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Lauro Rizzatti — Rizzatti LLC
Russell Klein — Mentor, A Siemens Business
Stephen Bailey — Mentor, A Siemens Business
Andrew Meier — Mentor, A Siemens Business

Menior:
accellera A Siemens Business

IIIIIIIIIIIIIIIII



2020

DESIGN AND VERIFICATION™

DY O Agenda

= Software to Systems - Lauro Rizzatti
* High-Level Synthesis (HLS) — Russell Klein

= Verification:
— Hybrid Verification — Andrew Meier
— Accelerated Verification — Stephen Bailey, John Stickley

= Conclusionand Q & A

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Lauro Rizzatti

SOFTWARE TO SYSTEMS
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DV O Tutorial Objective & Contents

m This tutorial details the process of migrating an ML algorithm from generic software
to a hardware implementation customized to the specific requirements of a system

.
Algorithm

Partitioning & Verification Analysis Validation
Optimization

t

m The migration advances through 5 steps:
— #1: Design and verify an ML algorithm to be embedded in an application specific SoC

— #2: Partition the algorithm in HW/SW and optimize it for performance/power/area in the context
of the SoC and the accompanying software stack

— #3: Verify the SoC at different levels of abstraction
— #4: Analyze the SoC for power, performance, formal and coverage at the RT level
— #5: Perform system validation via FPGA prototyping

SYSTEMS INITIATIVE  Ty;torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DVLCOIN What Problem Do We Address?

m Today, many embedded systems embody algorithms that were originally developed
as software applications

— Either on general purpose computers or on embedded systems
m Migrating these algorithms to demanding applications running on embedded
systems is hitting a roadblock

— Substantial increases in compute requirements cannot be met by slow performance
enhancements of traditional embedded computing

— Power constraints defeat conventional CPU-based architectures

m The algorithms must be accelerated in hardware

— This tutorial will describe how to achieve this objective

SYSTEMS INITIATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV O Many Possible Architectures

m Algorithms are still evolving in leading edge technological domains, such as
Machine Learning, 5G and state-of-the-art Video
— What architecture is best?

— No way to try very many alternatives in RTL

m Optimize for Power, Energy, Performance, Area
— All need to be optimized
— Finding the best trade-off is challenging

— Having a SW-driven or application-driven methodology at the start in continued use in
the flow is important

— Data movement is key

- Memory, bandwidth, and caching significantly impact all of these

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DVCON Software-driven system design

Existing Approach New Approach
SoC-Driven System Design Software-Driven System Design

e Design objective defined by system architect  SW available at day one of project
HW/SW partitioning planned  SW used to explore HW architecture
* Virtual platform created and validated * Platforms evolve in parallel (HW/SW)
* Power/performance optimization based on sub- * SoC optimized in context of SW (power/performance)

system TB * Pre-silicon SoC validated with SW
 SW app|icati0n OptimiZEd to run on HW platform ° Apps/benchmarks Optimized for HW/SW platform

Modeling/Exploration System Integration System Validation

Architectural SW Perf Analysis Power Analysis SoC Validation
Analysis Development
= } | SPEED g VOV

Architecture Platform Hybrid Prototype HW Platform

SW Platform

(accellera
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Dveon Case-Study: Tiny YOLO V2 Algorithm

m Our tutorial is based on “Tiny YOLO V2*”,
a low computational object recognition algorithm
implemented in the TensorFlow framework

— Tiny YOLO V2 is a 23-layer convolution neural network N Tiny YOLO V2
that reads a small format image and detects objects within m
the frame
BJF; i [
— It executes approximately 3.2 billion multiply accumulate “ | i
B . " 3 Yl 7 7 ><|]><7
(MAC) operations per inference | . 2 — | \
- |t Can Classify 20 Objects’ it is We” Studied' and has Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer  Conn. Layer
7x7x64-52 Ix3x192 1x1x128 1x1x256 x4 1x1x512 x2 3x3x1024
implementations in several machine learning frameworks Mona MURa"™ Tanass  hawsiz swiozs oot
Moi;?;ﬂiyer M::ap:llolzaisr 10242
2x2-52 2x2-s-2
m Tiny YOLO is used in compute constrained or power
constrained devices, such as cell phones or other devices
where computational and battery power is concerned .*\
Tenso

" See: https://pireddie. lov2
acce//era See: https://pjreddie.com/darknet/yolov2/)

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DVLLOIN

CONFERENCE AND EXHIBITION

m Our over simplified SoC embeds the Tiny YOLO V2 algorithm, already
trained, a CPU, memory, interconnect and two peripherals

m The SoC receives a feed from a video camera and outputs bounding

Our Embedded SoC

boxes and labels of objects classified in the input feed

died \ N

4 )
O =

Interconnect

A

=l Peripheral Peripheral

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV Our Story in Five Steps

Algorithm
Partitioning & Verification Analysis Validation
Optimization

Algorithm
Design

* Tiny YOLO algorithm, written * Manual conversion of Tiny * Block-level verification at C and < Early & continuous power, * Block-level validation in SoC
in Python, executed in YOLO to C for HLS RT levels with a reusable performance analysis from context with hybrid
TensorFlow on a desktop or + Target wide variety of verification environment algorithm through full SoC * Prototype full SOC
laptop as stand alone implementation architectures < Exploiting hybrid platform to « Utilize hybrid to focus analysis + Enable complete SW stack

* It inferences a camera input without re-coding maximize flexibility in at block or broader levels & system validation
and it displays processed + Common testbench for verification » Execute platform with same » Using real-world stimulus
output on a screen different abstraction levels * And, enable earliest SW software stack from Hybrid * Pre-Si Validation
* Verify algorithm works » Automated creation of bus development and SW-driven platform + Connect to real interfaces, at

properly interfaces to surrounding verification * Realistic Performance speed
system + Utilize HW-assisted verification * Accurate Power * Prepare post-Si validation
for large dataset tests and full * Functional Coverage environment, tests and
SoC verification debug capabilities
» Speed ~ 0.4 sec/inference » Speed ~ 4 sec/inference Speed:

. 21,000 sec/inf RTL SW sim

. 10 sec/inf emulation
acce//er d *  0.03 sec/inf prototype

SYSTEMS INITIATIVE  Ty;torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC



2020

DESIGN AND VERIFICATION™

DV Algorithm Partitioning

= A quick profile of Tiny Yolo shows 5.2 billion floating point operations
are needed for an inference

" To produce multiple inferences per second requires greater throughput
than software can deliver

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DVCON Algorithm Partitioning

= Some aspects of the algorithm need to remain in software
= Some are appropriately targeted to hardware

* Hardware to be created by High-Level Synthesis (HLS) can be defined in
C and linked into the larger algorithm

= Post HLS code (RTL) can be linked into the same algorithm for
verification purposes

SYSTEMS INITIATIVE Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DVCON Yolo Tiny Example

" |mage from camera is preprocessed to scale the pixel values and resize
the image to meet the requirements of the algorithm

= Object recognition algorithm processes the image
— Produces a table of results

0.92238536775112152
0.86217708349227905

class : car, [x,y,w,h]=[571,133,231,142], Confidence
class : dog, [x,y,w,h]=[266,362,261,299], Confidence

* High confidence recognitions are annotated on the image and the image
is displayed

SYSTEMS INITIATIVE
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DV

Yolo Tiny Python Implementation

def detect from cvmat(self, img):
s = time.time ()
self.h img,self.w img, = img.shape
img resized = cv2.resize(img, (416, 416))
img RGB = cv2.cvtColor (img resized,cv2.COLOR BGR2RGB)
img resized np = np.asarray( img RGB )
inputs = np.zeros((1,416,416,3) ,dtype='£float32"')
inputs[0] = (img resized np/255.0)*2.0-1.0
in dict = {self.x: inputs}
net output = self.sess.run(self.fc 19,feed dict=in_dict)
self.result = self.interpret output(net output[0])
self.show results(img,self.result)
strtime = str(time.time () -s)
if self.disp console : print('Elapsed time : ' + strtime + ' secs'

+

v\nv)

SYSTEMS INITIATIVE




2020

DESIGN AND VERIFICATION™

DV

Verify at a Higher Level with Reusable Environment

CONFERENCE AND H

XHIBITION

input

tensor

output
tensor
09 «

TensorFlow
testbench
stoge ) Jpger
1 conv2d 1
maxpool 2
2 conv2d 3
maxpool 4
3 conv2d 5
maxpool 6
4 conv2d 7
maxpool 8
5 conv2d 9
maxpool 10
6 conv2d 11
maxpool 12

conv2d

conv2d

13

14

15

SYSTEMS INITIATIVE

= weight_variable{[3,3,16,321)

b2 = bias_variable{[3”]1)

h2 = tf.nn.conv2d{maxl, w2, strides=[1, 1, 1,
02 = leaky_relu{h2, relu_alpha)

n_params = n_parans + Sxix16% + *

w2
2

1, padding=

maxZ2 = max_pool_layer{oZ,kernel_size=",stride=",padding=

= 9 stage CNN with 9 conv2d layers the first 6 of which are separated by maxpool
layers which then feed densely connected conv2d layers

= First conv2d layer is fed an input tensor x” which is the 2-dimensional
preprocessed_image from the top level python3 test.py testbench

= 9th stage provides recognized images in the output tensor 09’ which is fed back
up to top the level test.py for post processing of the output image, with
classification and bounding box info included

= Each conv2d layer is fed learned weights and biases for that stage

= Where preceded by a maxpool layer, it is fed by the output of that layer,
otherwise simply the output of the preceding conv2d layer
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DVI

CONFERENCE AND EXHIBITION

Yolo Tiny implementation with HLS inference

def detect from cvmat(self,img):

s = time.time ()

self.h img,self.w_img, = img.shape

img resized = cv2.resize(img, (416, 416))

img RGB = cv2.cvtColor (img resized,cv2.COLOR_ BGR2RGB)
img:resized;np = np.asarré?( img RGB )

inputs = np.zeros((1,416,416,3) ,dtype='£float32"')
inputs[0] = (img_resized np/255.0)*2.0-1.0

in dict = {self.x: inputs}

net output = self.sess.run(self.fc_19,feed dict=in dict)
catapult net output = C_library.catapult yolo_tiny(inputs)
self.diff (net_output, catapult net output)

self.result = self.interpret output(catapult net output[0])
self.show_results(img,self.result)

strtime = str(time.time () -s)

if self.disp console : print('Elapsed time : ' + strtime + ' secs' + '\n')

SYSTEMS INITIATIVE




2020

DESIGN AND VERIFICATION™

DV Replace Layers one at a Time

TensorFlow HLS C++
input testbench code block
tensor

_SV) layer |stage layer
X o
- 1 con —— 1 conv2dHIs | 1
maxpool R maxpoolHls | 2
y \/

2 conv2d 3
maxpool | 4
3 conv2d 5
ma?ool 6
4 | _convad |7
maxpool | g
5 conv2d 9
maxpool 10
6 conv2d 11
maxpool 12

7 conv2d 13
8 14
output
tensor 9 conv2d 15

09 «
accellera

TURSHEEMSIBEATYE Optimized HW/SW Design & Verification of a Machine Learning SoC




2020

DESIGN AND VERIFICATION™

DV Replace Layers one at a Time

TensorFlow HLS C++
Input testbench code block
tensor
stage layer |stage layer
X =
1 |—conv2d | 1
maxpool 2
2 §_con = 2 | _conv2dHis | 3
maxpool | g~ maxpoolHls | 4
A \/
3 conv2d 5
maxpool 6
4 | _convad |7
maxpool | g
5 conv2d 9
maxpool 10
6 conv2d 11
maxpool 12
7 conv2d 13
8 14
output
tensor 9 conv2d 15
09 «
accellera

TURSHEEMSIBEATYE Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV Replace Layers one at a Time

TensorFlow HLS C++
Input testbench code block
tensor
stage layer |stage layer
) Qr
1 |—conv2d | 1
maxpool 2
V
2 conv2d 3
maxpool a

3§ _con 3 | _conv2dHls | 5
maxpool k maxpoolHls

N

4 | _convad |7
maxpool 8

5 conv2d 9
maxpool 10

6 conv2d 11

maxpool 12

7 13
8 14

output
tensor 15

09 «
accellera

TURSHEEMSIBEATYE Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV OIN

CONFERENCE AND EXHIBITION

Then Replace All Layers

input
tensor

X =

output
tensor
09 «

TensorFlow
testbench

layer

maxpool
¥
2 conv2d 3
maxpool a
3 conv2d 5
maxpool 6
4 |__convad |7
maxpool | g
5 conv2d 9
maxpool 10
6 conv2d 11
maxpool 12

conv2d

13

HLS C++
code block
1 conv2d
maxpool
i
2 conv2d 3
maxpool a
3 conv2dHIs | 5
maxpoolHls | g
4 | _convad |7
maxpool | g
5 conv2d 9
maxpool | 190
6 conv2d 11
maxpool 12

TuRSFEEMSIBREATE Optimized HW/SW Design & Verification of a Machine Learning SoC
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)\ Path to Implementation

" Once the algorithmic Cis shown to match the original python, then it
can be used as a starting point for RTL development

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Russell Klein

HIGH-LEVEL SYNTHESIS

accellera)

SSSSSSSSSSSSSSS
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DV O What is High-Level Synthesis
" Transformation of algorithm to synthesizable RTL istinc

— Typically C, C++, or SystemC

— Handles low-level details for designer

" Technology aware

— Understands target silicon technology or FPGA device

— Generates RTL based on technology library

and target frequency

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DVCOIN Benefits of HLS

" I[mproved developer productivity

— Design at a higher level of abstraction
— Automate away a lot of the detailed work in creating RTL

»= Reduced verification effort
— Verifying an abstract algorithm is much faster and easier than verifying RTL

— Prove that the resulting RTL is equivalent to the original algorithm
— HLS tools enable this with dynamic simulation and formal proofs

" Exploration of design alternatives
— Implementing different architectures in RTL is prohibitively expensive
— At the algorithmic level it fast and easy

SYSTEMS INITIATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV Design at a Higher Level
" Generate high quality RTL from higher level descriptions Kvstenc

short al[N], C/c++
i<N; 4

— Manual RTL coding errors and ECO’s are avoided
— Designs are correct-by-construction
— Time-consuming RTL design iterations are eliminated

— Estimate and optimize power and performance before RTL synthesis &

= Key applications desighed with HLS
— Video Compression/Decompression (H.265/HEVC, VP9)
— Image processing (Mobile/4K/Ultra HD/3D)
— Wireless/Wireline (Bluetooth, 5G, 802.11 Gb optical, DOCSIS)

accellera
24
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DV Verification of RTL

" Dynamic verification

— Common input to algorithm and RTL

— Compares output from RLT with output
from original algorithm

— Covered later

= Formal verification

— Precise semantics and machine readable
format for algorithm and RTL

— Supports formal equivalency proof

SYSTEMS INMATIVE  T\;torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Original
Testbench

Original :
Algorithm i

]

Transactor l

il

1
' Transactor l !
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Dy O Coverage and Assertions

. o int alu(int a, int b, uint2 opcode) {
= Assertions and Cover Points can be put | corestcposemmom’ = ™
cover (opcode==MUL) ;

in source C++ & SystemC cover (opeode==DIV)

= Assertions and cover points propagate | .uienopcod ¢

case ADD: r = a+b;
b k;

from Source to RTL case SUB: rr:aa—b;
break;

case MUL: r = a*b;

* Enables verification at higher level

case DIV: assert(b!=0);

r = a/b;
break;
return r;

TYPE cvg 52.7% 100 52.7% [ |
_-Fp‘ CVP cva::cvp_lz 100.0% 100 100.0% |
_-cl-_,—‘ CVP cva::cvp_vz 25.0% 100 25.0% | I
+ gl CROSS cvg::cross_lz_vz 33.3% 100 33.3% [ I
fscverify_top/riftop_vip_instfcvg_b_rsc

TYPE cvg 88.8% 100 88.8% [ H|
+- gl CVPcvg::ovp_lz 100.0% 100 100.0% |
+ gl CVPcvg:icvp_vz 100.0% 100 100.0% |
+ gl CROSS cvg::cross_lz_vz 66.6% 100 66.6% [ I

SYSTEMS INMMATIVE Ty torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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)\ Design Alternatives

= User control over the micro-architecture implementation

— Parallelism, Throughput, Area, Latency (loop unrolling & pipelining)
— Memories (DPRAM/SPRAM/split/bank) vs Registers (Resource allocation)

= Exploration is accomplished by applying constraints

— Not by changing the source code

—
~0—0-j—-

-0
~9—\
m A

int mac(
char data[N],
char coef[N]

e

) |
int accum=0; __>
for (int i=0; i<N; i++)
accum += data[i] * coef[i];
return accum;

) | -
accellera — 2
7

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV HLS Optimizations

= Automatic Arithmetic optimizations and bit-width trimming

= Multi-objective scheduling
— Area/Latency driven datapath scheduling

» Eliminates RTL technology penalty of I.P. reuse

250MHz / 4ns

c2

c3

for (int i=0; i<8; i++){
tmp+=a[i];

Technology Neutral

Description

FPGA or SLOW ASIC
Delay of a 16bit add: 2.1 ns

Lat :3 |
acce//er d atency: 3 cycles

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

‘500MHz | 2ns R

1
B
. -

Faster Process
Delay of a 16bit add: 0.3 ns
Latency: 1 cycles

28
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DV O Yolo Tiny (v2)

= Algorithm for detecting and classifying objects in pictures
— Used on cell phones and computationally limited systems
— Over 5.2 billion floating point operations per inference
— Over 25 million weight values
— Neural network has 24 layers (full Yolo has 106)

n2
).
= Ll
ng‘[ 1445 7 7 >< >< 7
n2 56 28 ,‘J \ J 7
= 4 7

192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers  Conn. Layer  Conn. Layer
7x7x64-52 3x3x192 1x1x128 1x1x2561 ., 1x1x512 1.5 3x3x1024
Maxpool Layer  Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x252 2x2-52 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-52
Maxpool Layer  Maxpool Layer
2x2-52 2x2-5-2

Conv. layer
3x3x32

Conv. layer Conv. layer Conv. layer

3x3x16 3x3x64 3x3x256
Maxpool Layer Maxpool Layer Maxpool Layer Conv. layer
VoioTE 2x2-s-2 2x2-s-2 2x2-5-2 Conv. layer Conv. layer Conv. layer
Y 3x3x1024 3x3x1024 3x3x1024

Conv. layer Conv. layer

3x3x128 3x3x512
Maxpool Layer Maxpool Layer
2x2-5-2 2x2-5-2

SYSTEMS INITIATIVE  Ty;torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV Yolo-Tiny Profile

filters
conv 16

[

l—-l
]
v
m
H
RWHEWONWNWNWNWNWNWN

m

input
416
416
208
208
104
104
52
52
26
26
13
13
13
13
13
13

416
416
208
208
104
104
52
52
26
26
13
13
13
13
13
13

0.150 BFLOPs

:

conv 32 0.399 BFLOPs

:

conv 64 0.399 BFLOPs

:

conv 128 0.399 BFLOPs

:

conv 256 0.399 BFLOPs

ok wiEF O

conv 512 0.399 BFLOPs

DD BB MMM OM MM MMM
P00 DB DM MMM MMM

conv 1024
conv AT
conv 512
conv 255
yolo

route 13
conv 128 13 13 0.011 BFLOPs
upsample 13 13 128

route 19 8

conv 256 26 26 384 1.196 BFLOPs
conv 255 26 26 256 0.088 BFLOPs
yolo

Loading weights from .weights...Done!
accellera

SYSTEMS INITIATIVE

1.595 BFLOPs
0.089 BFLOPs
0.399 BFLOPs
0.044 BFLOPs

BB MM M M M MMMMNMNMNMNMNNL
PREPRPRERENREPNREPNRPNRPNE
P8 B0 D0 D BB MMM MMM MMM
B R E R EEEREEREEREERE BN

NN NN NN NN NSNS

3
2
3
2
3
2
3
2
3
2
3
2
3
1
3
1

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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=i sials What is convolution?

Center element of the kernel is placed over the (0 X 0)
source pixel. The source pixel is then replaced

with a weighted sum of itself and nearby pixels. :g : ?;
(0x1)
) (0x0)
Source pixel (0% 1)
+ (-4x2)
-8 Multiply one array by
another, element by
e element, and sum the
i, i ; results
= :
Convolution kernel
(emboss) ]
Source: Embedded-Vision.com ' ol

(accellera

SYSTEMS INITIATIVE

New pixel value (destination pixel)

>
-?®
-

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DVLOIN

CONFERENCE AND EXHIBITION

Convolution used in CNNs

* Each output channel uses 2-d convolutions across all input channels

— Billions of Multiply/Accumulate operations

" Embarrassingly parallel

Each filter kernel
produces one output
pixel

Input Channels

Output Channel

Pure 4-D Convolution Algorithm

Filter weights are
different for each input
/output channel

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

OUT_CHAN: for (int oc=0;0c<OUT_CHANNELS;oc++) {
IN CHAN:for(int ic=0;ic<IN_CHANNELS;ic++) {
FMAP HEIGHT:for (int r=0;r<IN_HEIGHT;r++) {
FMAP WIDTH:for (int c=0;c<IN_WIDTH;c++) {
KERNEL Y:for(int i=0;i<3;i++) {
KERNEL X:for (int j=0;3j<3;j++) {
acc[r] [c] += fmap[ic][r-i/2][c-3/2]
* kernel[ic] [oc][1][]]:;
}
}
}
fmap out[oc] [r] [c] = acc[r][c];
}
}
}

32
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DV TensorFlow 2d convolution

SYSTEMS INITIATIVE

N —-E/// L
< T L]
| 1
- L I
~ - \ >
~l_ —— \"f

Output channels

Kernels
Feature Maps

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV TensorFlow 2d convolution

SYSTEMS INITIATIVE

Output channels

Kernels
Feature Maps

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV TensorFlow 2d convolution

SYSTEMS INITIATIVE

Output channels

Kernels
Feature Maps

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV TensorFlow 2d convolution

SYSTEMS INITIATIVE

Output channels

Kernels
Feature Maps

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV TensorFlow 2d convolution

SYSTEMS INITIATIVE

Output channels

Kernels
Feature Maps

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV TensorFlow 2d convolution

SYSTEMS INITIATIVE

Output channels

Kernels
Feature Maps

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV TensorFlow 2d convolution

SYSTEMS INITIATIVE

Output channels

Kernels
Feature Maps

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV TensorFlow 2d convolution

SYSTEMS INITIATIVE

Output channels

Kernels
Feature Maps

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

40



2020

DESIGN AND VERIFICATION™

DV TensorFlow 2d convolution

SYSTEMS INITIATIVE

Output channels

Kernels
Feature Maps

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV TensorFlow 2d convolution

SYSTEMS INITIATIVE

Output channels

Kernels
Feature Maps

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV TensorFlow 2d convolution

SYSTEMS INITIATIVE

Output channels

Kernels
Feature Maps

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DVLLOIN

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

ZE

Kernels
Feature Maps

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

TensorFlow 2d convolution

Output channels
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DV TensorFlow 2d convolution

[ e ‘\ 7
\ Z
= \
\ ul

Output channels

Kernels
Feature Maps

accellera
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DVLCOIN Architecture Alternatives

= Feature map constant

— Read in each feature map, and apply all convolution kernels to it
— Requires memory large enough to hold all output channels (partial sums)

= Qutput channel constant
— Complete computation for each output channel in order
— Requires memory large enough for only one output channel
— Requires re-reading feature maps

= Tiled architecture
— Compute outputs for a region of each input feature map
— Requires even less memory, but more re-reads both feature maps and kernels

SYSTEMS INITIATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DVLLOIN

CONFERENCE AND EXHIBITION

Different

Architectures

= By simply reordering the loops different architectures can be created

Output Channel Constant

Feature Map Constant

OUT_ CHAN: for (int oc=0;oc<OUT_CHANNELS;oc++)
FMAP HEIGHT:for (int r=0;r<IN_HEIGHT;r++) {

i::><::::_————‘L
FMAP WIDTH:for (int c=0;c<IN WIDTH+1;c++) {

FMAP HEIGHT:for (int r=0;r<IN HEIGHT;r++) {
IN CHAN:for(int ic=0;ic<IN_CHANNELS;ic++) {
FMAP WIDTH:for(int c=0;c<IN WIDTH+1;c++) {

n

IN CHAN:for (int ic=0;ic<IN_CHANNELS;ic++){—”>*<:::
KERNEL Y:for(int i=0;i<3;i++) {
KERNEL X:for (int j=0;3j<3;j++) {
acc+=fmap[ic] [r-1/2] [c-j/2] *kernel[ic] [oc] [1i][]]
}
}
}
fmap out[d] [r] [c]
}

acc;,

»

S

< Read feature map data stream >
< Sliding window of feature map data >
< stationary data over output channels >
OUT_CHAN: for (int oc=0;0c<OUT_CHANNELS;oc++) {
< Read kernel weights from SRAM >
KERNEL Y:for(int i=0;i<3;i++) {
KERNEL X:for (int j=0;3j<3;]j++) {
acc += fmap window[i] []J] * kernel[i*3+j];
}
}

< Write out partial output channel sums >

}

SYSTEMS INITIATIVE
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DVCON Synthesis considerations

" Synthesizing “as-is” results in one multiplication per clock

— Faster than software, but does not take advantage of parallelism in the algorithm

" The feature_map and kernels variables are mapped to memories

— Each memory can perform one read per clock cycle

" Possible solutions
— Multi-port the memories (expensive in area, routing resources)
— Promote memories to registers (very expensive in area, power)
— Partition memories

— Map into a shift register

SYSTEMS INITIATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV Shift Register

CONFERENCE AND EXHIBITION
RS T P e s e |
““}J TED STA

Create a shift register 2 lines + 3 pixels

7

(accellera

-
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DV Shift Register

CONFERENCE AND EXHIBITION

Create a shift register 2 lines + 3 pixels

(accellera)
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DV Shift Register

CONFERENCE AND EXHIBITION

Create a shift register 2 lines + 3 pixels

(accellera)
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DV Shift Register

CONFERENCE AND EXHIBITION

Create a shift register 2 lines + 3 pixels

(accellera)
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CONFERENCE AND EXHIBITION

DV Shift Register

regs[@] = new_value;

#pragma hls loop_unroll
for (i=N-1; 1i>0; i++) { 0 1
regs[i] = regs[i-1]; > >

}

SYSTEMS INITIATIVE  Ty;torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DVCON Parallel multipliers

AR RERERNES
OO OO O OO

1123 4 | 516 71819

accellera
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DV Parallel multipliers

CONFERENCE AND EXHIBITION

For large feature maps this can be too many registers to
be efficient. Add memories where there are no multiplier taps

0 1 (2 [=———> _ =l 11 | 12 [ 13 [y _ —l 21 | 22 | 23
o6 | oo | ooe
11213 4 [ 5] 6 71819

accellera
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DV Multi-channel Sliding Window

2-D convolution can be efficiently built by separating into vertical and horizontal sliding windowing plus
accumulation buffers

Multi-channel Vertical Windowing

Line Buffer

Line Buffer

Line Buffer

Line Buffer

Pixel stream >

II —_— I-»I-»I

Line Buffer
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DV OIN

CONFERENCE AND EXHIBITION

" PE is explicitly described
in a C++ class
— Multiply-add
— Shift registers

= (Class can then be re-used
In an array

_, ,ﬁ 1

o @ m

SYSTEMS INITIATIVE

template<typename TO, typename T1, typename T2, int W>

class pe class{
private:

T0 x0;

T2 y0O,yl1;

T1 h;

vld struct vldo,vldl;
public:

C++ Class for Processing Element (PE)

pe_class():x0(0),y0(0),y1(0),vldo(0),vld1(0){};

/Building the PE element as a CCORE
#pragma hls_design interface ccore

void CCS_BLOCK(runm) (ac_int<W,false> &xh_in, vld_struct vld_in, T2 &

in,

ac_int<W,false> &x_out, T2 &y _out, vld _struct &vld _out, bool 1d){

TO x_1n;

x_in.set_slc(0,xh_in.template slc<T0::width>(0));//weight and data sent

if(1d){//Load weight

h.set_slc(0,xh_in.template slc<Tl::width>(0));//slice

x_out = xh_in;//forward weight
}else{//Run pe

vld out.d vld = vldo.d vld;
vld_out.s_vld = vldl.s_vld;

Shift registers vldl = vldo;//shift valid bits
vldo = vld_in;
y_out = yl;

yl = y0;//shift partial sum
yOo = x0 * h + y_1in;
x_out = x0;

x0 = x_1in;//shift 1nput map daf

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

read weight

Multiply-add
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DV Scalable PE Array Architecture
= Multiply-add tree convolution can be transformed 13 Traditional comvolution
into a chain of processing elements (PE) L) & o
— FPGA routing friendly | | |
» Systolic array is the simplest PE array “ © ©
— Simpler interconnect and easy to understand ? o

— There are better ones in use today (SCNN, Eyeriss, Chain)

Processing Element (PE) 1x3 PE Array convolution

Data — ¥ L =
ho —>e_|‘°—v hl [—» 9_|_°—v
) OB B o g QB B

[N
N
sccellr .
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DV OIN

CONFERENCE AND EXHIBITION

Matrix of PEs

= Multiple 1-d convolutions

— Easy, just another array of classes

Need 3 Rows

simultaneously
(windowing)

accellera)

template<typename TO, typename T1l, typename T2, int W, int N>

class pe_array_classn{
pe_array_class<T0,T1,T2,W,3> pe_array[N];
ac_array<ac_int<W,false>,N> 1fmap_kernel_i;

Array of 3 1x3 PE
convolutions, N=3

Row(i) —|

Row(i+1) —

Row(i+2) —

SYSTEMS INITIATIVE  Ty;torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV OIN

CONFERENCE AND EXHIBITION

Multiple output channels
produced from single input
channel

N=64 gives 576 parallel
multiplications

— ~690 Billions ops/sec @600MHz

Minimal routing

Multiple Matrices of PEs

template<typename T0, typename T1l, typename T2, int W, int N, int WIDTH>

class pe_array_3x3xN{
pe_array_ctassNdo,Il,Iz,w,N> pe_array([3];
ac_array<T2,3,N> ofmap_psum_o;

Single input

channel

3 element array of

Array of 1x3 PEs, N=64

Input channel

data is reused

Multiple output

channels

congestion

Significantly less
memory bandwidth
required

Still must accumulate
partial sums in local
memory

Input fmap 1
1]2

3[4 ]5]
e

|

3x3
convolution
kernel

< g

Output fmap 1

opoBe’ BoB

B

oo

1x3 S\I/stolic
array

Output fmap 2

BB

B

YoV

1-8.8
oo

Output fmap N

B-B-B—

!l
4

accellera)
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DVLCCIN RTL Creation

®" Once the architecture is determined, high level synthesis can be used to
create the RTL implementation of the component
— Interface synthesis creates bus connections for master and slave interfaces

" As RTL is created it can be dynamically verified

— Stimulus can be captured from execution of Python with algorithmic C
— Reponses from RTL compared with responses from algorithmic C

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

61



2020

DESIGN AND VERIFICATION™

DVLOIN

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Replace One Layer at a Time

RTL

~

Synthesized
conv2dHIs
RTL model

.

J

TensorFlow HLS C++ Ve
LIS testbench code block
tensor
i% layer [stage
X
1 conm/ 1 | Ct+driver
maxpool |~ “proxy” modell A
y
2 conv2d 3
maxpool | g4
3 conv2d 5
ma?ool 6
4 conv2d 7
maxpool 8
5 conv2d 9
maxpool | 10
6 conv2d 11
maxpool | 12
7 conv2d 13
output I 8 conv2d 14
tensor
09 15
<

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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BRI Replace One Layer at a Time

CONFERENCE AND EXHIBITION

TensorFlow HLS C++
input testbench code block
tensor
i% layer |stage
X =
. 1 conv2d RTI_
maxpool
Synthesized
2 |__con 3 2 ,,p‘r:;;yfrr';’s;el P conv2dHls
g, 1501 RTL model
3 conv2d 5 |
maxpool 6 )
4 | _convad |7
maxpool 8
5 conv2d 9
maxpool | 10
6 conv2d 11
maxpool 12
7 conv2d 13
Output‘ I 8 conv2d 14
tensor
09 15
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BRI Replace One Layer at a Time

CONFERENCE AND EXHIBITION

TensorFlow HLS C++
input testbench code block
tensor
i% layer |stage
X =
- T | conv2d
maxpool
¥ ™
2 | convad |3
maxpool 4 RTI'
) Synthesized
3 | _con ’\'5 3| & ﬁ'”"e; P conv2dHIs
| proxy” mode
—r—J 6 RTL model
4 conv2d 7
maxpool | g y
|
5 conv2d 9
maxpool 10
¥
6 conv2d 11
maxpool 12
D- 7 conv2d 13
i oufb’lk.l‘ih:" i 8 conv2d 14
tensor
09 15
<
accellera

SYSTEMS INMATIVE  T\;torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC



2020

DESIGN AND VERIFICATION™

DVLOIN

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Replace All Layers

s

RTL

~

TensorFlow HLS C++
LIS testbench code block
tensor
itag/'] layer |stag
X m—
- L”d—"t C++ driver
maxpool 2 “proxy” model
i
2 conv2d 3
maxpool a
A 4
3 conv2d 5
maxpool 6
4 | _convad |7
maxpool | g
5 conv2d 9
maxpool 10
6 conv2d 11
: s, maxpool 12
| output
tensor ’ C++ driver

09 9 cony2d 15

“proxy” model

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Synthesized
conv2dHIs
RTL model

For All
Layers
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DV Power Considerations

u Keep data local Normalized Energy Cost’
. ALU 1x (Reference)
Very important for ASIC o510 ] .
" Floating-point is costly NoC: 200 - 1000 PEs [ PE ALU
— Used in training of networks s ALY

— Not needed in network inference enginc

= Doesn't need to be 2X bit-widths

*NVIDIA 2017

Cost of Operations

— Processors are fixed bit-width ] O gy e A Con
= 8-bit integer multiplier is 27 times e o
. 32b FP Add 09 |
smaller and uses 19 times less energy o
then a 32-bit floating point multiplier =5 — oo
32b DRAM Read ss0 | N/A

10 100 1000 10000 1 10100 1000

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DVLLOIN

CONFERENCE AND EXHIBITION

Accuracy vs. Bit Width for CNN

120

100

80

60

Accuracy

40

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Weight and Feature size

For ResNET

— 32-bit weights improves accuracy by less than 0.1% over 8-bit weights

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DY O Architectural Exploration with HLS

= QOriginal PE array
was sub-optimal

Ja—»{ FIFOx 4 —/4

" Process multiple input
channels simultaneously
— 4 PE arrays

— Better utilization of
AXIAMM bandwidth

— Reduce on-chip memory by
4x

éﬁgﬁ?ﬂ%ﬁgéii

= Recoded in a few days
— Evaluated PPA

accellera) .
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RVEDL Hybrid Architecture for Lowest Power

= Earlier layers can be processed together

— Fused layer architectures don’t need all of the feature-map data from a previous
layer to process the current layer

— Keeping the data on-chip gives much lower power consumption
— Works well for smaller number of input/output feature maps

= Later layers need a different kind of architecture
— Large number of feature maps and weights

— PE array architectures work well
Fused-layer Architecture

Sliding- Sliding-

Sliding-
cing Window Window

PE Array

Window Convolution/

Convolution/ Convolution/

Convolution / Max Pooling Max Pooling

Max Pooling

Max Pooling

‘ Weights and results

AXIl4 stream
Off-chip DRAM

accellera _ )
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DV OIN

From Block to Full SoC

VERIFICATION

wle) m

SYSTEMS INITIATIVE
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DV OIN

CONFERENCE AND EXHIBITION

Algorithm
Design

* Tiny YOLO algorithm, written in
Python, executed in TensorFlow
on a desktop or laptop as stand

alone

* Itinferences a camera input and
it displays processed output on a

screen
* Verify algorithm works

properly

* Speed ~ 0.4 sec/inference

Our Story in Five Steps

Algorithm
Partitioning &
Optimization

Verification

* Manual conversion of Tiny YOLO

to C for High-Level Synthesis

e Target wide variety of
implementation architectures
without re-coding

* Common testbench for
different abstraction levels

* Automated creation of bus
interfaces to surrounding
system

* Speed ~ 4 sec/inference

Block-level verification at C and RT
levels with a reusable verification
environment

Exploiting hybrid platform to
maximize flexibility in verification
And, enable earliest SW
development and SW-driven
verification

Utilize HW-assisted verification for
large dataset tests and full SoC
verification

SYSTEMS INITIATIVE  Ty;torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Analysis

Early & continuous power,
performance analysis from
algorithm through full SoC
Utilize hybrid to focus analysis at
block or broader levels
Execute platform with same
software stack from Hybrid
platform

* Realistic Performance

* Accurate Power

* Functional Coverage

Speed:

. 21,000 sec/inf RTL SW sim
. 10 sec/inf emulation

*  0.03 sec/inf prototype

Validation

¢ Block-level validation in SoC

context with hybrid

* Prototype full SOC

* Enable complete SW stack &
system validation
* Using real-world stimulus

¢ Pre-Si Validation

e Connect to real interfaces, at
speed

* Prepare post-Si validation
environment, tests and debug
capabilities
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DVCOn: Progression of Verification
= |P Block Verification at RTL Power & Performance
Analysis

= Earliest SW Enablement (SoC context) T

= |P Block Validation Leveraging hybrid

— Using a SW enabled flow for power and performance

= Full SoC Verification & validation
— Focus on power & performance analysis

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DV O IP Block Validation — Peripherals

= (QObjective: Ensure IP block functions
correctly in SoC context

= Requires CPU subsystem

— RTL or Virtual (Hybrid)

— Driver/FW driven testing — the SW is key to the
SoC context

" Environment

— ICE is typical to validate "plugfest” level
compatibility with external world

— Virtual may be used for subset or all tests
— Post-silicon validation & debug environment

functionality

SYSTEMS INITIATIVE

&

D

CPU

Interconnect

( )
Peripheral

|/F

. J

Host

RTL




NNNNNNNN -.222. Creating a portable test harness reusing
°°°°°°°°°°°°°°°°°°°°°°° environment from HLS C++ Verification

" Object recognition is test dataset intensive verification
— Perfect application of HW-assisted to accelerate block-level RTL verification

= Create an environment for the TensorFlow framework and its host O/S

= Reuse the environment for the HLS C++ verification

accellera
74
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CONFERENCE AND EXHIBITION

Minimal SoC Subset for Verification

ML
Accelerator

TensorFlow
“test harness”

Transactors Host

RTL

Interconnect

SYSTEMS INITIATIVE
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DV

CONFERENCE AND EXHIBITION

TensorFlow
“test harness”

SYSTEMS INITIATIVE

TensorFlow test harness for RTL

Host
Catapult C
ML TLM
Accelerator
RTL

Interconnect

r"----\

" Peripheral I/F
] Transactors I

\-----,
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cecieior  ENCapsulated(containerized)
pure TensorFlow environment

DVLLOIN

CONFERENCE AND EXHIBITION

® Runs original YoloTiny design in a
pure TensorFlow environment

" Encapsulates entire Ubuntu 18.04
host O/S and TensorFlow
framework into a Docker container

" This simplifies complex installation
process for Al frameworks and
makes them easily portable and
reusable among different hosts

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Docker host

docker

receptacle daemon

/\

gjf Docker Ubuntu 18.04 container

input

TensorFlow
testbench

layer

= tensor
X —

1 convad

1

max

pool

2

2 conv2d

max

pool

3 conv2d

max

pool

4 convad

0 [ ]

max

pool

5 convad

max

pool

6 con

v2d

11

max

pool

12

7 con

8 con

9 con

y
v2d
v2d

v2d

13

14

15

77



Test harness for TensorFlow + HLS C++validation

2020

DESIGN AND VERIFICATION™

DVLOIN

CONFERENCE AND EXHIBITION

Replace original 9 stages of the
CNN algorithm with HLS
compliant C++ implementing
equivalent algorithm

Still test new C++ code
prototypes in the context of
original TensorFlow framework

" |nput image stream, weights loading,
and final output processing kept in
Python/TensorFlow front end

Pre-verify the synthesizeable

code before generating RTL

from it

SYSTEMS INITIATIVE

Docker host

docker

receptacle daemon

/\

&> Docker Ubuntu 18.04 container

docker

input

TensorFlow
testbench

HLS C++

code block

tensor
09 «

tensor
g _ﬂ--_,

i

Pre-processing

= Pre-processing of
data input,
weights, biases

= Assembling inputs
into AcChannel
stream to feed
synthesizeable
algorithm

9-stage CNN
= Synthesizeable
hardware
implementation-
targeted 9-stage
CNN algorithm

|

Post-processing

= Post-processing of
data output from
AcChannel stream

= Re-format to go
back to Tensorflow
testbench

9-stage breakout

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Reuses same Docker container
image shown previously as
portable “test harness” to
house host O/S and
Python/TensorFlow framework
along with the HLS C++
implementation
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Test harness for TensorFlow + RTL validation on emulator

2020
DESIGN AND VERIFICATION™
QM&QBM D°Ckfr:°5t " C++ blocks themselves become
receptacie daemon .
docker y drivers to transactors (BFMs)
/\ . running in the emulator
d*k Docker Ubuntu 18.04 container
" Replace original 9 stages of the "  Cross-process TLM based
CNN algorithm with C++ TensorFlow HLS C++ X1AcChannelTranactors
input
coupled to RTL using tensor ﬁmeh % block couple the TensorFlow and HLS
transactors . S TS5 Preprocessing C++ remote client process with
. . | ’ bommmmed e the co-model host process and
" Validates synthesized RTL ML e h lator vi thp TLM fabr
. . : o e emulator via the abric
core in the context of original P i
stream to feed
TensorFlow framework synthesizeable
algorithm
/ Emulator/FPGA proto \
i : .
Provides convenient platform S stags CNN pm=———— N\
for power/performance e e = : ML
‘ . model = 1 Transactors 1 Accelerator
analysis of the ML core itself K <
| Interconnect ||
l .
Post-processing
®= Post-processing of Memory

data output from
AcChannel stream k S )
= Re-format to go

' output back to Tensorflow
tensor testbench

| LR 09 «
dac ce//er d B ' 9-stage breakout 79
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DVCOn: Progression of Verification
" |P Block Verification at RTL Power & Performance
Analysis

= Earliest SW Enablement (SoC context) T

= |P Block Validation Leveraging hybrid

— Using a SW enabled flow for power and performance

= Full SoC Verification & validation
— Focus on power & performance analysis
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DVLOIN

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Hybrid
Platform

\_ J

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

What is SW Enabled Verification?

Architectural
Analysis

Performance Power SoC SW
GEISS Analysis Validation Development
‘ — — |
i | :
A T S ——

Benchmarks & Applications

[ﬁ[
SW Platform oL

(SW Stack/Baremetal)

Hybrid Execution Engine

HW Execution Engine
(Simulation, Emulation, FPGA Prototyping)
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DV OIN

RVEDL Hybrid Verification in a SW Enabled flow

Architectural SW
Analysis

Performance
Development Analysis

e e
i =

RS P

A
SPEED

Power Analysis SoC

Validation

Software Development

SW
Platform

Hybrid
Platform

Hardware Development

SYSTEMS INITIATIVE  Ty;torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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DVCOn: Progression of Verification
" |P Block Verification at RTL Power & Performance
Analysis

= Earliest SW Enablement (SoC context) T

= |P Block Validation Leveraging hybrid

— Using a SW enabled flow for power and performance

= Full SoC Verification & validation
— Focus on power & performance analysis
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DV

CONFERENCE AND EXHIBITION

Hybrid Enables Mixing Abstractions
Flexibility in Verifying, Analyzing HW & Enabling SW

SYSTEMS INITIATIVE

’/

/ \ Host
4 h - R HLS C
ML
CPU Accelerator RTL
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Interconnect
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DVECIN IP Integration- HLS C

Phase-0 Phase-1a Phase-1b Phase-2
Hybrid platform SW integration HW IP integration Use Case
{ SW { HW { HW & SW
7~\ 7~ iterate 7~ iterate ~\" iterate
)\ 4 )\ 4 )\ 4 )\ 4
Benchmark/App
* Yolo Tiny C Application * Yolo Tiny - Catapult C
*  Performance analysis
*  Power Analysis
* Software Development
e System Validation /
Runtime / App Lyr Runtime/App Lyr Runtime / App Lyr Runtime / App Lyr l
Linux Linux sw Linux SW Linux SwW
_ | Hybrid Layer I | Hybrid Layer I Hybrid Layer
CPU/GIC/MEM Network device
CPU/GIC/MEM CPU/GIC/MEM Storage device
HW Display device
Input device
CPU/GIC/MEM

HW

@ccellra)
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DVCON HLS-C is Synthesized to RTL
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Insertion of RTL

= Connect Tiny Yolo RTL to Interconnect

— master port to <AXIName>M|[1], to drive memory transactions
— slave port to NIC_<AXINAME>S[0] to accept CPU transactions.

top_a72.sv

.AWREADYM (AWREADYM[O]),
.AWVALIDM (AWVALIDM[O]),
. AWIDM AWIDM[O

ML_accelerator

BAWREADYMO (AWREADYM[1]), AWREADYS
.AWADDRMO (AWADDRM[1]), AWADDRS
. AWLENMO (AWLENM[1]), AWLENS

Interconnect

.AWID ( AwIDS[O] ),
.AWADDR ( AWADDRS[O] ),
.AWLEN ( AWLENS[0] ),

(NIC AWREADYS[O]),

(NIC AWADDRS[O]),
(NIC AWLENS[O]),

Master: AXIName & AXINameM[1] :: Slave: AXIName < AXINameS[1]

accellera)
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DV O Progression of Verification
" |P Block Verification at RTL Power & Performance
Analysis

= Earliest SW Enablement (SoC context) i

= |P Block Validation Leveraging hybrid

— Using a SW enabled flow for power and performance

= Full SoC Verification & validation
— Focus on power & performance analysis

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Collects data from embedded processors during runs

— Simulation
— Emulation
— FPGA prototype

Collects data from hardware monitors

— User defined, SLA monitors

Post processing resports and views
— Standard reporting for common buses and interfaces

— Bus utilization
- Communication latencies

- Bus traffic correlated with software activity

— Transaction tracing

— Facilities for user defined reporting

— Data stored in SQL database

System Analyzer

Je? - e 0uren.

R e R 1 S S

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

SIMULATION

EMULATION

FPGA PROTO
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Methodology

= Add additional interesting metrics
— ldentify data paths conducive to obtaining metrics

— Event probes, counters, triggers, trace buffers, protocol-specific bus
monitors, etc.

— Choose and place along identified paths; probe other points to capture
additional details

= Apply stimulus
— Run applications and benchmarks

— Capture only during performance measurement window of interest via
triggers

= Analyze
— Establish pass/fail thresholds for

— Filter results and track progress: pass/fail checks, comparisons to previous
results, etc.

— Manage results: across regressions, test categories, design changes,

configuration settings
accellera

SYSTEMS INMATIVE  Ttorjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Choose Metrics

Instrument RTL

y 3

Run

‘ Analyze
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DVCON |P Integration w/Performance Validation

Event Performance ‘
l Protocol Performance ‘
AXl4 Bus
© © ©0 0o
Memory Tiny Yolo object
Classifier

SYSTEMS INITIATIVE

Measure event-based metrics
— Bus utilization
— Bus wait/stall statistics

Get full analysis of standard protocols
— Transaction latency over time
— Cache-state tracking
— Duration by transaction type

— Associate snoops and memory accesses
to original request

— Drill-down to individual transactions as needed

Monitor User-defined events

— PMU monitoring, FSMs, FIFO levels, other design
points not requiring protocol knowledge

Correlation between HW & Real world SW

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Power

2020 A
DYCON Ip Integration w/Power Analysis =
» |dentify design hotspots from Yolo e ‘ I

Tiny RTL ‘

= Visually drill down into design
hierarchies of concern

» |dentify mistakenly active power
domains (Power estimation + UPF)

= Correlation of data between activity
plot and Yolo Tiny C application
running on Linux

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC




NNNNNNNN o' 8040, Hybrid-Enabled Block-Level Validation

Summary
= Applications and benchmarks optimize HW and SW together

— Performance Analysis
— Power Analysis

= Platform evolves to deliver optimal solution
" Enabling a software-driven design methodology

" Bridge the discontinuity between different levels of abstraction

accellera
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DVCON Progression of Verification
= |P Block Verification at RTL Power & Performance
Analysis

= Earliest SW Enablement (SoC context) T

= |P Block Validation Leveraging hybrid

— Using a SW enabled flow for power and performance

= Full SoC Verification & validation
— Focus on power & performance analysis

accellera
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DV SoC Integration
= Full RTL

— Although some users are moving to hybrid (almost) everything
— Leading edge of largest chips being designed

= QObjectives:

— Ensure the fully integrated SoC functions properly, at least through initialization-reset,
usually OS boot

= Analysis of non-functional requirements

— Power (7 N\
 _ ~ |

RTL

— Performance ML

Accelerator
)

L

= Verification of DFx
Instrumentation

Interconnect

r )
gt Peripher Peripher
al I/F } [Memory} [ al I/F
\L J

SYSTEMS INITIATIVE
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DVEDL Key user requirements for power analysis

1 Power w/ Real-world Scenarios/SW:
Early power trend analysis at full SoC while running real world user scenarios and software

2 Accurate RTL/GL average and peak power:
Generate accurate average and peak power numbers in target application environment with RTL
and gate level netlist

3 Power Optimization:
|ldentify potential power optimization opportunities early in design cycle for architectural tradeoffs

4 Low-Power Control via HW/SW:
UPF-based low power verification with power controls coming from SW applications

SYSTEMS INITIATIVE
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SRR Typical power app

How it works

P At Sty St vt

Activity Map ) ' i
Power Trend Activity Factor
Analysis

Activity Plot ’ IA/"’-———W

'n..¢|r——--|---<

et

* Design (RTL/Gate)

e Liberty file File-based Average Power
: SAIF/FSDB Power Tools Peak Power
 UPFfile

Waveform
e Power Stimulus

Power Tools Average Power
Peak Power

Streaming API

accellera 100
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DV Complete Power Solution

always@(posedge clk)
F q<=d;
A~ 4
| Lo always@(posedge clk)
if(en)
Dynamic power is only when switching q<=d;

Activity

| 1
| |
! ] Power Estimator
I Plot I I
| |
| |

Power Optimizer

|
Billion’s of clock cycle Million’s of clock cycle . 1 Accurate power numbers Low Power RTL Edit’s

Verify Design Changes

accellera |
101
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BN R Early Power Trend Analysis

Activity Plot

= Activity Plot
— Generate very fast power profile for logic and memory :
— \Very high correlation with actual power graphs Llﬁﬁersty
— ldentify power peaks, valleys and di/dt
— DvFS what if analysis
— Verify power domain ON/OFF via UPF
Power App
= Enabling technology with emulation
— Capacity to handle large SoC
— 100% visibility of all the design signals REEREE
— Fast waveform upload

— Accurate modeling of power components @ RTL (clock gating, multi-bit flop,
voltage scaling, read liberty files)

— Top down GUI based power analysis

Enables very fast Power profiling at full-SoC while running very long customer scenarios

accellera
102
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Hotspot Analysis
Activity Map

= |dentify design hotspots for representative scenarios

= Visual drill down into design hierarchies of concern

* |dentify mistakenly active power domains (Power estimation + UPF)

= Time synced with activity plot and waveform

= (s " UNIView Sample Applicatio

Design -~
2] e — Fle Help K
soc_top.noc.rill.device P - DU < >
EOPNGS (Nocx exT) Hierarchy Sync between the

© opn7 :(noc_ext)
© opn8 :(noc_ext)
, opn9 :(noc_ext)

design window and treemap.

@ ree :(noc)
© roei1 :(noc)
@ rez :(noc)
o rie :(noc)
@ ril :(noc)
device_P :(noc_port_D

c east_P :(noc_port_E)
© iportD :(noc_port_interface_D)
@ iportgE :(noc_port_interface_E)
© iportN :(noc_port_interface_N)

iports :(noc_port_interface_S)
@ iportw :(noc_port_interface_Ww)
@ north_P :(noc_port_N)

© bc_out :(bufferCreditout)

@ crt :(crt_logic)

© dmx :(dmux)

» fix_priority :(PrilLogic)

@ mx :(mux)

o req_gen :(regGenerator)

Signal Name Values Cc1 ©
¥ M_TIME[63;0]
ertop.uUclock
8|p.top1l.a[31:0]
¥ p1.abc([31:0]
1.abcd[31:0]

op. topl.bhvClk

WA . Current Time — Activity Density

| _——" Ratioat Current Time

k_rtlc_tbx inv
< <

(soc_top.noc.ril.devM_TIME[63:0]

SYSTEMS INITIATIVE

= south_P :(noc_port_S) — A
=5
— . - - -
- | W AVED ST RN D Gy 21 Ll x)
[ Waveo - curre
File Edit View Options Tools Window Veloce
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F W“' ; TensorFlow

YoloTiny power analysis

f | vnagM ZLEARQ e $ N NAR i1 15 | [actry pE) v [c,_ur.ibm_-n] Plet Type : [Stacked Lire - n

, input testbench
2 tensor
stage ayer
| v ’ X —
| | Y
maxpool 2

g
“7“ output
tensor

09 4

File Edit View Help

F A3 2« CHIEEQQ T R

...convo
Reg/Latch:21526

layer “hot spot”
tiles

conv 08 @ eshiiii]

max_pool 0-3
layer “hot spot”

tiles o

...conv3
Reg/Latch:8193

SYSTEMS INITIATIVE T\ torial: Abplicatien

Power “hot spot” map, power activity'plot

As cursor moves in activity plot, hot spots at that
simulation time are shown in map

Upper left pane shows the main yolo CNN layers
for which power activity data was captured :
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. ﬁ input

TensorFlow

testbench

tensor

X —

output
tensor

2

09 «

conv2d

maxpool

conv2d

maxpool

conv2d

maxpoo

conv2d

maxpool

conv2d

maxpool

conv2d

conv2d

conv2d

o
stage layes”
L]
1 1
maxpool 2

YoloTiny Power Analysis

Justify : Left = Right
Instance Name Total Reg-Q

..vity:Top.dut.convO 62.60

Po‘of’owelA:hwl' I Top.dut.convO h[Reg—Ql [FiangIk l {Comb h{Memory

| Activity Plot Viewer A

" |ndividual contributions are shown for highlighed modules in leftpane

SYSTEMS INITIATIVE



YoloTiny Power Analysis

| Activity Plot Viewer
Justify :

2020

DESIGN AND VERIFICATION™ | Activity Plot Viewer

DV
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v Instance Name Total
4 . Activity: Top.dut 64 :
e .' vity: Top.dut.conv0 60
~ TensorFlow o ..vity:Top.dut.convl  2130.74
i ° t s chit r
! Input testbench K vity: Toy ¢

=\ . tensor ° vity : Top.dut.conv
) stage layes® . : onvat
i | X — .. c. jut (

I 1 1 ° V
maxpool | 2 ..' op.dut.max_pool1

2 _mmm%‘-i
maxpool 4

3 convad 5
maxpool 6

4 conv2d 7
maxpool 8

5 conv2d 9
maxpool 10

6 conv2d 11

maxpool 12
7 eorv2d 13 = Lo‘oPowerActivn'] Top.dut.conv1 h[RegO[ [Fiag-CIk] IComb_[Memory
) |ZX Activity Plot Viewer F

8 conv2d 14
——  output
tensor 9 conv2d 15

09 «

3@ = |ndividual contributions are shown for highlighed modules in leftpane 10
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| Activity Plot Viewer

vl ¢ " Tt a
) | Activity Plot Viewer
4 . Justify Left ~ Right

. o ° Instance Name Total Reg-Q
- TensorFlow R : P— -
. ° Activity:Top.dut 6441 327.14
lnput teStben(:h ° vity:Top.dut.conv0 0.0(

tensor o
stage layes® .
| X — ° ° .'
) 1 ! .
maxpool 2 o’

< ut _¥
L4 ...op.dut.max_pool1
2 N
maxpool @e 2 © °|°

3 convad 5
maxpool 6

4 conv2d 7
maxpool 8

5 conv2d 9
maxpool 10

6 conv2d 11

maxpool 12

7 conv2d 13

FoloPowaActnvnl'l Top.dut.max_pool1 thegO[ ‘RengIk F[Come[Memory

8 conv2d 14

output | Activity Plot Viewer
tensor o [_com2d | 15
09 «

-

"@ * |ndividual contributions are shown for highlighed modules in leftpane

SYSTEMS INITIATIVE T jtorjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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YoloTiny power analysis

I~ Activity Pl Viewer

BE
= ey Tt Ao
. | Activity Plot Viewer + &
4 . Justify Left
L]
L]
o &
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DESIGN AND VERIFICATION™ E Activity Plot Viewer
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+ &
oo . SRR

L

* Rignt

v Instance Name Total Reg-Q
TensorFlow —
s ° erActivity: Top.dut
tlll[)llt testbench .' vity: Top.dut.conv0
. tensor X
X g | Activity Plot Viewer
i ! ..' ' Justify Left = Right
maxpool 2 ..' . v Instance Name Total Reg-Q
d4° i erActivity: Top.dut 6441 .2
o° vity:Top.dut.conv0
2 3 .
o
maxpool@e g * °|° ° vity:Top.dut.conv?
3 convad 5
maxpool 6
4 convad 7
maxpool 8
Ld ° ° ° ° [
s |_convd |°®
. maxpool | e
o °
o °
o °
° 6 conv2d 11 e
° °
° maxpool 12 R -
. o ° yoloP|
° '. °® |
° 1 e AboloP!
o 7 conv2d 13 ¢ L AfoloP
° ° I =
. : 1 47
) B ° ° yoloPower/
=Y * 8 |_conv2d 14 oo
output |, ; |12 et
- L]
= tensor 5. convad |°15
09 « ®e Ze® °

foloPowerActivit | Top.dutconvatos  m|Reg-Q| [Reg-Clk ju[Comb jm[Memory

| Activity Plot Viewer .

aceellera) w |ndividual contributions are shown for highlighed modules in leftpane 10
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DESIGN AND VERIFICATION™

DVILCON ®  Emulator and FPGA proto platforms allow massive amounts of probed
CONFERENCE AND EXHIBITION . . . .
performance data collection in a relatively small amount of time
/ EmuIator/FPGA proto \ ®  Non-intrusive probing into DUT using SystemVerilog’s ‘bind’ construct

®  When simulation occurs, captured probed events are efficiently directed
into an SQL database

AcChanne 1 1
TensorFlow e "r I Tensactors |
“test harness” AcChannel ] || !

ﬁ------’

®  Builtin collection of graphing plugins can be used to create displays of a
variety metrics and visualizations

B Custom plugins are easy to create using standard SQL query commands
interfacing to back-end tools such as open-source data analytics,
Matlab, etc.

Event probes @

Protocol probes @ K \

Events - Percent Active
(using sla.cfg)

A Siemens Business

Legend Data

M Top.dut yoloLayerProbe.conv0InBusy
¥ Top.dut.yoloLayerProbe.conviinBusy
60 [ Top.dut yoloLayerProbe.conv2inBusy

55 Top.dut.yoloLayerProbe.conv3IinBusy
Open-source 1 ‘
Ml Top.dut yoloLayerProbe.conv4to8InBusy

H . 50 [ Top.dut.yoloLayerProbe. kernelDataBus!
data d naIYtlcs G ra ph | ng 5 .To:dut ioloLaierProbe doutBusy ’
Matlab R cins plugins ‘
modules 1 = 5 .

Percent Event Active

A
0 n
acce era ' 20,000,000 40,000,000 60,000,000 80,000,000 100,000,000 120,000,000 140,000,000 160,000,000 180,000,000 200,00
j _model_sui git/CatapultProjects/demoYolo/tinyYOLOv3XITensorTh.sla/sla.db S

SYSTEMS INMMATIVE Ty torjal: Application Optimized HW/SW Design & Verific




>0  YoloTiny performance analysis (System Level Analyzer)

DESIGN AND VERIFICATION™

Dvc D N File Edit View Insert Tools Desktop Window Help
3 —_ 2 & = ¥ 7 - | =
CONFERENCE AND EXHIBITION Dad = b | N QT? @ E s | = ’ 0& | a0
convOInBusy
TensorFlow & 100 T T T T T T T
Input testbench e 8% . . . . . . . 7
° a2 o
tensor eo0e®® § 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00 220.00
stage layer|  ,eee
X = LR L Time [ms]
conv1inBu
1 conuld ! ¥ =100 T T T T T sly T T T T
maxpool | 2 oo®® =
eoe®?® °° £ =0 N
coleoce® (4 e 0 1 1 1 1 1 1 1
2 4 .'; 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00 220.00
Time [ms]
maxpool 4 conv2inBusy
2 100
‘Oooooooooo.oooo.ootoo..o.> g e T T T T T T T T T T
= _
3 | cond |5 S 1 R . . : : : .
maxpool 6 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00 220.00
Time [ms]
.ooo«oooooooooooooo LXERYY N °°nV3|r[\Bu]sv
4 conv2d 7 é‘ 100 T T T T T T T T T T
maxpool | g T 50| ]
B 0TS RRETY 1yl : . . . . :
eeheo 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00 220.00
LY LIS °
5 convad 9 *eooll, Time [ms]
Ce conv4to8InBus
maxDOOI 10 ° m £ 100 T T T T T T L T T T T
=
B 50 =
6 conv2d 11 5 @ I Y I O O A ! | ! | | !
= 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00 220.00
p 12 Time [ms]
doutBusy
7 Cond 13 é‘ 100 T T T T T T T T T T
‘ g > [
° .. :\: 0 1 1 1 1 1 1 1 1 1 1
] 8 conv2d 14 o’ 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00 220.00
3 °
: .® Time [ms]
output P ¢ kernelDataBusy
tensor 9 conv2d 15 0o £ 100 T T T T T
"o ofe ® = 50 H -
(&)
09 - :\: 0 1 1 1
0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00 220.00

J = Customized probe events defining activity into and out of each layer can be defined
daccelnera . p . :
In this case a custom “plugin” was created to generate Matlab™ graphing plots
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DV Pre-Si Validation — SoC’s Digital Twin

= Bring SW to alpha release state
— Before 1%t silicon

= \alidate post-Si lab setup pre-Si
— Including debug capabilities

= Begin validation testing

— Billions of miles to validate ADAS!
— Start pre-Si

= Use as demonstrators
— Customers
— Government regulators, ...

= Debug issues uncovered in silicon

accellera
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CONFERENCE AND EXHIBITION u a ry

" |n this tutorial we have shown:
— How accelerating key algorithms in HW deliver application performance

— Designing the algorithm in C++ to
— Quickly explore power, performance, area of alternative algorithmic approaches
— Verify the algorithm implemented in C++
— Use high-level synthesis to implement the accelerator in RTL

— Verified and validated the accelerator block
— Enabling SW driven system design
— Used accelerated simulation to cover deep test datasets
— Verified and validated the full SoC
- Validating power and performance of full SoC
— SoC optimized in context of SW
— We maximized reuse of block verification from C++ through RTL

— Development environments and platforms evolve to maximize reuse
accellera — Work done at the block level, reused at SoC level

SYSTEMS INMMATIVE T torjal: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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CONFERENCE AND EXHIBITION

Algorithm
Design

* Tiny YOLO algorithm, written in

Python, executed in TensorFlow

on a desktop or laptop as stand

alone

It inferences a camera input and

it displays processed output on a

screen

* Verify algorithm works
properly

* Speed ~ 0.4 sec/inference

accellera)

SYSTEMS INITIATIVE

Our Story in Five Steps

Algorithm
Partitioning &
Optimization

Verification

* Manual conversion of Tiny YOLO

to C for High-Level Synthesis

e Target wide variety of
implementation architectures
without re-coding

* Common testbench for
different abstraction levels

* Automated creation of bus
interfaces to surrounding
system

* Speed ~ 4 sec/inference

Block-level verification at C and RT
levels with a reusable verification
environment

Exploiting hybrid platform to
maximize flexibility in verification
And, enable earliest SW
development and SW-driven
verification

Utilize HW-assisted verification for
large dataset tests and full SoC
verification

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Analysis

Early & continuous power,
performance analysis from
algorithm through full SoC
Utilize hybrid to focus analysis at
block or broader levels
Execute platform with same
software stack from Hybrid
platform

* Realistic Performance

* Accurate Power

* Functional Coverage

Speed:

. 21,000 sec/inf RTL SW sim
. 10 sec/inf emulation

*  0.03 sec/inf prototype

Validation

¢ Block-level validation in SoC

context with hybrid

* Prototype full SOC

* Enable complete SW stack &
system validation
* Using real-world stimulus

¢ Pre-Si Validation

¢ Connect to real interfaces, at
speed

* Prepare post-Si validation
environment, tests and debug
capabilities
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CONCLUSIONANDQ & A
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