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1. INTRODUCTION 
Based on widely used and emerging protocols, standards-compliant 

third-party Verification IP (VIP) is rapidly being adopted to 

accelerate the development of a complete verification environment. 

Since the High definition Multimedia Interface (HDMI) supports a 

wide variety of audio and video formats, one of the major challenges 

in verifying it is to create all kinds of stimulus responsible to 

generate various types of frames. At Qualcomm we chose Synopsys 

HDMI VIP as it was compliant with the HDMI-2.0 specification, 

adheres to the latest verification methodologies such as Universal 

Verification Methodology (UVM) and was developed using 

SystemVerilog. 

The main focus of this paper is to reduce the system level test 

generation cycle for verification of any complex protocol based 

DUT. Using the example of a HDMI UVM VIP based application 

layer, this paper discusses how an application layer can ease the 

process of creating application specific tests  over a third party VIP 

without having to be very well acquainted with  the VIP 

infrastructure and the underlying protocol. Such an approach also 

cuts on the learning curve associated with the usage of a third party 

VIP. 

The HDMI VIP uses UVM-compliant classes to represent protocol 

activity and the characteristics of that activity. For example, a 

transaction object has members that define the audio and video 

information being transmitted. A set of base classes provide common 

functionality and structure to form the foundation for the entire 

HDMI VIP.  

In a testbench, an HDMI VIP agent can be a source in active mode or 

as a sink with EDID enabled optionally. Stimulus is created as a 

UVM sequence with constrained random values for frame line values 

of R, G and B components during video active period. These values 

can be randomized either independently or could depend on certain 

HDMI VIP configuration parameters. A test would run many 

standard HDMI frames from source to sink of a certain format type.  

The HDMI VIP has a default functional coverage model 

implemented as user extensions or callbacks to the HDMI monitor. It 

has a rich set of covergroups on HDMI configuration and HDMI 

frame line class for comprehensive functional coverage.  Enhanced 

debug and validation is provided by allowing the user to read in 

audio video data, by-passing the built-in generation infrastructure. It 

incorporates place-holders for hooking the DUT on one side and C 

based model on the other thus enabling reuse of C based models for 

stimulus generation. To increase throughput per test, the UVM 

phasing mechanism is leveraged to revert to the post-configure 

phases to line up multiple tests in one simulation. 

 

This paper demonstrates how a UVM compliant VIP enabled us to 

create a highly configurable testbench which can be re-used at 

multiple stages of verification, validation and prototyping. 
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2. HDMI PROTOCOL OVERVIEW 
The HDMI is the de-facto standard for digital connection for 

consumer electronics and PC products. It delivers highest quality 

audio/video signal over a single cable. HDMI system architecture is 

defined as consisting of Sources, Sinks, Repeaters, and Cable 

Assemblies. A given device may have one or more HDMI inputs, 

and one or more HDMI outputs. The HDMI cables and connectors 

carry four differential pairs that make up the TMDS data and clock 

channels as shown in Figure-3. These channels are used to carry 

video, audio and auxiliary data. Note that this paper doesn’t talk 

about the Consumer Electronics Control (CEC) protocol associated 

with a typical HDMI device.  

A HDMI source is responsible to send frames onto the Transition-

minimized differential signaling (TMDS) interface, while a HDMI 

sink receive them. The sink never responds back to the data from 

source. As shown in Figure 3, an HDMI link includes three TMDS 

data channels and a single TMDS clock channel. Each frame consists 

of a set of lines as per the HDMI specification. Each line is further 

segmented into video data audio data and control periods. The 

complete feature list can be referred from [2]. 

 

 
Figure 1 :- HDMI source(Tx) and sink(Rx) block Diagram 

 
Since the HDMI protocol supports a wide variety of audio and video 

formats, one of the major challenges is verifying all the different 

frames across all the different configurations.  

 

3. HDMI UVM VIP ARCHITECTURE 
Figure-2 shows the architecture of Synopsys SVT (SystemVerilog 

Technology) UVM based HDMI VIP.  
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Here are some of the features of the UVM VIP which are in our VIP 

adoption guidelines. 

 

Configuration: A protocol such as HDMI gives the flexibility of 

working with different parameters. For example, the device can take 

a varying number of frames to stabilize the video signal. Hence, to 

address all such requirements, we would need to bring in the UVM 

Resource mechanism to provide the configurability required. The 

UVM VIP has a configuration class which is shared across all 

components. This class is randomized in the build phase and then 

propagated down to different individual component using the UVM 

Resource mechanism [6]. This sharing allows individual components 

to reconfigure themselves dynamically at different points in time. If a 

user needs to change the configuration properties for specific tests, it 

would require setting constraints on a derived configuration class and 

overriding the configuration class in the environment using factories 

or through UVM configuration mechanism. 

 

Stimulus generation: To stay consistent with the architecture of the 

HDMI and Consumer Electronic Control (CEC) protocols, a layered 

approach has been adopted by the UVM VIP for stimulus generation. 

There are transaction classes for each of these layers (HDMI and 

CEC). These are typical UVM data descriptors which will translate 

to protocol specified frames.  

 

Transaction level Interfaces: UVM analysis ports broadcast the 

required parameters to the coverage and scoreboard models.  

 

Extension points: The VIP provides a rich set of UVM based 

callbacks across the different layers so we can add in project or test 

specific extensions. 

 

Data Exceptions: The extension points can also be used for changing 

the default stimulus and generate appropriate conditions for negative 

tests. A number of exception data classes are defined within the VIP 

library for this purpose. 

 

Factory Infrastructure: The VIP provides the user with the benefit of 

overriding the default behavior of VIP components by providing user 

specified extensions. This allows the user to meet the unpredictable 

needs of different tests.  

 

Event synchronization: Many UVM events are provided so users can 

synchronize their testbench with transition of data or states within the 

VIP. Most events are tied to the HDMI standard but there are a few 

that are generic notifications from the data class.  

 

Sequence Library: A rich set of sequences are available with the 

HDMI VIP. These can be readily leveraged in tests by setting them 

as the default_sequence of the HDMI source sequencer or by 

explicitly starting them on the HDMI source sequencer. These 

sequences help generate various types of HDMI compliant frames. 

These are the building blocks for the user to stitch together a 

complicated scenario if required. 

 
Figure 2 :- Synopsys HDMI VIP Block Diagram 

 

 

3.1 VIP usage and Configurability 
The HDMI VIP can be configured to have either or both of the 

following two environments:  

 

Source Environment - The Source Environment encapsulates the 

Source Agent and the CEC Agent (if CEC is enabled). It also 

contains the Source configuration object and a virtual sequencer to 

orchestrate the HDMI and CEC sequencers. 

 

Sink Environment - The Sink Environment encapsulates the Sink 

Agent and the CEC agent (if CEC is enabled). It also contains the 

Sink Configuration object and the CEC sequencer. 

 

The HDMI VIP can be configured either as source or sink. This 

requires either of the Source/Sink Environment to be instantiated and 

hooked onto the TMDS interface. The Environment should be 

configured with the corresponding configuration object descriptor. 

Both Source and Sink configuration objects encapsulate audio and 

video configuration objects to support various types of audio and 

video attributes such as ASP audio or 24bit color video etc. The 

complete list of attributes can be referred from [3]. Additionally, 

these objects have parameters to control a host of features such as the 

number of frames to be sent; enabling/disabling coverage, etc. 

These configuration objects are created in the UVM testbench. Their 

attributes are then set or randomized then propagated to either the 

Source or Sink Environments using the UVM Resource mechanism 

to configure the individual VIP components. The various modes of 

operation and the complete feature list can be referred from [3]. 

 

4. The Testbench 
The structural testbench integration was done as shown in the figure 

3 and 4 below. It uses the Synopsys UVM compliant VIP and rest of 

it is Qualcomm proprietary testbench component to verify the audio 

and video data path of HDMI based design.  
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Figure 3 :- Synopsys HDMI VIP integrated in Qualcomm 

testbench. 
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Figure 4 :- Synopsys HDMI VIP integrated in Qualcomm 

testbench. 
 

The DUT is a video capture and processing subsystem that is a front-

end to various video interfaces, including HDMI. The DUT consists 

of a set of DSP-intensive video processing blocks which process 

incoming analog/digital video streams and stores them into system 

memory.  

The video processing blocks within the subsystem are modeled using 

SystemC reference models which are simulated within a C/C++ 

reference testbench as shown by the orange components in Figure 3. 

The SystemC reference models are used to generate reference 

memory dumps from a given video frame(s). The C/C++ reference 

testbench is a pure software testbench which simulates only the 

SystemC reference models and generates reference memory dump 

files used for comparison.  

In the other configuration (blue components in Figure 3) the C/C++ 

RTL testbench instantiates the HDMI Source VIP and the DUT, and 

the same video frame(s) is passed to the HDMI Source VIP which 

transmits it to the DUT. The DUT processes the video stimuli(s) 

from the HDMI VIP and generates a memory dump which is then 

compared to the memory dump generated by the reference testbench.  

Since the reference testbench is used to validate the results from the 

RTL testbench, the video configuration and the video stimuli needs 

to be kept consistent between the C/C++ reference testbench and 

C/C++ RTL testbench.  

 

4.1 Application layer 

 
Figure 5 :- Application layer concept 

 
The application layer comprises code which translates the high level 

scenarios to be tested into the low level configurations and stimulus 

to be provided to the VIP as shown in Figure 5 above. 

A typical test would run different numbers of standard HDMI frames 

from source to sink of a certain format type land the respective Video 

ID codes. Thus, based on the test flows, a distinct set of the 

permutations can appropriately be sequenced. The application layer 

will map various HDMI VIP configurations or frame line parameters, 

tweak the relevant constraints and then create the logical order of 

atomic sequences as well as appropriate extensions of the VIP 

configuration classes. At the same time, the covergroups either on 

HDMI configuration or HDMI frame line class are interpreted to 

generate a suitable coverage and scoreboard model, and the 

respective ports (HSYNC/VSYNC/DE/VD) made available for 

debug as required. In the case of image processing, an enhanced 

debug and validation experience can be provided by allowing user 

intervention in reading in images by-passing the generation 

infrastructure. To increase throughput per test, the UVM phasing 

mechanism needs to be leveraged to revert to the post-configure 

phases to line up multiple tests in one simulation.  

Thus, with minimal user involvement, the user is able to create and 

control the required testcases that are desired and thus concentrate on 

converging in completing the verification tasks efficiently. Though, 

the UVM based HDMI VIP was defined to demonstrate this flow, 

the various approaches and guidelines and techniques described 

above can be well leveraged with other VIPs and methodologies 

across various constrained random verification environments to 

increase the verification productivity of end users. 

 

 

4.2 Test Generation Cycle 
One of the focus of this paper is to reduce the test generation cycle 

for verification of any complex protocol based DUT. The typical 

verification cycle of a DUT is depicted in figure 6 below. Once a 

robust UVM testbench is created the test generation is one of the 

major road-block as it is a very time consuming process especially 

when using a third party VIP. There is always a learning curve with 

the usage of third party VIP which can be reduced by ensuring a 

structured way of stimulus generation. 

 



 
Figure 6 :-Typical Verification cycle of a DUT. 

 

4.3 Application Scenarios 
The typical application scenarios to test using the HDMI VIP are 

listed in Figure 7 below. It is a subset of all possible scenarios but in 

line with the application software.  

 
Figure 7 :-Application scenarios for HDMI protocol 

verification. 
 

4.4 Stimulus Generation 
Because the C/C++ reference testbench was used to generate golden 

memory dumps for comparison, identical video frame stimuli were 

applied to both the SystemC reference models and the DUT. Though 

the HDMI VIP has the capability of generating random video frames, 

it was required that the video frame stimuli needed to be generated 

from C/C++ test library and sent to the HDMI VIP via DPI-C 

functions/tasks. A DPI-C export task and a DPI-C import function 

were used for passing video horizontal frame lines from C/C++ test 

library to HDMI VIP. The DPI-C export task 

sv_hdmi_send_frame_line() is invoked from C/C++ test library, and 

within the task a DPI-C import task c_hdmi_get_frame_line_pixels() 

is invoked from HDMI VIP to retrieve the frame line from C/C++ 

test library and pack it to the HDMI VIP sequence item for 

transmission.  

By allowing the HDMI VIP to retrieve video frames from the C/C++ 

test library, the same video frame stimuli can be applied to both 

testbenches for producing golden memory dumps. 

 

 
Figure 8 :- The C Side 

 

Figure 8 and 9 show the code snippet used for interaction between 

the C stimulus generation and SystemVerilog HDMI VIP.  

 

 
Figure 9 :- The SV side 

 

4.2 HDMI VIP and Reconfiguration 
The correct configuration for the VIP was known sometime during 

the run_phase. On the other hand, the source model needed the 

correct configuration to start the model during build_phase. This 



called for a reconfiguration of the HDMI VIP during run phase as 

shown in Figure [10]. This enables the integration of the HDMI VIP 

into non-UVM testbenches. Of course some of the configuration 

attributes are static and cannot be changed during run_phase but 

most of them being dynamic enabled a robust reconfiguration. 

 

 
Figure 10 :- reconfiguring the model 

 

The new configuration was randomized to ensure all the 

configuration parameters obey the reasonable and valid constraints as 

part of the VIP. These constraints ensure that the protocol 

specification is not violated. For example, in Digital Visual Interface 

(DVI) mode the VIP ensures there are no data island packets by 

constraining the attribute no_of_di_pkt of the frame line class to 

zero. The user-constraints added for this testbench ensured that some 

of the configuration values which came from C-side got applied to 

the system configuration of the HDMI VIP.  

 

5. Feature Verification 
Hooking up of the Protocol Analyzer helped a lot in debugging 

purposes as shown in Figure [11]. It provided a GUI based view of 

the transaction and its synchronization with the waveforms helped a 

lot in debugging at the transaction level. 

 
Figure 11 :- Hooking of the Protocol Analyser with the 

HDMI VIP 

5.1 HDCP Authentication 
The HDCP (High-bandwidth Digital Content Protection) 

authentication for the source model can be enabled by using a 

configuration attribute. The authentication in terms of reading and 

writing registers happen on the DDC (digital down-converter) or the 

i2c bus connected to the sink. Once the authentication is successful, 

the encrypted frames appear on the TMDS interface. As per protocol 

we also needed to apply a default pull-up on the sda and the sclk 

lines. 

EVENT_HDCP_AU_DONE event is triggered by the source driver 

once the authentication is done. The default keys for the cipher 

process have been taken from the appendix A of the HDCP 1.4 spec 

[7].The user had the flexibility to use his own defined set of Key 

Selection Vectors (KSV), Key set and AN through a callback task 

[pre_hdcp_keyset] in the source driver and the monitor. There is a 

minimum requirement for a frame to have at least 508 pixels (which 

is equal to `SVT_HDMI_HDCP_KEEP_OUT_START) when run 

with HDCP enabled. This will lead to errors from the model if not 

met. 

There is an array in source configuration "hdcp_seq", which the 

Source used to read/write from/to registers. Check the reasonable 

constraint shown in figure 12 below – 

 
Figure 12:- HDCP Authentication sequence by using 

SystemVerilog constraints. 

 
It was a set of reads and writes to various registers in the sink thru 

the ddc interface. This was the first authentication process, once this 

goes thru without any errors, the source will start sending encrypted 

frames on the HDMI tmds interface from the subsequent frames. 

The above read and write to the registers was observed on the DUT 

interface as shown in Figure 13 below. 

 
Figure 13: HDCP sequence as viewed on the DUT ddc 

interface 



5.2 VESA DMT frame generation in DVI mode 
The HDMI source model was configured to generate the VESA 

DMT format frames during DVI mode apart from the HDMI CEA 

frames. The configuration to switch the mode from HDMI to DVI 

came from the C-side via an API. This was then used to constrain the 

op_mode attribute of the source configuration to DVI_MODE and 

switch off the reasonable_op_mode constraint which sets the 

op_mode to be in HDMI_MODE by default. The video_standard 

attribute of the current frame video configuration was also obtained 

from the C-Side and set either to VESA or CEA as shown in 

Figure[14] below.  

 

 
Figure 14: Configuration of SV model from C 

 

5.3 Non-standard frame generation 
The concept discussed in Section 5.3 was extended to generate non-

standard HDMI frames. The typical parameters present in the HDMI 

database object that define a frame are shown in Figure [14]. The 

values in the figure is for VIC=1 extended resolution format. . The 

set_format_field and get_video_id APIs of the HDMI database were 

overridden to generate a frame of user choice i.e the frame 

parameters were redefined using the set_format_field API as shown 

in Figure[15] and subsequently the get_video_id API needs to map 

the new values of the frame parameters to the video id code. 

 

 
Figure 15: Frame parameters 

6. Guidelines for Generic VIP architecture to 

enable application layer. 
Although, we created application layer on top of HDMI UVM VIP 

the philosophy can be extended to any VIP given that it adheres to a 

certain set of guidelines as outlined below – 

1. One of the most important guideline is to have the VIP code 

strictly adhere to the UVM guidelines and best practices. Each 

component inside the VIP should enable UVM features such as 

configurations, factory overrides, callbacks as these enable a lot 

of re-use and scalable testbenches 

2. VIP code must have a rich set of constraint defining the valid 

ranges of all the parameters inside the configuration or the 

transaction data classes. This helps in coverage convergence as 

well as faster debug, in case of invalid values being driven. 

3. VIPs should provide a rich set of sequences to enable user run a 

many tests with very minimal effort 

4. Most of the VIP components should be made configuration 

aware. This ensures that the VIP configuration can be made 

available to data objects as well. For eg – Once the sequencer is 

made configuration aware, the sequences running on the same 

can request the same via the handle of the parent sequencer and 

use them accordingly as shown in Figure -8 

5. One of the interesting features of the HDMI UVM VIP which 

helped us debug while using test-gen was the is_valid check 

done by the VIP on the transaction and the configuration data 

object before using it. Primarily, these checks available inside 

the configuration and the transaction classes ensure that these 

objects do not assume in-valid values either not supported by 

the VIP or illegal as per the protocol. 

6. Use of strongly typed set and get while using uvm_config_db 

by the VIP ensured correct assignments especially if such codes 

are automatically dumped. Whenever the VIP gets a value via 

uvm_config_db it provided a check to ensure that the get was 

correctly executed. 

7. A default coverage model implemented as user extensions or 

callbacks to a monitor. This ensures ease of adding new cover-

groups to the monitor by extending the coverage model adding 

new cover group and appending it to the correct model. 
 

7. Results and Conclusion 
A challenge in the verification of a modern SoC is in creating traffic 

patterns that are of relevance to the end application. It is the task of a 

SoC verification engineer to create these traffic patterns using 

Verification IPs. But the programming interface to these VIPs is 

complicated with complex protocols such as HDMI, PCI Express, 

USB etc. This challenge can be mitigated to some extent by adding 

an abstraction layer on top of the Verification IP. 

Creating system level tests using a Verification IP can be a tricky 

problem to solve. Generally such users want a quick way to create a 

test and do not want to delve into the details of programming each 

attribute of the Verification IP whereas a typical UVM based 

Verification IP requires a bunch of configuration attributes to be 

programmed either through the configuration class of the VIP or the 

transaction object flowing through the VIP. This is integral to a VIP 

as they provide enough flexibility to test any scenario. In this paper 

we talk about a novel approach of having an application layer on top 

of any VIP to be able to translate between the system level tests and 

the VIP level configuration settings etc. 

Thus, with minimal user involvement, we were able to create and 

control the desired application level scenarios, re-use them for 

validation or prototyping and thus concentrate on converging in 

completing the verification tasks efficiently.  



Though the UVM based HDMI VIP was used to demonstrate this 

flow, the various approaches techniques and guidelines can be well 

leveraged with other VIPs and methodologies across various 

constrained random verification environments to increase the 

verification productivity. 

 

 

 

 
Figure 16 :- Coverage Vs Time for various test gen 

strategies. 
 

The graph in Figure 16 shows the reduced turn-around time by using 

an application layer such as ours. This provides coverage 

convergence much ahead of the project deadline. This is achieved by 

significantly reducing the time to adapt the third party VIP and 

reducing the time spent to write VIP specific code to configure the 

VIP or write new sequences and tests. 

Such an approach reduces the stimulus generation time using a third 

party VIP and the efforts on VIP specific code development. One can 

argue that an exhaustive set of tests supplied with the VIP can solve 

the same purpose, but with protocols like HDMI which has too many 

possibilities of audio and video types for example, it is an overkill to 

run all possible sequence of the protocol. 
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