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SOFTWARE TO SYSTEMS
Lauro Rizzatti
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Tutorial Objective & Contents
■ This tutorial details the process of migrating an ML algorithm from generic software 

to a hardware implementation customized to the specific requirements of a system

■ The migration advances through 5 steps:
– #1: Design and verify an ML algorithm to be embedded in an application specific SoC
– #2: Partition the algorithm in HW/SW and optimize it for performance/power/area in the context 

of the SoC and the accompanying software stack
– #3: Verify the SoC at different levels of abstraction 
– #4: Analyze the SoC for power, performance, formal and coverage at the RT level
– #5: Perform system validation via FPGA prototyping

Algorithm 
Partitioning & 
Optimization

Algorithm
Design Verification Analysis Validation
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What Problem Do We Address?

■ Today, many embedded systems embody algorithms that were originally developed 
as software applications
– Either on general purpose computers or on embedded systems

■ Migrating these algorithms to demanding applications running on embedded 
systems is hitting a roadblock
– Substantial increases in compute requirements cannot be met by slow performance 

enhancements of traditional embedded computing
– Power constraints defeat conventional CPU-based architectures

■ The algorithms must be accelerated in hardware
– This tutorial will describe how to achieve this objective
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Many Possible Architectures
■ Algorithms are still evolving in leading edge technological domains, such as 

Machine Learning, 5G and state-of-the-art Video
– What architecture is best?
– No way to try very many alternatives in RTL

■ Optimize for Power, Energy, Performance, Area
– All need to be optimized
– Finding the best trade-off is challenging
– Having a SW-driven or application-driven methodology at the start in continued use in 

the flow is important
– Data movement is key

− Memory, bandwidth, and caching significantly impact all of these 
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Software-driven system design
Existing Approach

SoC-Driven System Design
• Design objective defined by system architect
• HW/SW partitioning planned
• Virtual platform created and validated
• Power/performance optimization based on sub-

system TB
• SW application optimized to run on HW platform

New Approach
Software-Driven System Design

• SW available at day one of project
• SW used to explore HW architecture
• Platforms evolve in parallel (HW/SW)
• SoC optimized in context of SW (power/performance) 
• Pre-silicon SoC validated with SW
• Apps/benchmarks optimized for HW/SW platform

SW Platform

HW Platform

Modeling/Exploration System Integration System Validation

SoC ValidationPower AnalysisArchitectural 
Analysis

Architecture Platform Hybrid Prototype

Perf AnalysisSW 
Development

SW
Driven
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Case-Study: Tiny YOLO V2 Algorithm
■ Our tutorial is based on “Tiny YOLO V2*”, 

a low computational object recognition algorithm 
implemented in the TensorFlow framework

– Tiny YOLO V2 is a 23-layer convolution neural network 
that reads a small format image and detects objects within 
the frame

– It executes approximately 3.2 billion multiply accumulate 
(MAC) operations per inference

– It can classify 20 objects, it is well studied, and has 
implementations in several machine learning frameworks

■ Tiny YOLO is used in compute constrained or power 
constrained devices, such as cell phones or other devices 
where computational and battery power is concerned

* See: https://pjreddie.com/darknet/yolov2/) 

Tiny YOLO V2
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Our Embedded SoC
■ Our over simplified SoC embeds the Tiny YOLO V2 algorithm, already 

trained, a CPU, memory, interconnect and two peripherals
■ The SoC receives a feed from a video camera and outputs bounding 

boxes and labels of objects classified in the input feed

Tiny YOLO V2
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Our Story in Five Steps

Algorithm 

Partitioning & 

Optimization

Algorithm

Design
Verification Analysis Validation

• Tiny YOLO algorithm, written 
in Python, executed in 
TensorFlow on a desktop or 
laptop as stand alone

• It inferences a camera input 
and it displays processed 
output on a screen
• Verify algorithm works 

properly

• Manual conversion of Tiny 
YOLO to C for HLS
• Target wide variety of 

implementation architectures 
without re-coding 

• Common testbench for 
different abstraction levels

• Automated creation of bus 
interfaces to surrounding 
system

• Block-level verification at C and 
RT levels with a reusable 
verification environment

• Exploiting hybrid platform to 
maximize flexibility in 
verification

• And, enable earliest SW 
development and SW-driven 
verification

• Utilize HW-assisted verification 
for large dataset tests and full 
SoC verification

• Early & continuous power, 
performance analysis from 
algorithm through full SoC

• Utilize hybrid to focus analysis 
at block or broader levels

• Execute platform with same 
software stack from Hybrid 
platform
• Realistic Performance
• Accurate Power
• Functional Coverage

• Block-level validation in SoC 
context with hybrid

• Prototype full SOC
• Enable complete SW stack 

& system validation
• Using real-world stimulus

• Pre-Si Validation
• Connect to real interfaces, at 

speed
• Prepare post-Si validation 

environment, tests and 
debug capabilities

• Speed ~ 0.4 sec/inference • Speed ~ 4 sec/inference Speed:

• 21,000 sec/inf RTL SW sim

• 10 sec/inf emulation

• 0.03 sec/inf prototype
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Algorithm Partitioning
§ A quick profile of Tiny Yolo shows 5.2 billion floating point operations 

are needed for an inference
§ To produce multiple inferences per second requires greater throughput 

than software can deliver
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Algorithm Partitioning
§ Some aspects of the algorithm need to remain in software
§ Some are appropriately targeted to hardware
§ Hardware to be created by High-Level Synthesis (HLS) can be defined in 

C and linked into the larger algorithm
§ Post HLS code (RTL) can be linked into the same algorithm for 

verification purposes
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Yolo Tiny Example
§ Image from camera is preprocessed to scale the pixel values and resize 

the image to meet the requirements of the algorithm
§ Object recognition algorithm processes the image

− Produces a table of results

§ High confidence recognitions are annotated on the image and the image 
is displayed

class : car, [x,y,w,h]=[571,133,231,142], Confidence = 0.92238536775112152
class : dog, [x,y,w,h]=[266,362,261,299], Confidence = 0.86217708349227905
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Yolo Tiny Python Implementation
def detect_from_cvmat(self,img):

s = time.time()
self.h_img,self.w_img,_ = img.shape
img_resized = cv2.resize(img, (416, 416))
img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB)
img_resized_np = np.asarray( img_RGB )
inputs = np.zeros((1,416,416,3),dtype='float32')
inputs[0] = (img_resized_np/255.0)*2.0-1.0
in_dict = {self.x: inputs}
net_output = self.sess.run(self.fc_19,feed_dict=in_dict)
self.result = self.interpret_output(net_output[0])
self.show_results(img,self.result)
strtime = str(time.time()-s)
if self.disp_console : print('Elapsed time : ' + strtime + ' secs' + '\n')
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Verify at a Higher Level with Reusable Environment
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§ 9 stage CNN with 9 conv2d layers the first 6 of which are separated by maxpool
layers which then feed densely connected conv2d layers

§ First conv2d layer is fed an input tensor ‘x’ which is the 2-dimensional 

preprocessed_image from the top level python3 test.py testbench

§ 9th stage provides recognized images in the output tensor ‘o9’ which is fed back 

up to top the level test.py for post processing of the output image, with 

classification and bounding box info included

§ Each conv2d layer is fed learned weights and biases for that stage

§ Where preceded by a maxpool layer, it is fed by the output of that layer, 

otherwise simply the output of the preceding conv2d layer

TensorFlow
testbench
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Yolo Tiny implementation with HLS inference
def detect_from_cvmat(self,img):

s = time.time()
self.h_img,self.w_img,_ = img.shape
img_resized = cv2.resize(img, (416, 416))
img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB)
img_resized_np = np.asarray( img_RGB )
inputs = np.zeros((1,416,416,3),dtype='float32')
inputs[0] = (img_resized_np/255.0)*2.0-1.0
in_dict = {self.x: inputs}

net_output = self.sess.run(self.fc_19,feed_dict=in_dict)
catapult_net_output = C_library.catapult_yolo_tiny(inputs)
self.diff(net_output, catapult_net_output)

self.result = self.interpret_output(catapult_net_output[0])
self.show_results(img,self.result)
strtime = str(time.time()-s)
if self.disp_console : print('Elapsed time : ' + strtime + ' secs' + '\n')
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Replace Layers one at a Time
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Replace Layers one at a Time
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Replace Layers one at a Time
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Then Replace All Layers
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Path to Implementation
§ Once the algorithmic C is shown to match the original python, then it 

can be used as a starting point for RTL development

20
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HIGH-LEVEL SYNTHESIS
Russell Klein
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What is High-Level Synthesis
§ Transformation of algorithm to synthesizable RTL

– Typically C, C++, or SystemC
– Handles low-level details for designer

§ Technology aware
– Understands target silicon technology or FPGA device
– Generates RTL based on technology library 

and target frequency

void func (short a[N], 
for (int i=0; i<N; i++) {

if (cond)
z+=a[i]*b[i];

else

RTL

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Benefits of HLS
§ Improved developer productivity

– Design at a higher level of abstraction
– Automate away a lot of the detailed work in creating RTL

§ Reduced verification effort
– Verifying an abstract algorithm is much faster and easier than verifying RTL
– Prove that the resulting RTL is equivalent to the original algorithm

− HLS tools enable this with dynamic simulation and formal proofs

§ Exploration of design alternatives
– Implementing different architectures in RTL is prohibitively expensive
– At the algorithmic level it fast and easy

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Design at a Higher Level
§ Generate high quality RTL from higher level descriptions

– Manual RTL coding errors and ECO’s are avoided
– Designs are correct-by-construction
– Time-consuming RTL design iterations are eliminated
– Estimate and optimize power and performance before RTL synthesis

§ Key applications designed with HLS
– Video Compression/Decompression (H.265/HEVC, VP9)
– Image processing (Mobile/4K/Ultra HD/3D)
– Wireless/Wireline (Bluetooth, 5G, 802.11 Gb optical, DOCSIS)

void func (short a[N], 
for (int i=0; i<N; i++) {

if (cond)
z+=a[i]*b[i];

else

RTL

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Original
Algorithm HLS RTL

Original
Testbench

Verification of RTL
§ Dynamic verification

– Common input to algorithm and RTL
– Compares output from RLT with output 

from original algorithm
– Covered later

§ Formal verification
– Precise semantics and machine readable 

format for algorithm and RTL
– Supports formal equivalency proof

Transactor

Transactor

Compare
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Coverage and Assertions
§ Assertions and Cover Points can be put 

in source C++ & SystemC
§ Assertions and cover points propagate 

from source to RTL
§ Enables verification at higher level 

int alu(int a, int b, uint2 opcode) {
cover(opcode==ADD);
cover(opcode==SUB);
cover(opcode==MUL);
cover(opcode==DIV);

short r;

switch(opcode) {
case ADD: r = a+b;

break;
case SUB: r = a-b;

break;
case MUL: r = a*b;

break;
case DIV: assert(b!=0);

r = a/b;
break;

}
return r;

}

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Design Alternatives
§ User control over the micro-architecture implementation

– Parallelism, Throughput, Area, Latency (loop unrolling & pipelining)
– Memories (DPRAM/SPRAM/split/bank) vs Registers (Resource allocation)

§ Exploration is accomplished by applying constraints
– Not by changing the source code

int mac(
char data[N],
char coef[N]

) {
int accum=0;
for (int i=0; i<N; i++)
accum += data[i] * coef[i];

return accum;
}

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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HLS Optimizations
§ Automatic Arithmetic optimizations and bit-width trimming
§ Multi-objective scheduling 

– Area/Latency driven datapath scheduling

§ Eliminates RTL technology penalty of I.P. reuse

for (int i=0; i<8; i++){
tmp+=a[i];

}

Technology Neutral
Description

Faster Process
Delay of a 16bit add: 0.3 ns

Latency: 1 cycles

500MHz / 2ns

FPGA or SLOW ASIC
Delay of a 16bit add: 2.1 ns

Latency: 3 cycles

250MHz / 4ns

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Yolo Tiny (v2)
§ Algorithm for detecting and classifying objects in pictures 

– Used on cell phones and computationally limited systems
– Over 5.2 billion floating point operations per inference
– Over 25 million weight values
– Neural network has 24 layers (full Yolo has 106) https://pjreddie.com/darknet/yolo

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Yolo-Tiny Profile

30
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What is convolution?

Source: Embedded-Vision.com

Multiply one array by 
another, element by 
element, and sum the 
results

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Convolution used in CNNs
§ Each output channel uses 2-d convolutions across all input channels

– Billions of Multiply/Accumulate operations

§ Embarrassingly parallel
OUT_CHAN:for(int oc=0;oc<OUT_CHANNELS;oc++){
IN_CHAN:for(int ic=0;ic<IN_CHANNELS;ic++){
FMAP_HEIGHT:for(int r=0;r<IN_HEIGHT;r++){
FMAP_WIDTH:for(int c=0;c<IN_WIDTH;c++){
KERNEL_Y:for(int i=0;i<3;i++){
KERNEL_X:for(int j=0;j<3;j++){
acc[r][c] += fmap[ic][r-i/2][c-j/2]

* kernel[ic][oc][i][j];
}

}
}
fmap_out[oc][r][c] = acc[r][c];

}  
}

}

Pure 4-D Convolution Algorithm

Filter weights are 
different for each input 
/output channel

+

Each filter kernel 
produces one output 
pixel

Input Channels

Output Channel

Filters across all input 
channels are summed 
for each output 
channel
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TensorFlow 2d convolution

Feature Maps
Kernels

Output channels
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TensorFlow 2d convolution

Feature Maps
Kernels

Output channels
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TensorFlow 2d convolution

Feature Maps
Kernels

Output channels
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TensorFlow 2d convolution

Feature Maps
Kernels

Output channels
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TensorFlow 2d convolution

Feature Maps
Kernels

Output channels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
37



TensorFlow 2d convolution

Feature Maps
Kernels

Output channels
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TensorFlow 2d convolution

Feature Maps
Kernels

Output channels
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TensorFlow 2d convolution

Feature Maps
Kernels

Output channels
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TensorFlow 2d convolution

Feature Maps
Kernels

Output channels
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TensorFlow 2d convolution

Feature Maps
Kernels

Output channels
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TensorFlow 2d convolution

Feature Maps
Kernels

Output channels
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TensorFlow 2d convolution

Feature Maps
Kernels

Output channels
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TensorFlow 2d convolution

Feature Maps
Kernels

Output channels
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Architecture Alternatives
§ Feature map constant

– Read in each feature map, and apply all convolution kernels to it
– Requires memory large enough to hold all output channels (partial sums)

§ Output channel constant
– Complete computation for each output channel in order
– Requires memory large enough for only one output channel
– Requires re-reading feature maps 

§ Tiled architecture
– Compute outputs for a region of each input feature map
– Requires even less memory, but more re-reads both feature maps and kernels

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Different Architectures
§ By simply reordering the loops different architectures can be created

FMAP_HEIGHT:for(int r=0;r<IN_HEIGHT;r++){
IN_CHAN:for(int ic=0;ic<IN_CHANNELS;ic++){
FMAP_WIDTH:for(int c=0;c<IN_WIDTH+1;c++){
< Read feature map data stream >
< Sliding window of feature map data >
< stationary data over output channels >
OUT_CHAN:for(int oc=0;oc<OUT_CHANNELS;oc++){
< Read kernel weights from SRAM >
KERNEL_Y:for(int i=0;i<3;i++){
KERNEL_X:for(int j=0;j<3;j++){
acc += fmap_window[i][j] * kernel[i*3+j];

}
}
< Write out partial output channel sums >

}

OUT_CHAN:for(int oc=0;oc<OUT_CHANNELS;oc++){
FMAP_HEIGHT:for(int r=0;r<IN_HEIGHT;r++){
FMAP_WIDTH:for(int c=0;c<IN_WIDTH+1;c++){
IN_CHAN:for(int ic=0;ic<IN_CHANNELS;ic++){
KERNEL_Y:for(int i=0;i<3;i++){
KERNEL_X:for(int j=0;j<3;j++){

acc+=fmap[ic][r-i/2][c-j/2]*kernel[ic][oc][i][j]
}

}
}
fmap_out[d][r][c] = acc;

}  
}

}

Output Channel Constant Feature Map Constant
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Synthesis considerations
§ Synthesizing “as-is” results in one multiplication per clock

– Faster than software, but does not take advantage of parallelism in the algorithm

§ The feature_map and kernels variables are mapped to memories
– Each memory can perform one read per clock cycle

§ Possible solutions
– Multi-port the memories (expensive in area, routing resources)
– Promote memories to registers (very expensive in area, power)
– Partition memories 
– Map into a shift register

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Shift Register

49
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

Create a shift register 2 lines + 3 pixels



Shift Register
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Shift Register
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Shift Register
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Shift Register
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Parallel multipliers
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Parallel multipliers

55
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For large feature maps this can be too many registers to 
be efficient.  Add memories where there are no multiplier taps
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Multi-channel Sliding Window
2-D convolution can be efficiently built by separating into vertical and horizontal sliding windowing plus 
accumulation buffers

Pixel stream

Line Buffer

Line Buffer

Multi-channel Vertical Windowing

Line Buffer

Line Buffer

Line Buffer

+

*

*

*

+ +

* *

* *

* *

+
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C++ Class for Processing Element (PE)
§ PE is explicitly described 

in a C++ class
– Multiply-add
– Shift registers

§ Class can then be re-used 
in an array

Shift registers

Multiply-add
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Scalable PE Array Architecture
§ Multiply-add tree convolution can be transformed 

into a chain of processing elements (PE)
– FPGA routing friendly

§ Systolic array is the simplest PE array
– Simpler interconnect and easy to understand
– There are better ones in use today (SCNN, Eyeriss, Chain)

1x3 Traditional convolution

x[2]

*h0

+ y0 y1

x[1]

*h1

+ y0 y1

x[0]

*h2

+ y0 y1
0

Data

1x3 PE Array convolution
Processing Element (PE)

Partial sum input

Shifted input
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0

Row(i)

+

Matrix of PEs
§ Multiple 1-d convolutions

– Easy, just another array of classes

Need 3 Rows 
simultaneously 

(windowing)
3x3 result

Array of 3 1x3 PE 
convolutions , N=3
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Multiple Matrices of PEs

§ Multiple output channels 

produced from single input 

channel

– N=64 gives 576 parallel 

multiplications

– ~690 Billions ops/sec @600MHz

§ Minimal routing

congestion

§ Significantly less

memory bandwidth

required

§ Still must accumulate

partial sums in local

memory

0

Output fmap 1
0 1

43

2

5

86 7

1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

+ + +

3x3 
convolution 
kernel

Output fmap 2 Output fmap N

1x3 systolic 
array

Input fmap 1

Partial 
sum

Single input 

channel

Multiple output 

channels

Input channel 

data is reused

3 element array of 

Array of 1x3 PEs, N=64
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RTL Creation
§ Once the architecture is determined, high level synthesis can be used to 

create the RTL implementation of the component
– Interface synthesis creates bus connections for master and slave interfaces

§ As RTL is created it can be dynamically verified
– Stimulus can be captured from execution of Python with algorithmic C
– Reponses from RTL compared with responses from algorithmic C

61
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Replace One Layer at a Time
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Replace One Layer at a Time
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Replace One Layer at a Time
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Replace All Layers
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Power Considerations
§ Keep data local

– Very important for ASIC 

§ Floating-point is costly
– Used in training of networks
– Not needed in network inference engine

§ Doesn't need to be 2x bit-widths
– Processors are fixed bit-width

§ 8-bit integer multiplier is 27 times 
smaller and uses 19 times less energy 
then a 32-bit floating point multiplier

*NVIDIA 2017
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Accuracy vs. Bit Width for CNN

For ResNET
– 32-bit weights improves accuracy by less than 0.1% over 8-bit weights
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Architectural Exploration with HLS
§ Original PE array 

was sub-optimal
§ Process multiple input 

channels simultaneously
– 4 PE arrays
– Better utilization of 

AXI4MM bandwidth
– Reduce on-chip memory by 

4x

§ Recoded in a few days
– Evaluated PPA

Input MM Output MM

RAM
0

+

RAM
1

+

RAM
N/4

+

AXI

Accumulator Buffer

AXI

0
Output fmap 1

1 2
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6 7 8
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6 7 8
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+ + +

Output fmap 2 Output fmap N/4

1x3 systolic array

0
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FIFO x 4

Pooling Engine

FIFO
0

FIFO
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FIFO
N/4

On-chip Buffer

RAM
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Hybrid Architecture for Lowest Power
§ Earlier layers can be processed together

– Fused layer architectures don’t need all of the feature-map data from a previous 
layer to process the current layer

– Keeping the data on-chip gives much lower power consumption
– Works well for smaller number of input/output feature maps

§ Later layers need a different kind of architecture
– Large number of feature maps and weights
– PE array architectures work well

Sliding-
Window

Convolution / 
Max Pooling

Sliding-
Window

Convolution/ 
Max Pooling

FIFO

Sliding-
Window

Convolution/ 
Max Pooling

…. FIFO

PE Array
Convolution/ 
Max Pooling

Off-chip DRAM
AXI4 stream

Weights and results

Fused-layer Architecture
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VERIFICATION
From Block to Full SoC
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Our Story in Five Steps
Algorithm 

Partitioning & 
Optimization

Algorithm
Design Verification Analysis Validation

• Tiny YOLO algorithm, written in 
Python, executed in TensorFlow 
on a desktop or laptop as stand 
alone

• It inferences a camera input and 
it displays processed output on a 
screen
• Verify algorithm works 

properly

• Manual conversion of Tiny YOLO 
to C for High-Level Synthesis
• Target wide variety of 

implementation architectures 
without re-coding 

• Common testbench for 
different abstraction levels

• Automated creation of bus 
interfaces to surrounding 
system

• Block-level verification at C and RT 
levels with a reusable verification 
environment

• Exploiting hybrid platform to 
maximize flexibility in verification

• And, enable earliest SW 
development and SW-driven 
verification

• Utilize HW-assisted verification for 
large dataset tests and full SoC 
verification

• Early & continuous power, 
performance analysis from 
algorithm through full SoC

• Utilize hybrid to focus analysis at 
block or broader levels

• Execute platform with same 
software stack from Hybrid 
platform
• Realistic Performance
• Accurate Power
• Functional Coverage

• Block-level validation in SoC 
context with hybrid

• Prototype full SOC
• Enable complete SW stack & 

system validation
• Using real-world stimulus

• Pre-Si Validation
• Connect to real interfaces, at 

speed
• Prepare post-Si validation 

environment, tests and debug 
capabilities

• Speed ~ 0.4 sec/inference • Speed ~ 4 sec/inference Speed:
• 21,000 sec/inf RTL SW sim
• 10 sec/inf emulation
• 0.03 sec/inf prototype
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Progression of Verification
§ IP Block Verification at RTL
§ Earliest SW Enablement (SoC context)
§ IP Block Validation Leveraging hybrid

– Using a SW enabled flow for power and performance 

§ Full SoC Verification & validation
– Focus on power & performance analysis

Power & Performance
Analysis
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IP Block Validation – Peripherals
§ Objective:  Ensure IP block functions 

correctly in SoC context

§ Requires CPU subsystem
– RTL or Virtual (Hybrid)
– Driver/FW driven testing – the SW is key to the 

SoC context

§ Environment
– ICE is typical to validate ”plugfest” level 

compatibility with external world
– Virtual may be used for subset or all tests
– Post-silicon validation & debug environment 

functionality
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Creating a portable test harness reusing 
environment from HLS C++ Verification

§ Object recognition is test dataset intensive verification
– Perfect application of HW-assisted to accelerate block-level RTL verification

§ Create an environment for the TensorFlow framework and its host O/S

§ Reuse the environment for the HLS C++ verification

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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HostTransactors

Memory

ML
Accelerator

Interconnect

RTL

TensorFlow test harness for RTL
Minimal SoC Subset for Verification
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Host

Peripheral I/F
Transactors Memory

ML
Accelerator

Interconnect

Catapult C

TLM

RTL

TensorFlow test harness for RTL

76
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

TensorFlow
“test harness”



Encapsulated(containerized) 
pure TensorFlow environment

§ Runs original YoloTiny design in a 
pure TensorFlow environment

§ Encapsulates entire Ubuntu 18.04 
host O/S and TensorFlow
framework into a Docker container

§ This simplifies complex installation 
process for AI frameworks and 
makes them easily portable and 
reusable among different hosts

Docker Ubuntu 18.04 container

Docker host 
receptacle daemon
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Test harness for TensorFlow + HLS C++validation

Docker Ubuntu 18.04 container
§ Replace original 9 stages of the 

CNN algorithm with HLS 
compliant C++ implementing 
equivalent algorithm

§ Still test new C++ code 
prototypes in the context of 
original TensorFlow framework

§ Input image stream, weights loading, 
and final output processing kept in 
Python/TensorFlow front end

§ Pre-verify the synthesizeable
code before generating RTL 
from it

Docker host 
receptacle daemon

§ Reuses same Docker container 
image shown previously as 
portable “test harness” to 
house host O/S and 
Python/TensorFlow framework 
along with the HLS C++ 
implementation
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Test harness for TensorFlow + RTL validation on emulator

Docker Ubuntu 18.04 container
§ Replace original 9 stages of the 

CNN algorithm with C++  
coupled to RTL using 
transactors

§ Validates synthesized RTL ML 
core in the context of original 
TensorFlow framework

§ Provides convenient platform 
for power/performance 
analysis of the ML core itself

Docker host 
receptacle daemon

§ C++ blocks themselves become 
drivers to transactors (BFMs) 
running in the emulator

§ Cross-process TLM based 
XlAcChannelTranactors
couple the TensorFlow and HLS 
C++ remote client process with 
the co-model host process and 
the emulator via the TLM fabric

Emulator/FPGA proto

XlAcChannel
XlAcChannel
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Progression of Verification
§ IP Block Verification at RTL
§ Earliest SW Enablement (SoC context)
§ IP Block Validation Leveraging hybrid

– Using a SW enabled flow for power and performance 

§ Full SoC Verification & validation
– Focus on power & performance analysis

Power & Performance
Analysis

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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HW Platform

Hybrid Execution Engine

What is SW Enabled Verification?

HW Execution Engine
(Simulation, Emulation, FPGA Prototyping)

Hybrid
Platform 

M
OD

EL

CP
U

BU
S

RA
M

SW Platform
(SW Stack/Baremetal)

Platform

Power 
Analysis

Performance 
Analysis

Benchmarks & Applications

M
OD

EL

CP
U

BU
S

RA
M

SoC 
Validation

Architectural 
Analysis

SW 
Development
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Hybrid
Platform

SW 
Platform

Hybrid Verification in a SW Enabled flow

First Silicon

Software Development

Hardware Development

Drivers, boot code 

3rd Party IP 
RTL Designs 

SoC 
Validation

Power AnalysisPerformance 
Analysis

Architectural 
Analysis

SoC

SW

SW 
Development
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Progression of Verification
§ IP Block Verification at RTL

§ Earliest SW Enablement (SoC context)

§ IP Block Validation Leveraging hybrid
– Using a SW enabled flow for power and performance 

§ Full SoC Verification & validation
– Focus on power & performance analysis

Power & Performance
Analysis
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Hybrid Enables Mixing Abstractions
Flexibility in Verifying, Analyzing HW & Enabling SW

84
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Hybrid Enables Mixing Abstractions
Flexibility in Verifying, Analyzing HW & Enabling SW
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Hybrid Platform-HLS C
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IP Integration- HLS C

Runtime / App Lyr
Linux 

Hybrid Layer

CPU/GIC/MEM

Runtime/App Lyr
Linux

Hybrid Layer 

CPU/GIC/MEM

Runtime / App Lyr
Linux

CPU/GIC/MEM

SW Accelerator IP

Runtime / App Lyr
LinuxSW

CPU/GIC/MEM
HW

SW

Benchmark/App

Phase-0
Hybrid platform

Phase-1a
SW integration

Phase-1b
HW IP integration

Phase-2
Use Case

• Yolo Tiny C Application • Yolo Tiny - Catapult C
HW

• Performance analysis
• Power Analysis
• Software Development
• System Validation

HW

Hybrid Layer Hybrid Layer 

Network device
Storage device
Display device
Input device

SW

SW

HW & SW 
iterate

SW 
iterate

HW
iterate
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HLS-C is Synthesized to RTL

CPU

Peripheral 
I/F

Peripheral 
I/FMemory

ML
Accelerator

Host

HLS-C

RTL

Interconnect
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top_a72.sv

Insertion of RTL

§ Connect Tiny Yolo RTL to Interconnect

– master port to <AXIName>M[1], to drive memory transactions

– slave port to NIC_<AXINAME>S[0] to accept CPU transactions.

Interconnect

CORTEX_ArmV8

AXINameM ⇔ AXINameM[0]

axi_memory

AXIName ⇔ AXINameS[0]

ML_accelerator

Master: AXIName ⇔ AXINameM[1] ::   Slave: AXIName ⇔ AXINameS[1] 
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Progression of Verification
§ IP Block Verification at RTL
§ Earliest SW Enablement (SoC context)
§ IP Block Validation Leveraging hybrid

– Using a SW enabled flow for power and performance 

§ Full SoC Verification & validation
– Focus on power & performance analysis

Power & Performance
Analysis
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System Analyzer
§ Collects data from embedded processors during runs 

– Simulation
– Emulation
– FPGA prototype

§ Collects data from hardware monitors
– User defined, SLA monitors

§ Post processing resports and views
– Standard reporting for common buses and interfaces

− Bus utilization
− Communication latencies
− Bus traffic correlated with software activity

– Transaction tracing
– Facilities for user defined reporting
– Data stored in SQL database

FPGA PROTO

EMULATION

SIMULATION
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Capturing IP Performance – SW Enabled 
Methodology

§ Add additional interesting metrics
– Identify data paths conducive to obtaining metrics
– Event probes, counters, triggers, trace buffers, protocol-specific bus 

monitors, etc.
– Choose and place along identified paths; probe other points to capture 

additional details

§ Apply stimulus
– Run applications and benchmarks
– Capture only during performance measurement window of interest via 

triggers

§ Analyze
– Establish pass/fail thresholds for 
– Filter results and track progress: pass/fail checks, comparisons to previous 

results, etc.
– Manage results: across regressions, test categories, design changes, 

configuration settings

RunRun

Choose Metrics

Instrument RTL

Run

Analyze
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IP Integration w/Performance Validation
§ Measure event-based metrics

– Bus utilization
– Bus wait/stall statistics

§ Get full analysis of standard protocols
– Transaction latency over time
– Cache-state tracking
– Duration by transaction type
– Associate snoops and memory accesses 

to original request
– Drill-down to individual transactions as needed

§ Monitor User-defined events
– PMU monitoring, FSMs, FIFO levels, other design 

points not requiring protocol knowledge

§ Correlation between HW & Real world SW 
Tiny Yolo object 

Classifier

Event Performance

Protocol Performance

AXI4 Bus

Memory
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Ip Integration w/Power Analysis
§ Identify design hotspots from Yolo 

Tiny RTL
§ Visually  drill down into design 

hierarchies of concern 
§ Identify mistakenly active power 

domains (Power estimation + UPF)
§ Correlation of data between activity 

plot and Yolo Tiny C application 
running on Linux

Power 
Analysis
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Hybrid-Enabled Block-Level Validation 
Summary

§ Applications and benchmarks optimize HW and SW together
– Performance Analysis
– Power Analysis

§ Platform evolves to deliver optimal solution
§ Enabling a software-driven design methodology
§ Bridge the discontinuity between different levels of abstraction 

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Progression of Verification
§ IP Block Verification at RTL
§ Earliest SW Enablement (SoC context)
§ IP Block Validation Leveraging hybrid

– Using a SW enabled flow for power and performance 

§ Full SoC Verification & validation
– Focus on power & performance analysis

Power & Performance
Analysis

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Host

CPU

Peripheral 
I/F

Peripheral 
I/FMemory

ML
Accelerator

Interconnect

HLS C

RTL

System Integration with full RTL
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RTL

SoC Integration
§ Full RTL

– Although some users are moving to hybrid (almost) everything
– Leading edge of largest chips being designed

§ Objectives:
– Ensure the fully integrated SoC functions properly, at least through initialization-reset, 

usually OS boot

§ Analysis of non-functional requirements
– Power
– Performance

§ Verification of DFx
Instrumentation

CPU

Peripher
al I/F

Peripher
al I/FMemory

ML
Accelerator

Interconnect
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Key user requirements for power analysis
1 Power w/ Real-world Scenarios/SW:

Early power trend analysis at full SoC while running real world user scenarios and software

2 Accurate RTL/GL average and peak power:
Generate accurate average and peak power numbers in target application environment with RTL 
and gate level netlist

3 Power Optimization:
Identify potential power optimization opportunities early in design cycle for architectural tradeoffs

4 Low-Power Control via HW/SW:
UPF-based low power verification with power controls coming from SW applications

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
99



Typical power app
How it works

• Design (RTL/Gate)
• Liberty file
• UPF file
• Power Stimulus 

Waveform

File-based
SAIF/FSDB Power Tools Average Power

Peak Power

Streaming API Power Tools Average Power
Peak Power

Power Trend 
Analysis

Activity Map

Activity Factor

Activity Plot
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Complete Power Solution

Activity 
Plot

Power OptimizerPower Estimator
Read API

FSDB/SAIF

Verify Design Changes

always@(posedge clk)
q<=d;

always@(posedge clk)
if(en)
q<=d;

Power tools

Billion’s of clock cycle Million’s of clock cycle Accurate power numbers Low Power RTL Edit’s

Emulator
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Early Power Trend Analysis
Activity Plot

§ Activity Plot

– Generate very fast power profile for logic and memory

– Very high correlation with actual power graphs

– Identify power peaks, valleys and di/dt

– DvFS what if analysis

– Verify power domain ON/OFF via UPF

§ Enabling technology with emulation

– Capacity to handle large SoC

– 100% visibility of all the design signals

– Fast waveform upload

– Accurate modeling of power components @ RTL (clock gating, multi-bit flop, 

voltage scaling, read liberty files)

– Top down GUI based power analysis

Power App 

RTL or 

Gate

Test

Bench

Liberty 

files

withInstantiated Memories

Activity Plot

Enables very fast Power profiling at full-SoC while running very long customer scenarios
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Hotspot Analysis
Activity Map

§ Identify design hotspots for representative scenarios
§ Visual drill down into design hierarchies of concern 
§ Identify mistakenly active power domains (Power estimation + UPF)
§ Time synced with activity plot and waveform
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YoloTiny power analysis

§ Power “hot spot” map, power activity plot
§ As cursor moves in activity plot, hot spots at that 

simulation time are shown in map
§ Upper left pane shows the main yolo CNN layers 

for which power activity data was captured

max_pool 0-3
layer “hot spot”
tiles

conv 0-8
layer “hot spot”
tiles
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YoloTiny power analysis

§ Individual contributions are shown for highlighed modules in leftpane

YoloTiny Power Analysis
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YoloTiny Power Analysis

§ Individual contributions are shown for highlighed modules in leftpane
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

106



YoloTiny power analysis

§ Individual contributions are shown for highlighed modules in leftpane
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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YoloTiny power analysis

§ Individual contributions are shown for highlighed modules in leftpane
Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC

……

YoloTiny performance analysis (System Level Analyzer)
§ Emulator and FPGA proto platforms allow massive amounts of probed 

performance data collection in a relatively small amount of time
§ Non-intrusive probing into DUT using SystemVerilog’s ‘bind’ construct
§ When simulation occurs, captured probed events are efficiently directed 

into an SQL database
§ Builtin collection of graphing plugins can be used to create displays of a 

variety metrics and visualizations
§ Custom plugins are easy to create using standard SQL query commands 

interfacing to back-end tools such as open-source data analytics, 
Matlab, etc.

Emulator/FPGA proto

XlAcChannel
XlAcChannel

Event probes
Protocol probes

SQL 
Probe 

Database

Graphing 
plugins

Custom 
pluginsMatlab

modules

Open-source 
data analytics
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YoloTiny performance analysis (System Level Analyzer)

§ Customized probe events defining activity into and out of each layer can be defined
§ In this case a custom “plugin” was created to generate Matlab™ graphing plots

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Pre-Si Validation – SoC’s Digital Twin

§ Bring SW to alpha release state

– Before 1st silicon

§ Validate post-Si lab setup pre-Si

– Including debug capabilities

§ Begin validation testing

– Billions of miles to validate ADAS!

– Start pre-Si

§ Use as demonstrators

– Customers

– Government regulators, …

§ Debug issues uncovered in silicon

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
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Summary
§ In this tutorial we have shown:

– How accelerating key algorithms in HW deliver application performance
– Designing the algorithm in C++ to

− Quickly explore power, performance, area of alternative algorithmic approaches
− Verify the algorithm implemented in C++
− Use high-level synthesis to implement the accelerator in RTL

– Verified and validated the accelerator block
− Enabling SW driven system design
− Used accelerated simulation to cover deep test datasets

– Verified and validated the full SoC
− Validating power and performance of full SoC
− SoC optimized in context of SW

– We maximized reuse of block verification from C++ through RTL
− Development environments and platforms evolve to maximize reuse
− Work done at the block level, reused at SoC level
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Our Story in Five Steps
Algorithm 

Partitioning & 
Optimization

Algorithm
Design Verification Analysis Validation

• Tiny YOLO algorithm, written in 
Python, executed in TensorFlow 
on a desktop or laptop as stand 
alone

• It inferences a camera input and 
it displays processed output on a 
screen
• Verify algorithm works 

properly

• Manual conversion of Tiny YOLO 
to C for High-Level Synthesis
• Target wide variety of 

implementation architectures 
without re-coding 

• Common testbench for 
different abstraction levels

• Automated creation of bus 
interfaces to surrounding 
system

• Block-level verification at C and RT 
levels with a reusable verification 
environment

• Exploiting hybrid platform to 
maximize flexibility in verification

• And, enable earliest SW 
development and SW-driven 
verification

• Utilize HW-assisted verification for 
large dataset tests and full SoC 
verification

• Early & continuous power, 
performance analysis from 
algorithm through full SoC

• Utilize hybrid to focus analysis at 
block or broader levels

• Execute platform with same 
software stack from Hybrid 
platform
• Realistic Performance
• Accurate Power
• Functional Coverage

• Block-level validation in SoC 
context with hybrid

• Prototype full SOC
• Enable complete SW stack & 

system validation
• Using real-world stimulus

• Pre-Si Validation
• Connect to real interfaces, at 

speed
• Prepare post-Si validation 

environment, tests and debug 
capabilities

• Speed ~ 0.4 sec/inference • Speed ~ 4 sec/inference Speed:
• 21,000 sec/inf RTL SW sim
• 10 sec/inf emulation
• 0.03 sec/inf prototype

Tutorial: Application Optimized HW/SW Design & Verification of a Machine Learning SoC
113



CONCLUSION AND Q & A
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