
Application of SystemC/SystemC-AMS
 in 3G Virtual Prototyping

Tao Huang
Infineon Technologies

Germany

Tao.Huang@infineon.com

Stefan Heinen
Infineon Technologies

Germany

Stefan.Heinen@infineon.com

Abstract
In this paper, we describe the application of the Timed Data Flow
(TDF) feature of the recently released SystemC-AMS standard in
the context of a 3G modem Virtual Prototype.

By realizing the data flow of our 3G hardware models based on
SystemC-AMS TDF we demonstrate the utilization of TDF in a
complex virtual prototyping platform and elaborate how a basic
shortcoming currently present with TDF can be worked around.

Finally, we perform an ad-hoc comparison of the scheduling
speed of SystemC-AMS TDF, plain SystemC and a commercial
data flow simulation tool.

1. Introduction
System Modeling and Virtual Prototyping have been attracting
growing attention in the semiconductor industry over the past
years. Today, Virtual Prototyping plays an important role in pre-
silicon software development and verification and allows for sig-
nificantly shortened time-to-market cycles.
The initiator for the success of System Modeling was the devel-
opment of SystemC as a means to describe the timed behavior of
hardware using the high-level programming language C++.
With SystemC, hardware units can be efficiently modeled and
meanwhile the standardization of interfaces like TLM2 allows
exchanging of models in an ever-growing community.
One domain where SystemC was less successful so far is the algo-
rithmic elaboration, taking place in a product development phase
where neither timing nor architecture is defined and engineers
want to concentrate only on the performance of their algorithms.
For this task, developers consider SystemC's event-driven simula-
tor usually as not efficient enough and fear that SystemC-based
modeling involves a lot of simulation-related details, which dis-
tract the attendance from the actual topic of algorithm develop-
ment. Tools like Matlab, SystemStudio or SPW, which allow for
modeling at higher abstraction levels, are therefore dominant in
this area.
So far, developers who wanted to combine the advantages of Sys-
temC based control flow modeling with abstract data flow mod-
els, were therefore forced to resort to usually cumbersome co-
simulations with aforementioned tools. The release of SystemC-
AMS Timed Data Flow (TDF) now opens the chance to effi-
ciently model the algorithmic data flow directly in SystemC, effi-
ciently both in terms of simulation speed and modeling effort.
In our contribution, we describe the application of SystemC TDF
in the complex Virtual Prototyping context of Infineon’s 3G mo-
dem solution. This is a perfect test field since the 3G physical

layer consists of a couple of number-crunching hardware units,
whose data paths are currently realized in our Virtual Prototype
by co-simulations with a commercial tool.
The rest of the paper is structured as follows. In Section 2 we
describe our model-driven design flow and demonstrate in Section
3 the applicability of SystemC TDF in the Virtual Prototyping
environment by integrating a SystemC TDF based data path
model in the system context of the 3G Virtual Prototype.
Section 4 gives a brief ad-hoc overview about the scheduling
performance of TDF compared to plain SystemC and a commer-
cial tool.

2. System Level Modeling Flow
In the world of digital communication the development of sys-
tems is separated into several phases. The beginning of the devel-
opment cycle is characterized by scientific engineering work on
algorithms, including their development, evaluation, selection and
optimization. Simulation at this stage takes place at a very ab-
stract level since the focus is on algorithmic performance and
high simulation speed rather than on architectural details. There-
fore, stream-driven data flow modeling is widely used in this
development phase.

As soon as the algorithmic exploration phase is finished, the true
timing behavior of different functional units interacting with each
other in the whole system gets into the focus. Naturally, timed
event driven simulation, as e.g. provided by SystemC, is better
suited for such kind of control flow modeling [1].

2.1 Data Flow Modeling
One main idea of the SystemC-AMS extension on top of SystemC
is to provide the essential modeling formalisms required to sup-
port Analog Mixed Signal (AMS) behavioral modeling at differ-
ent levels of abstraction. Timed Data Flow (TDF) is one of the
models of computation, which significantly simplifies the model-
ing of abstract data flow graphs.
TDF uses a dedicated scheduling mechanism embedded into the
SystemC simulator, which provides high simulation speed thanks
to a static schedule being computed at the beginning of a simula-
tion. I.e. other than in event-driven simulation, where a dynami-
cally growing event list for each time instant determines what has
to be done next, in a static schedule the order of execution is pre-
determined right from the beginning and does not change
throughout the simulation. This becomes possible by restricting to
fixed rate relationships between the TDF processing entities.
As any type of C++ data can be communicated over TDF nets, the
above fixed rate limitation can be relaxed in the following way: if
the dynamically growing/shrinking vector<> from C++’s stan-

dard template library is used, also variable data rates become
possible. Each time a TDF module is activated, it receives and
processes a given number of data items provided by the previous
TDF module and sends the processed data to the next module.
In Figure 2-1, a schematic block diagram of a simple linear data
path graph is shown. Each data processing step is implemented in
a dedicated TDF functional module. The whole data processing
chain can be instantiated in a top level SystemC module.
The scheduling constraints are given by the modeler in terms of
the parameters “time step” and “rate” for each module / port of
the data flow graph. The top level module provides standard Sys-
temC ports as interfaces to the outside world such that it can
seamlessly be embedded in an overall SystemC simulation.

Figure 2-1: Example of data path models

2.2 Time Behavior Modeling
Developing embedded software on virtual hardware implies more
than just functional correctness of the models. Also the time be-
havior modeling is an important issue due to the real time interac-
tion of different hardware units as well as between software and
hardware.
Event-driven, time aware simulation as provided by SystemC is
an adequate basis for such modeling tasks. A mandatory require-
ment to an overall development flow is that the functional models
from Section 2.1 can be reused one-to-one in order to minimize
modeling effort and to avoid the risk of conversion errors.
In our research case, the reuse is achieved by integrating the TDF
data flow graph into a SystemC control flow model. Figure 2-2
illustrates the structure of such an integrated hardware model. The
unchanged data flow model from Figure 2-1 serves now as the
hardware unit’s data path, which exchanges data and register in-
formation with the surrounding event driven simulation domain
via buffered ports.
Since the data path model is an outcome of the algorithmic explo-
ration phase, where timing is not yet considered, usually no mean-
ingful time annotation comes along with such models. As pure
functional models they would basically run in zero time from the
SystemC simulator’s point of view. Therefore, methods of calling
and controlling a data flow simulation under consideration of the
temporal dimension are required.

Two essential components are added to make the model applica-
ble in a timed system model context. First, a virtual bus interface
providing a time-aware transaction level interface for register
read/write accesses as well as controllers for reset handling,
clocking and interrupt generation, and second, a state machine
controlling the timely reading/writing of inputs/outputs and the
invocation of the TDF simulation as indicated by the dashed ar-
rows in Figure 2-2.
Figure 2-2 schematically sketches the structure of a state machine
having four states. In the Idle state, the module waits for being
activated. Once triggered by a register access or some other spe-
cific event, a transition into the Read state takes place. At this
state, the required input data and register information are ex-
tracted from the bus interface and stored in a buffer which serves
as the input to the TDF model.
As soon as the scheduling conditions for the data path processing
are fulfilled, the state machine transits to the Run state, in which
the TDF simulation is activated. The inputs in the buffer are proc-
essed and the results of the data path computations are written to
an output buffer.
Finally, in the Output state, the data processed by the TDF model
is transferred to the outside world and status registers are updated.
Here is where time annotation comes into play: As the model has
to reflect the actual computation time of the hardware’s data path,
the Output state is taken only after the annotated computation
time, such that the output data becomes present in coincidence
with the real hardware. This is important e.g. to detect any prema-
ture software accesses to the data path results.

Figure 2-2: Structure of functional units

2.3 TDF Controlling
One problem comes along with using a TDF model in the above
way. As the TDF simulator is realized on top of the SystemC
simulator kernel, there is only one unique simulation context,
which means when sc_start is executed, both SystemC and TDF
simulations start simultaneously. This has to be avoided because
the TDF modules are serving in our application as data processing

units that only may be started when the control state machine
allows it.
Either a start/stop controlling mechanism or an independent simu-
lation context for TDF modules would be desirable. Unfortu-
nately, in release 1.0beta1 of SystemC-AMS, which we used as
the basis for this work, such features were not yet implemented.
In the next two subsections, we investigate two workarounds to
overcome this current shortcoming of SystemC-AMS TDF.

2.3.1 Dynamic Time Step (DTS)
When integrating TDF into SystemC a mapping between TDF
ports and SystemC discrete event (DE) ports has to be accom-
plished. The SystemC-AMS simulation kernel is using its own
simulation time ttdf, which is different from the SystemC discrete
event simulation time tDE. If a pure SystemC-AMS TDF model is
used, the SystemC-AMS simulation kernel is always blocking the
DE kernel, so tDE does not advance at all. For this reason, Sys-
temC-AMS provides converter ports, named
sca_tdf::sca_de::sca_out<T>,
sca_tdf::sca_de::sca_in<T>
for the connection and synchronization between TDF ports and
DE ports. When converter ports are accessed from the process-
ing() method of a TDF module, the SystemC-AMS simulation
kernel stops the execution of the static schedule and gives control
to the SystemC simulation kernel so that the SystemC model can
execute until tDE equals ttdf, so that the DE and the TDF models
get synchronized with respect to their interface behavior [2].
The main idea of Dynamic Time Step (DTS) is to “sleep” and
“wakeup” the TDF simulation by dynamically adjusting the time
step of the TDF module. Table 2-1 shows a template of a DTS-
enabled TDF model. At the instantiation phase the method
set_attributes() is executed, which sets the time step of the mod-
ule initially to a value much greater than the actual simulation
time, 10000 seconds here. This lets the TDF module virtually
“sleep” at the beginning of the simulation.

Table 2-1: TDF module with dynamic time step settings

To wakeup the TDF module, a dedicated converter port vdd is
introduced and the model is synchronized to its default event
using sca_synchronize_on_event(). When the converter port
changes its value, the module will be started and the default proc-
essing method processing() is executed. If vdd carries a “1”, the
TDF time step is set with sca_next_max_time_step() to the small-
est possible value, 1 pico second here, in order to let it virtually
finish in “zero time”. Next time the TDF scheduler invokes the
model, the module time step is set back to 10000 seconds so that
the module “sleeps” again.

The above procedure works under the assumption that the consid-
ered TDF model has to be executed exactly once per invocation of
the data path processing. If the rate relations inside the data path
chain require multiple executions of certain TDF models, addi-
tional measures have to be taken.
Another less attractive point of this method is that the functions
sca_next_max_time_step() and sca_synchronize_on_event() are
declared as private methods in sca_module.h of the SystemC-
AMS version 1.0beta1. To make them callable them from the
processing() method of the TDF model, it is necessary to patch
them to protected.
All together makes the handling of TDF in our application case
somewhat cumbersome. However, TDF-DTS definitely offers the
user clear advantages. First is the simplicity of the connections
between TDF and SystemC modules in terms of the TDF con-
verter ports. This means that no additional interfaces and func-
tions are required for the information exchange. Second is the
integrity of system level simulations, which means that the TDF
simulation and the SystemC simulation are compiled into one
executable without the need of inter-process communication or
third party library linking, which would be necessary with a co-
simulation approach.

2.3.2 TDF in a Nutshell
Besides the DTS, we investigated also to put the TDF data path
simulation in a separate compilation entity, namely a Dynamic
Linked Library (DLL). The main idea of this approach is to pack-
age the TDF module together with its own SystemC-AMS simula-
tion kernel into a DLL, which is then controlled from the master
SystemC model. In this way, the simulation context of the Sys-
temC-AMS simulation is decoupled from that of the controlling
SystemC simulation.
One way of starting/stopping of the DLL-based TDF simulation
can now be easily achieved by setting the SystemC-AMS simula-
tion duration such that one full data path processing cycle is exe-
cuted by calling sc_start via the DLL interface. However, this
mechanism suffers from much additional computation load be-
cause the elaboration phase is repeated each time the data path is
invoked.

SystemC simulation platform SystemC-AMS DLL simulation
platform

evt.notify()

loading
SystemC-AMS

DLL
SystemC Simulation

Starting SystemC-AMS
TDF Data processing

Wait Function
(sc_event evt)

SystemC-AMS
Simulation

Synchronization Call
(inside first TDF model)

TDF Data
Processing Path

Figure 2-3: Controlling mechanism using a TDF DLL

In order to overcome this shortcoming, we investigated another
start/stop controlling mechanism. Figure 2-3 presents our solu-
tion. At SystemC’s instantiation phase the SystemC-AMS TDF
DLL is loaded and the SystemC-AMS simulation is started. To

make the TDF start/stop controllable, we put a synchronization
function in the first TDF model of the data path chain. This syn-
chronization function is in fact implemented on the SystemC side
of the master model and basically executes a wait() for the start
event evt that typically would be triggered in the Run state of the
control state machine.
When this happens, the TDF synchronization call resumes and
gives the execution back to the TDF simulation. As soon as the
TDF chain enters the next processing cycle it stalls itself again by
executing the synchronization call.
Table 2-1 shows the implementations of both the TDF and the
corresponding SystemC parts. There are three main functions
defined in main.cpp of the SystemC-AMS DLL: Initialize_TDF(),
SendToTDF_Source() and Run_TDF(). The function Initial-
ize_TDF(), which is called in the constructor of the SystemC
module, is used to instantiate the modules of the TDF simulation
and also to transmit the address of the SystemC synchronization
function sc_wait_addr() through the constructor to the first TDF
model. The purpose of SendToTDF_Source() is to transport the
input data to the data buffer of the SystemC-AMS simulation
(source). Run_TDF() is called by a root SC_THREAD on the Sys-
temC side in order to start the TDF simulation right at the begin-
ning and setting it into standby mode. The simulation duration of
the TDF simulation may be set to infinity as it stops together with
the controlling SystemC simulation anyway.

Table 2-2: TDF in a nutshell / DLL approach

In the master SystemC module, the function controlling the TDF
simulation is Start_SystemC_AMS_Simulation(). By notifying the
event evt, the TDF simulation will get out of the SystemC wait
function in method sc_model::_Wait_Function() and execute the
TDF modules for one processing cycle. Note that for better read-

ability we omitted the c-syntax and glue code necessary for com-
municating and calling the function pointers provided by the
DLL.
Compared to the DTS approach, packaging the TDF model into a
DLL avoids the somewhat cumbersome dynamic switching of
time steps and patching of SystemC-AMS source code. On the
other hand one major advantage of the TDF, namely the seamless
interfacing with SystemC has to be sacrificed and additional code
needs to be added for the transport of data between the SystemC
and TDF domains as well as for the start/stop control.
So in fact none of the considered solutions to the TDF control
issue is really satisfying and our hope is that future SystemC-
AMS releases will have better mechanisms already on board to
accomplish the task considered here.

3. Integration into a SoC Virtual Prototype
The final step of our system modeling flow is to integrate the time
behavioral models into a system architecture model. Figure 3-1
displays the overall structure of this Virtual Prototype (VP). Be-
sides the signal processing peripheral models with their algo-
rithmic TDF kernels, the system model also contains pure Sys-
temC models, which cover control functionalities of the chip,
such as interrupt, memory or clock control.

BUS SubSystem

... Signal
analyzer

S12

S13

S14

S11

Signal
generator

M1

Bus Interface Model

Sk2

Sk3

Sk4

Sk1

Bus Interface Model

Mn+1 Mn+k

µC FW
SubSystem

Event Driven Simulator Event Driven Simulator

Bus Interface Model

SystemC Control Flow Model

SystemC-
AMS TDF

Model

Idle

Read

Run

Output

Input Output

Buff
er

Buff
er

Mn

Bus Interface Model

SystemC Control Flow Model

SystemC-
AMS TDF

Model

Idle

Read

Run

Output

Input Output

Buff
er

Buff
er

Figure 3-1: Structure of Virtual Prototype

From the firmware programmer’s point of view, the VP function-
ally and temporally behaves (in the limits of the chosen approxi-
mations) like real hardware, also known as Programmers View,
Timed (PVT). Pre-developed embedded software, can now be
integrated on the VP and incrementally feature by feature can be
brought up and running, typically several months before the real
hardware is available.

4. Assessment of the Scheduling Performance
In order to assess the performance of the TDF scheduler, we per-
formed simulations with (a) plain SystemC (in data flow emula-

tion mode), (b) SystemC-AMS TDF, as well as (c) a commercial
tool supporting both dynamic and static stream-driven scheduling.
To make sure that the same defined number of context switches
occur in (a), (b) and (c), we choose the sample system shown in
Figure 4-1 and identically implemented it for the different simula-
tion environments. The feedback loop forces the scheduler to call
the models Delay, Module_1, Module_2 and Module_3 in se-
quence for each data token being transported from the source to
the sink. Without this feedback, it would in principle be possible
for the scheduler to apply optimization strategies, e.g. to do a
block processing for multiple data tokens per module invocation,
which would reduce the number of context switches significantly
and hence weaken the comparability of the results.
Since the test is focusing on the speed of the scheduling mecha-
nism the models of the simulation chain do not have any func-
tionality, i.e. they are just feeding through their input values to the
outputs.

Figure 4-1: Structure of speed measurement system

The average simulation durations of the different schedulers (a)-
(c) are displayed in Table 4-1.

Table 4-1: Measured Simulation durations (ms)

SystemC-AMS TDF gives roughly a gain of 3.5 compared to
SystemC’s event-driven simulation mechanism (the event-driven
scheduler in this case was abused to mimic a stream-driven be-
havior of the simulation).
However, as an open source tool TDF still has a large improve-
ment space in the efficiency domain compared to the commercial

tool we investigated as a reference. Considering static scheduling
the commercial tool outperforms TDF by roughly a factor of 30
and even dynamic scheduling is about 3 times faster than TDF.
Of course some care is necessary in interpreting these figures. In a
meaningful simulation the modules are not just feeding through
but involve possibly highly complex computations, which usually
by far dominate the overall simulation speed in the end.

5. Conclusion and Future Work
In this paper, we describe a model-driven system design flow
based on SystemC and its AMS extension. In this context we
focused on the data flow modeling using Timed Data Flow (TDF)
and the integration of it into traditional SystemC control flow
models.
Our experience is that TDF is in fact well suited for algorithmic
design even in such complex algorithm-dominated domains like a
3G system. Reasons making TDF attractive for algorithm design
are its open-source availability, its higher simulation speed com-
pared to plain SystemC, the seamless SystemC embedment and its
high level of abstraction.
We also describe our experiences with the integration of TDF
simulations into a SystemC control flow model. Two approaches,
Dynamic Time Step (DTS) and Dynamic Linked Library (DLL)-
packaging, are introduced to realize dynamic start/stop control of
an embedded TDF simulation.
Finally, we successfully applied the TDF models as data path
kernel simulations of some of our 3G hardware models, and in
this way proved the applicability of SystemC-AMS TDF in a
complex Virtual Prototyping platform.
Future work will focus on two aspects: First, research the effects
of a broader rollout of SystemC-AMS simulations in even larger
and more sophisticated systems. Second, foster the development
of new features of the SystemC-AMS kernel, which support an
easy-to-use start/stop controlling mechanism for embedded TDF
simulations.

6. References
[1] Heinen, S. and Joost M. 2009. Firmware Development for
Evolving Digital Communication Technologies. In Hardware-
dependent Software, pp. 151-171, Springer Science, ISBN 978-1-
4020-9435-4
[2] Damm M., Grimm C., Haase J. and Herrholz A. 2008. Con-
necting SystemC-AMS Models with OSCI TLM 2.0 Models Using
Temporal Decoupling. In Forum on Specification, Verification
and Design languages, pp. 25-30, Stuttgart, ISBN 978-1-4244-
2264-7

