input

channel

Multiple output

channels

Input channel

data is reused

3 element array of

Array of 1x3 PEs, N=64

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
60

RTL Creation
§ Once the architecture is determined, high level synthesis can be used to

create the RTL implementation of the component
– Interface synthesis creates bus connections for master and slave interfaces

§ As RTL is created it can be dynamically verified
– Stimulus can be captured from execution of Python with algorithmic C
– Reponses from RTL compared with responses from algorithmic C

61
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Replace One Layer at a Time

62
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

TensorFlow
testbench

stage layer

1

2

3

4

5

6

7

8

9

3
4

5
6

7
8

9
10

11
12

13

14

15

input
tensor

x

output
tensor

o9

stage

1

HLS C++
code block

Synthesized
conv2dHls
RTL model

RTL

C++ driver
“proxy” model

conv2d
maxpool

Replace One Layer at a Time

63
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

TensorFlow
testbench

stage layer

1

2

3

4

5

6

7

8

9

3
4

5
6

7
8

9
10

11
12

13

14

15

input
tensor

x

output
tensor

o9

stage

HLS C++
code block

conv2d
maxpool

conv2d
maxpool

2
Synthesized
conv2dHls
RTL model

RTL

C++ driver
“proxy” model

Replace One Layer at a Time

64
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

TensorFlow
testbench

stage layer

1

2

3

4

5

6

7

8

9

3
4

5
6

7
8

9
10

11
12

13

14

15

input
tensor

x

output
tensor

o9

stage

HLS C++
code block

conv2d
maxpool

conv2d
maxpool

3
Synthesized
conv2dHls
RTL model

RTL

C++ driver
“proxy” model

Replace All Layers

65
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

TensorFlow
testbench

stage layer

input
tensor

x

output
tensor

o9

stage

HLS C++
code block

Synthesized
conv2dHls
RTL model

For All
Layers

RTL
C++ driver

“proxy” model
conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

1

2

3

4

5

6

7

8

9

3
4

5
6

7
8

9
10

11
12

13

14

15

1
2

conv2d
maxpool

C++ driver
“proxy” model

Power Considerations
§ Keep data local

– Very important for ASIC

§ Floating-point is costly
– Used in training of networks
– Not needed in network inference engine

§ Doesn't need to be 2x bit-widths
– Processors are fixed bit-width

§ 8-bit integer multiplier is 27 times
smaller and uses 19 times less energy
then a 32-bit floating point multiplier

*NVIDIA 2017

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
66

Accuracy vs. Bit Width for CNN

For ResNET
– 32-bit weights improves accuracy by less than 0.1% over 8-bit weights

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Weight and Feature size

Ac
cu

ra
cy

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
67

Architectural Exploration with HLS
§ Original PE array

was sub-optimal
§ Process multiple input

channels simultaneously
– 4 PE arrays
– Better utilization of

AXI4MM bandwidth
– Reduce on-chip memory by

4x

§ Recoded in a few days
– Evaluated PPA

Input MM Output MM

RAM
0

+

RAM
1

+

RAM
N/4

+

AXI

Accumulator Buffer

AXI

0
Output fmap 1

1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

+ + +

Output fmap 2 Output fmap N/4

1x3 systolic array

0
Output fmap 1

1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

+ + +

Output fmap 2 Output fmap N/4

1x3 systolic array

0
Output fmap 1

1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

+ + +

Output fmap 2 Output fmap N/4

1x3 systolic array

0
Output fmap 1

1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

+ + +

Output fmap 2 Output fmap N/4

1x3 systolic array

FIFO x 4

Pooling Engine

FIFO
0

FIFO
1

FIFO
N/4

On-chip Buffer

RAM
0

RAM
1

RAM
N/4

/4

/4 /4

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
68

Hybrid Architecture for Lowest Power
§ Earlier layers can be processed together

– Fused layer architectures don’t need all of the feature-map data from a previous
layer to process the current layer

– Keeping the data on-chip gives much lower power consumption
– Works well for smaller number of input/output feature maps

§ Later layers need a different kind of architecture
– Large number of feature maps and weights
– PE array architectures work well

Sliding-
Window

Convolution /
Max Pooling

Sliding-
Window

Convolution/
Max Pooling

FIFO

Sliding-
Window

Convolution/
Max Pooling

…. FIFO

PE Array
Convolution/
Max Pooling

Off-chip DRAM
AXI4 stream

Weights and results

Fused-layer Architecture

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
69

VERIFICATION
From Block to Full SoC

70

Our Story in Five Steps
Algorithm

Partitioning &
Optimization

Algorithm
Design Verification Analysis Validation

• Tiny YOLO algorithm, written in
Python, executed in TensorFlow
on a desktop or laptop as stand
alone

• It inferences a camera input and
it displays processed output on a
screen
• Verify algorithm works

properly

• Manual conversion of Tiny YOLO
to C for High-Level Synthesis
• Target wide variety of

implementation architectures
without re-coding

• Common testbench for
different abstraction levels

• Automated creation of bus
interfaces to surrounding
system

• Block-level verification at C and RT
levels with a reusable verification
environment

• Exploiting hybrid platform to
maximize flexibility in verification

• And, enable earliest SW
development and SW-driven
verification

• Utilize HW-assisted verification for
large dataset tests and full SoC
verification

• Early & continuous power,
performance analysis from
algorithm through full SoC

• Utilize hybrid to focus analysis at
block or broader levels

• Execute platform with same
software stack from Hybrid
platform
• Realistic Performance
• Accurate Power
• Functional Coverage

• Block-level validation in SoC
context with hybrid

• Prototype full SOC
• Enable complete SW stack &

system validation
• Using real-world stimulus

• Pre-Si Validation
• Connect to real interfaces, at

speed
• Prepare post-Si validation

environment, tests and debug
capabilities

• Speed ~ 0.4 sec/inference • Speed ~ 4 sec/inference Speed:
• 21,000 sec/inf RTL SW sim
• 10 sec/inf emulation
• 0.03 sec/inf prototype

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
71

Progression of Verification
§ IP Block Verification at RTL
§ Earliest SW Enablement (SoC context)
§ IP Block Validation Leveraging hybrid

– Using a SW enabled flow for power and performance

§ Full SoC Verification & validation
– Focus on power & performance analysis

Power & Performance
Analysis

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
72

IP Block Validation – Peripherals
§ Objective: Ensure IP block functions

correctly in SoC context

§ Requires CPU subsystem
– RTL or Virtual (Hybrid)
– Driver/FW driven testing – the SW is key to the

SoC context

§ Environment
– ICE is typical to validate ”plugfest” level

compatibility with external world
– Virtual may be used for subset or all tests
– Post-silicon validation & debug environment

functionality

73
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Host

RTL
CPU

Peripheral
I/F

Interconnect

Creating a portable test harness reusing
environment from HLS C++ Verification

§ Object recognition is test dataset intensive verification
– Perfect application of HW-assisted to accelerate block-level RTL verification

§ Create an environment for the TensorFlow framework and its host O/S

§ Reuse the environment for the HLS C++ verification

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
74

HostTransactors

Memory

ML
Accelerator

Interconnect

RTL

TensorFlow test harness for RTL
Minimal SoC Subset for Verification

75
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

TensorFlow
“test harness”

Host

Peripheral I/F
Transactors Memory

ML
Accelerator

Interconnect

Catapult C

TLM

RTL

TensorFlow test harness for RTL

76
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

TensorFlow
“test harness”

Encapsulated(containerized)
pure TensorFlow environment

§ Runs original YoloTiny design in a
pure TensorFlow environment

§ Encapsulates entire Ubuntu 18.04
host O/S and TensorFlow
framework into a Docker container

§ This simplifies complex installation
process for AI frameworks and
makes them easily portable and
reusable among different hosts

Docker Ubuntu 18.04 container

Docker host
receptacle daemon

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
77

Test harness for TensorFlow + HLS C++validation

Docker Ubuntu 18.04 container
§ Replace original 9 stages of the

CNN algorithm with HLS
compliant C++ implementing
equivalent algorithm

§ Still test new C++ code
prototypes in the context of
original TensorFlow framework

§ Input image stream, weights loading,
and final output processing kept in
Python/TensorFlow front end

§ Pre-verify the synthesizeable
code before generating RTL
from it

Docker host
receptacle daemon

§ Reuses same Docker container
image shown previously as
portable “test harness” to
house host O/S and
Python/TensorFlow framework
along with the HLS C++
implementation

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

78

Test harness for TensorFlow + RTL validation on emulator

Docker Ubuntu 18.04 container
§ Replace original 9 stages of the

CNN algorithm with C++
coupled to RTL using
transactors

§ Validates synthesized RTL ML
core in the context of original
TensorFlow framework

§ Provides convenient platform
for power/performance
analysis of the ML core itself

Docker host
receptacle daemon

§ C++ blocks themselves become
drivers to transactors (BFMs)
running in the emulator

§ Cross-process TLM based
XlAcChannelTranactors
couple the TensorFlow and HLS
C++ remote client process with
the co-model host process and
the emulator via the TLM fabric

Emulator/FPGA proto

XlAcChannel
XlAcChannel

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

79

Progression of Verification
§ IP Block Verification at RTL
§ Earliest SW Enablement (SoC context)
§ IP Block Validation Leveraging hybrid

– Using a SW enabled flow for power and performance

§ Full SoC Verification & validation
– Focus on power & performance analysis

Power & Performance
Analysis

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
80

HW Platform

Hybrid Execution Engine

What is SW Enabled Verification?

HW Execution Engine
(Simulation, Emulation, FPGA Prototyping)

Hybrid
Platform

M
OD

EL

CP
U

BU
S

RA
M

SW Platform
(SW Stack/Baremetal)

Platform

Power
Analysis

Performance
Analysis

Benchmarks & Applications

M
OD

EL

CP
U

BU
S

RA
M

SoC
Validation

Architectural
Analysis

SW
Development

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
81

Hybrid
Platform

SW
Platform

Hybrid Verification in a SW Enabled flow

First Silicon

Software Development

Hardware Development

Drivers, boot code

3rd Party IP
RTL Designs

SoC
Validation

Power AnalysisPerformance
Analysis

Architectural
Analysis

SoC

SW

SW
Development

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
82

Progression of Verification
§ IP Block Verification at RTL

§ Earliest SW Enablement (SoC context)

§ IP Block Validation Leveraging hybrid
– Using a SW enabled flow for power and performance

§ Full SoC Verification & validation
– Focus on power & performance analysis

Power & Performance
Analysis

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
83

Hybrid Enables Mixing Abstractions
Flexibility in Verifying, Analyzing HW & Enabling SW

84

CPU

Peripheral
I/F

Peripheral
I/FMemory

ML
Accelerator

Interconnect

Host

HLS C

RTL

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Hybrid Enables Mixing Abstractions
Flexibility in Verifying, Analyzing HW & Enabling SW

85

CPU

Peripheral
I/F

Peripheral
I/FMemory

ML
Accelerator

Interconnect

Host

HLS C

RTL
ML

Accelerator

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Hybrid Platform-HLS C

86
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

CPU

Peripheral
I/F

Peripheral
I/FMemory

ML
Accelerator

Interconnect

Host

HLS C

RTL

IP Integration- HLS C

Runtime / App Lyr
Linux

Hybrid Layer

CPU/GIC/MEM

Runtime/App Lyr
Linux

Hybrid Layer

CPU/GIC/MEM

Runtime / App Lyr
Linux

CPU/GIC/MEM

SW Accelerator IP

Runtime / App Lyr
LinuxSW

CPU/GIC/MEM
HW

SW

Benchmark/App

Phase-0
Hybrid platform

Phase-1a
SW integration

Phase-1b
HW IP integration

Phase-2
Use Case

• Yolo Tiny C Application • Yolo Tiny - Catapult C
HW

• Performance analysis
• Power Analysis
• Software Development
• System Validation

HW

Hybrid Layer Hybrid Layer

Network device
Storage device
Display device
Input device

SW

SW

HW & SW
iterate

SW
iterate

HW
iterate

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
87

HLS-C is Synthesized to RTL

CPU

Peripheral
I/F

Peripheral
I/FMemory

ML
Accelerator

Host

HLS-C

RTL

Interconnect

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
88

top_a72.sv

Insertion of RTL

§ Connect Tiny Yolo RTL to Interconnect

– master port to <AXIName>M[1], to drive memory transactions

– slave port to NIC_<AXINAME>S[0] to accept CPU transactions.

Interconnect

CORTEX_ArmV8

AXINameM ⇔ AXINameM[0]

axi_memory

AXIName ⇔ AXINameS[0]

ML_accelerator

Master: AXIName ⇔ AXINameM[1] :: Slave: AXIName ⇔ AXINameS[1]

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
89

Progression of Verification
§ IP Block Verification at RTL
§ Earliest SW Enablement (SoC context)
§ IP Block Validation Leveraging hybrid

– Using a SW enabled flow for power and performance

§ Full SoC Verification & validation
– Focus on power & performance analysis

Power & Performance
Analysis

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
90

System Analyzer
§ Collects data from embedded processors during runs

– Simulation
– Emulation
– FPGA prototype

§ Collects data from hardware monitors
– User defined, SLA monitors

§ Post processing resports and views
– Standard reporting for common buses and interfaces

− Bus utilization
− Communication latencies
− Bus traffic correlated with software activity

– Transaction tracing
– Facilities for user defined reporting
– Data stored in SQL database

FPGA PROTO

EMULATION

SIMULATION

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
91

Capturing IP Performance – SW Enabled
Methodology

§ Add additional interesting metrics
– Identify data paths conducive to obtaining metrics
– Event probes, counters, triggers, trace buffers, protocol-specific bus

monitors, etc.
– Choose and place along identified paths; probe other points to capture

additional details

§ Apply stimulus
– Run applications and benchmarks
– Capture only during performance measurement window of interest via

triggers

§ Analyze
– Establish pass/fail thresholds for
– Filter results and track progress: pass/fail checks, comparisons to previous

results, etc.
– Manage results: across regressions, test categories, design changes,

configuration settings

RunRun

Choose Metrics

Instrument RTL

Run

Analyze

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
92

IP Integration w/Performance Validation
§ Measure event-based metrics

– Bus utilization
– Bus wait/stall statistics

§ Get full analysis of standard protocols
– Transaction latency over time
– Cache-state tracking
– Duration by transaction type
– Associate snoops and memory accesses

to original request
– Drill-down to individual transactions as needed

§ Monitor User-defined events
– PMU monitoring, FSMs, FIFO levels, other design

points not requiring protocol knowledge

§ Correlation between HW & Real world SW
Tiny Yolo object

Classifier

Event Performance

Protocol Performance

AXI4 Bus

Memory

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
93

Ip Integration w/Power Analysis
§ Identify design hotspots from Yolo

Tiny RTL
§ Visually drill down into design

hierarchies of concern
§ Identify mistakenly active power

domains (Power estimation + UPF)
§ Correlation of data between activity

plot and Yolo Tiny C application
running on Linux

Power
Analysis

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
94

Hybrid-Enabled Block-Level Validation
Summary

§ Applications and benchmarks optimize HW and SW together
– Performance Analysis
– Power Analysis

§ Platform evolves to deliver optimal solution
§ Enabling a software-driven design methodology
§ Bridge the discontinuity between different levels of abstraction

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
95

Progression of Verification
§ IP Block Verification at RTL
§ Earliest SW Enablement (SoC context)
§ IP Block Validation Leveraging hybrid

– Using a SW enabled flow for power and performance

§ Full SoC Verification & validation
– Focus on power & performance analysis

Power & Performance
Analysis

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
96

Host

CPU

Peripheral
I/F

Peripheral
I/FMemory

ML
Accelerator

Interconnect

HLS C

RTL

System Integration with full RTL

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
97

RTL

SoC Integration
§ Full RTL

– Although some users are moving to hybrid (almost) everything
– Leading edge of largest chips being designed

§ Objectives:
– Ensure the fully integrated SoC functions properly, at least through initialization-reset,

usually OS boot

§ Analysis of non-functional requirements
– Power
– Performance

§ Verification of DFx
Instrumentation

CPU

Peripher
al I/F

Peripher
al I/FMemory

ML
Accelerator

Interconnect

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
98

Key user requirements for power analysis
1 Power w/ Real-world Scenarios/SW:

Early power trend analysis at full SoC while running real world user scenarios and software

2 Accurate RTL/GL average and peak power:
Generate accurate average and peak power numbers in target application environment with RTL
and gate level netlist

3 Power Optimization:
Identify potential power optimization opportunities early in design cycle for architectural tradeoffs

4 Low-Power Control via HW/SW:
UPF-based low power verification with power controls coming from SW applications

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
99

Typical power app
How it works

• Design (RTL/Gate)
• Liberty file
• UPF file
• Power Stimulus

Waveform

File-based
SAIF/FSDB Power Tools Average Power

Peak Power

Streaming API Power Tools Average Power
Peak Power

Power Trend
Analysis

Activity Map

Activity Factor

Activity Plot

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

100

Complete Power Solution

Activity
Plot

Power OptimizerPower Estimator
Read API

FSDB/SAIF

Verify Design Changes

always@(posedge clk)
q<=d;

always@(posedge clk)
if(en)
q<=d;

Power tools

Billion’s of clock cycle Million’s of clock cycle Accurate power numbers Low Power RTL Edit’s

Emulator

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
101

Early Power Trend Analysis
Activity Plot

§ Activity Plot

– Generate very fast power profile for logic and memory

– Very high correlation with actual power graphs

– Identify power peaks, valleys and di/dt

– DvFS what if analysis

– Verify power domain ON/OFF via UPF

§ Enabling technology with emulation

– Capacity to handle large SoC

– 100% visibility of all the design signals

– Fast waveform upload

– Accurate modeling of power components @ RTL (clock gating, multi-bit flop,

voltage scaling, read liberty files)

– Top down GUI based power analysis

Power App

RTL or

Gate

Test

Bench

Liberty

files

withInstantiated Memories

Activity Plot

Enables very fast Power profiling at full-SoC while running very long customer scenarios

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
102

Hotspot Analysis
Activity Map

§ Identify design hotspots for representative scenarios
§ Visual drill down into design hierarchies of concern
§ Identify mistakenly active power domains (Power estimation + UPF)
§ Time synced with activity plot and waveform

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
103

YoloTiny power analysis

§ Power “hot spot” map, power activity plot
§ As cursor moves in activity plot, hot spots at that

simulation time are shown in map
§ Upper left pane shows the main yolo CNN layers

for which power activity data was captured

max_pool 0-3
layer “hot spot”
tiles

conv 0-8
layer “hot spot”
tiles

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

104

YoloTiny power analysis

§ Individual contributions are shown for highlighed modules in leftpane

YoloTiny Power Analysis

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
105

YoloTiny Power Analysis

§ Individual contributions are shown for highlighed modules in leftpane
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

106

YoloTiny power analysis

§ Individual contributions are shown for highlighed modules in leftpane
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

107

YoloTiny power analysis

§ Individual contributions are shown for highlighed modules in leftpane
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

108

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

……

YoloTiny performance analysis (System Level Analyzer)
§ Emulator and FPGA proto platforms allow massive amounts of probed

performance data collection in a relatively small amount of time
§ Non-intrusive probing into DUT using SystemVerilog’s ‘bind’ construct
§ When simulation occurs, captured probed events are efficiently directed

into an SQL database
§ Builtin collection of graphing plugins can be used to create displays of a

variety metrics and visualizations
§ Custom plugins are easy to create using standard SQL query commands

interfacing to back-end tools such as open-source data analytics,
Matlab, etc.

Emulator/FPGA proto

XlAcChannel
XlAcChannel

Event probes
Protocol probes

SQL
Probe

Database

Graphing
plugins

Custom
pluginsMatlab

modules

Open-source
data analytics

109

YoloTiny performance analysis (System Level Analyzer)

§ Customized probe events defining activity into and out of each layer can be defined
§ In this case a custom “plugin” was created to generate Matlab™ graphing plots

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

110

Pre-Si Validation – SoC’s Digital Twin

§ Bring SW to alpha release state

– Before 1st silicon

§ Validate post-Si lab setup pre-Si

– Including debug capabilities

§ Begin validation testing

– Billions of miles to validate ADAS!

– Start pre-Si

§ Use as demonstrators

– Customers

– Government regulators, …

§ Debug issues uncovered in silicon

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
111

Summary
§ In this tutorial we have shown:

– How accelerating key algorithms in HW deliver application performance
– Designing the algorithm in C++ to

− Quickly explore power, performance, area of alternative algorithmic approaches
− Verify the algorithm implemented in C++
− Use high-level synthesis to implement the accelerator in RTL

– Verified and validated the accelerator block
− Enabling SW driven system design
− Used accelerated simulation to cover deep test datasets

– Verified and validated the full SoC
− Validating power and performance of full SoC
− SoC optimized in context of SW

– We maximized reuse of block verification from C++ through RTL
− Development environments and platforms evolve to maximize reuse
− Work done at the block level, reused at SoC level

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
112

Our Story in Five Steps
Algorithm

Partitioning &
Optimization

Algorithm
Design Verification Analysis Validation

• Tiny YOLO algorithm, written in
Python, executed in TensorFlow
on a desktop or laptop as stand
alone

• It inferences a camera input and
it displays processed output on a
screen
• Verify algorithm works

properly

• Manual conversion of Tiny YOLO
to C for High-Level Synthesis
• Target wide variety of

implementation architectures
without re-coding

• Common testbench for
different abstraction levels

• Automated creation of bus
interfaces to surrounding
system

• Block-level verification at C and RT
levels with a reusable verification
environment

• Exploiting hybrid platform to
maximize flexibility in verification

• And, enable earliest SW
development and SW-driven
verification

• Utilize HW-assisted verification for
large dataset tests and full SoC
verification

• Early & continuous power,
performance analysis from
algorithm through full SoC

• Utilize hybrid to focus analysis at
block or broader levels

• Execute platform with same
software stack from Hybrid
platform
• Realistic Performance
• Accurate Power
• Functional Coverage

• Block-level validation in SoC
context with hybrid

• Prototype full SOC
• Enable complete SW stack &

system validation
• Using real-world stimulus

• Pre-Si Validation
• Connect to real interfaces, at

speed
• Prepare post-Si validation

environment, tests and debug
capabilities

• Speed ~ 0.4 sec/inference • Speed ~ 4 sec/inference Speed:
• 21,000 sec/inf RTL SW sim
• 10 sec/inf emulation
• 0.03 sec/inf prototype

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
113

CONCLUSION AND Q & A

114

