
Abhisek Verma, Varun S

Synopsys
abhiv@synopsys.com

svarun@synopsys.com

Application Abstraction Layer: The Carpool Lane on the SoC
Verification Freeway

1. INTRODUCTION
Based on widely used and emerging protocols, standards-compliant

third-party Verification IP (VIP) is rapidly being adopted to

accelerate the development of a complete verification environment.

Since the High definition Multimedia Interface (HDMI) supports a

wide variety of audio and video formats, one of the major challenges

in verifying it is to create all kinds of stimulus responsible to

generate various types of frames. At Qualcomm we chose Synopsys

HDMI VIP as it was compliant with the HDMI-2.0 specification,

adheres to the latest verification methodologies such as Universal

Verification Methodology (UVM) and was developed using

SystemVerilog.

The main focus of this paper is to reduce the system level test

generation cycle for verification of any complex protocol based

DUT. Using the example of a HDMI UVM VIP based application

layer, this paper discusses how an application layer can ease the

process of creating application specific tests over a third party VIP

without having to be very well acquainted with the VIP

infrastructure and the underlying protocol. Such an approach also

cuts on the learning curve associated with the usage of a third party

VIP.

The HDMI VIP uses UVM-compliant classes to represent protocol

activity and the characteristics of that activity. For example, a

transaction object has members that define the audio and video

information being transmitted. A set of base classes provide common

functionality and structure to form the foundation for the entire

HDMI VIP.

In a testbench, an HDMI VIP agent can be a source in active mode or

as a sink with EDID enabled optionally. Stimulus is created as a

UVM sequence with constrained random values for frame line values

of R, G and B components during video active period. These values

can be randomized either independently or could depend on certain

HDMI VIP configuration parameters. A test would run many

standard HDMI frames from source to sink of a certain format type.

The HDMI VIP has a default functional coverage model

implemented as user extensions or callbacks to the HDMI monitor. It

has a rich set of covergroups on HDMI configuration and HDMI

frame line class for comprehensive functional coverage. Enhanced

debug and validation is provided by allowing the user to read in

audio video data, by-passing the built-in generation infrastructure. It

incorporates place-holders for hooking the DUT on one side and C

based model on the other thus enabling reuse of C based models for

stimulus generation. To increase throughput per test, the UVM

phasing mechanism is leveraged to revert to the post-configure

phases to line up multiple tests in one simulation.

This paper demonstrates how a UVM compliant VIP enabled us to

create a highly configurable testbench which can be re-used at

multiple stages of verification, validation and prototyping.

Categories and Subject Descriptors
HDMI, UVM, Re-use philosophy

General Terms
Verification, Design, Prototyping

Keywords
HDMI, VIP, UVM, CEA-861-F, VESA, DMT, HDCP.

2. HDMI PROTOCOL OVERVIEW
The HDMI is the de-facto standard for digital connection for

consumer electronics and PC products. It delivers highest quality

audio/video signal over a single cable. HDMI system architecture is

defined as consisting of Sources, Sinks, Repeaters, and Cable

Assemblies. A given device may have one or more HDMI inputs,

and one or more HDMI outputs. The HDMI cables and connectors

carry four differential pairs that make up the TMDS data and clock

channels as shown in Figure-3. These channels are used to carry

video, audio and auxiliary data. Note that this paper doesn’t talk

about the Consumer Electronics Control (CEC) protocol associated

with a typical HDMI device.

A HDMI source is responsible to send frames onto the Transition-

minimized differential signaling (TMDS) interface, while a HDMI

sink receive them. The sink never responds back to the data from

source. As shown in Figure 3, an HDMI link includes three TMDS

data channels and a single TMDS clock channel. Each frame consists

of a set of lines as per the HDMI specification. Each line is further

segmented into video data audio data and control periods. The

complete feature list can be referred from [2].

Figure 1 :- HDMI source(Tx) and sink(Rx) block Diagram

Since the HDMI protocol supports a wide variety of audio and video

formats, one of the major challenges is verifying all the different

frames across all the different configurations.

3. HDMI UVM VIP ARCHITECTURE
Figure-2 shows the architecture of Synopsys SVT (SystemVerilog

Technology) UVM based HDMI VIP.

Subramanian Kuppusamy
Qualcomm

skuppusa@qti.qualcomm.com

mailto:abhiv@synopsys.com
mailto:svarun@synopsys.com
mailto:skuppusa@qti.qualcomm.com

Here are some of the features of the UVM VIP which are in our VIP

adoption guidelines.

Configuration: A protocol such as HDMI gives the flexibility of

working with different parameters. For example, the device can take

a varying number of frames to stabilize the video signal. Hence, to

address all such requirements, we would need to bring in the UVM

Resource mechanism to provide the configurability required. The

UVM VIP has a configuration class which is shared across all

components. This class is randomized in the build phase and then

propagated down to different individual component using the UVM

Resource mechanism [6]. This sharing allows individual components

to reconfigure themselves dynamically at different points in time. If a

user needs to change the configuration properties for specific tests, it

would require setting constraints on a derived configuration class and

overriding the configuration class in the environment using factories

or through UVM configuration mechanism.

Stimulus generation: To stay consistent with the architecture of the

HDMI and Consumer Electronic Control (CEC) protocols, a layered

approach has been adopted by the UVM VIP for stimulus generation.

There are transaction classes for each of these layers (HDMI and

CEC). These are typical UVM data descriptors which will translate

to protocol specified frames.

Transaction level Interfaces: UVM analysis ports broadcast the

required parameters to the coverage and scoreboard models.

Extension points: The VIP provides a rich set of UVM based

callbacks across the different layers so we can add in project or test

specific extensions.

Data Exceptions: The extension points can also be used for changing

the default stimulus and generate appropriate conditions for negative

tests. A number of exception data classes are defined within the VIP

library for this purpose.

Factory Infrastructure: The VIP provides the user with the benefit of

overriding the default behavior of VIP components by providing user

specified extensions. This allows the user to meet the unpredictable

needs of different tests.

Event synchronization: Many UVM events are provided so users can

synchronize their testbench with transition of data or states within the

VIP. Most events are tied to the HDMI standard but there are a few

that are generic notifications from the data class.

Sequence Library: A rich set of sequences are available with the

HDMI VIP. These can be readily leveraged in tests by setting them

as the default_sequence of the HDMI source sequencer or by

explicitly starting them on the HDMI source sequencer. These

sequences help generate various types of HDMI compliant frames.

These are the building blocks for the user to stitch together a

complicated scenario if required.

Figure 2 :- Synopsys HDMI VIP Block Diagram

3.1 VIP usage and Configurability
The HDMI VIP can be configured to have either or both of the

following two environments:

Source Environment - The Source Environment encapsulates the

Source Agent and the CEC Agent (if CEC is enabled). It also

contains the Source configuration object and a virtual sequencer to

orchestrate the HDMI and CEC sequencers.

Sink Environment - The Sink Environment encapsulates the Sink

Agent and the CEC agent (if CEC is enabled). It also contains the

Sink Configuration object and the CEC sequencer.

The HDMI VIP can be configured either as source or sink. This

requires either of the Source/Sink Environment to be instantiated and

hooked onto the TMDS interface. The Environment should be

configured with the corresponding configuration object descriptor.

Both Source and Sink configuration objects encapsulate audio and

video configuration objects to support various types of audio and

video attributes such as ASP audio or 24bit color video etc. The

complete list of attributes can be referred from [3]. Additionally,

these objects have parameters to control a host of features such as the

number of frames to be sent; enabling/disabling coverage, etc.

These configuration objects are created in the UVM testbench. Their

attributes are then set or randomized then propagated to either the

Source or Sink Environments using the UVM Resource mechanism

to configure the individual VIP components. The various modes of

operation and the complete feature list can be referred from [3].

4. The Testbench
The structural testbench integration was done as shown in the figure

3 and 4 below. It uses the Synopsys UVM compliant VIP and rest of

it is Qualcomm proprietary testbench component to verify the audio

and video data path of HDMI based design.

HDMI RX

AHB M

PC0

PC1

PP0

PP1

MIF

LPASS IF

AXI M AXI S
QSB AXI

AHB S

AHB M

HDMI TX VIP

AHB S

Video Capture(DUT)

SYSC Reference
Model

Video SCBD VIDEO EVALUATOR

Audio SCBD

AUDIO
SV RM

AUDIO EVALUATOR

VSQ

Video Capture HDMI TestBench

HDCP
2.2

HDCP SW VIP

C_HDMI TX
Monitor

Figure 3 :- Synopsys HDMI VIP integrated in Qualcomm

testbench.

AUDIO IP HDMI WRAPPER DUT

AUDIO
Capture
Model

AUDIO HDMI TX

HD
MI
AH
B
Ar
bit
er

 Channel
Status

RDDMA3
2

-B
its

FIFO 32x32

 Channel
Status

RDDMA3
2

-B
its

FIFO 32x32

 Channel
Status

RDDMA3
2

-B
its

FIFO 32x32

 Channel
Status

RDDMA3
2

-B
its

FIFO 32x32

AD
IF

req
ackrd_
dat
a

rd_
cnt

req
ackrd_
dat
a

rd_
cnt

req
ackrd_
dat
a

rd_
cnt

req
ackrd_
dat
a

rd_
cnt

Registers

A
U
D
-
H
D
M
I
I
F

AUDIO_PROC_HDMI_VIP_TB_TOP

Sequence
Source
Driver

Source
Config

Source
Monitor

Source Agent

Source Env

Sink
Driver

Sink
Config

Sink
Monitor

Sink Agent

Sink Env

S
V

I
n
t
e
r
f
a
c
e

VIP_System_env

Hdmi_vip_wrapper

Hdmi_driver_callback Hdmi_monitor_callback

AHB
Slave

Audio
SCBD

AUDIO
Check
s/Logs

Figure 4 :- Synopsys HDMI VIP integrated in Qualcomm

testbench.

The DUT is a video capture and processing subsystem that is a front-

end to various video interfaces, including HDMI. The DUT consists

of a set of DSP-intensive video processing blocks which process

incoming analog/digital video streams and stores them into system

memory.

The video processing blocks within the subsystem are modeled using

SystemC reference models which are simulated within a C/C++

reference testbench as shown by the orange components in Figure 3.

The SystemC reference models are used to generate reference

memory dumps from a given video frame(s). The C/C++ reference

testbench is a pure software testbench which simulates only the

SystemC reference models and generates reference memory dump

files used for comparison.

In the other configuration (blue components in Figure 3) the C/C++

RTL testbench instantiates the HDMI Source VIP and the DUT, and

the same video frame(s) is passed to the HDMI Source VIP which

transmits it to the DUT. The DUT processes the video stimuli(s)

from the HDMI VIP and generates a memory dump which is then

compared to the memory dump generated by the reference testbench.

Since the reference testbench is used to validate the results from the

RTL testbench, the video configuration and the video stimuli needs

to be kept consistent between the C/C++ reference testbench and

C/C++ RTL testbench.

4.1 Application layer

Figure 5 :- Application layer concept

The application layer comprises code which translates the high level

scenarios to be tested into the low level configurations and stimulus

to be provided to the VIP as shown in Figure 5 above.

A typical test would run different numbers of standard HDMI frames

from source to sink of a certain format type land the respective Video

ID codes. Thus, based on the test flows, a distinct set of the

permutations can appropriately be sequenced. The application layer

will map various HDMI VIP configurations or frame line parameters,

tweak the relevant constraints and then create the logical order of

atomic sequences as well as appropriate extensions of the VIP

configuration classes. At the same time, the covergroups either on

HDMI configuration or HDMI frame line class are interpreted to

generate a suitable coverage and scoreboard model, and the

respective ports (HSYNC/VSYNC/DE/VD) made available for

debug as required. In the case of image processing, an enhanced

debug and validation experience can be provided by allowing user

intervention in reading in images by-passing the generation

infrastructure. To increase throughput per test, the UVM phasing

mechanism needs to be leveraged to revert to the post-configure

phases to line up multiple tests in one simulation.

Thus, with minimal user involvement, the user is able to create and

control the required testcases that are desired and thus concentrate on

converging in completing the verification tasks efficiently. Though,

the UVM based HDMI VIP was defined to demonstrate this flow,

the various approaches and guidelines and techniques described

above can be well leveraged with other VIPs and methodologies

across various constrained random verification environments to

increase the verification productivity of end users.

4.2 Test Generation Cycle
One of the focus of this paper is to reduce the test generation cycle

for verification of any complex protocol based DUT. The typical

verification cycle of a DUT is depicted in figure 6 below. Once a

robust UVM testbench is created the test generation is one of the

major road-block as it is a very time consuming process especially

when using a third party VIP. There is always a learning curve with

the usage of third party VIP which can be reduced by ensuring a

structured way of stimulus generation.

Figure 6 :-Typical Verification cycle of a DUT.

4.3 Application Scenarios
The typical application scenarios to test using the HDMI VIP are

listed in Figure 7 below. It is a subset of all possible scenarios but in

line with the application software.

Figure 7 :-Application scenarios for HDMI protocol

verification.

4.4 Stimulus Generation
Because the C/C++ reference testbench was used to generate golden

memory dumps for comparison, identical video frame stimuli were

applied to both the SystemC reference models and the DUT. Though

the HDMI VIP has the capability of generating random video frames,

it was required that the video frame stimuli needed to be generated

from C/C++ test library and sent to the HDMI VIP via DPI-C

functions/tasks. A DPI-C export task and a DPI-C import function

were used for passing video horizontal frame lines from C/C++ test

library to HDMI VIP. The DPI-C export task

sv_hdmi_send_frame_line() is invoked from C/C++ test library, and

within the task a DPI-C import task c_hdmi_get_frame_line_pixels()

is invoked from HDMI VIP to retrieve the frame line from C/C++

test library and pack it to the HDMI VIP sequence item for

transmission.

By allowing the HDMI VIP to retrieve video frames from the C/C++

test library, the same video frame stimuli can be applied to both

testbenches for producing golden memory dumps.

Figure 8 :- The C Side

Figure 8 and 9 show the code snippet used for interaction between

the C stimulus generation and SystemVerilog HDMI VIP.

Figure 9 :- The SV side

4.2 HDMI VIP and Reconfiguration
The correct configuration for the VIP was known sometime during

the run_phase. On the other hand, the source model needed the

correct configuration to start the model during build_phase. This

called for a reconfiguration of the HDMI VIP during run phase as

shown in Figure [10]. This enables the integration of the HDMI VIP

into non-UVM testbenches. Of course some of the configuration

attributes are static and cannot be changed during run_phase but

most of them being dynamic enabled a robust reconfiguration.

Figure 10 :- reconfiguring the model

The new configuration was randomized to ensure all the

configuration parameters obey the reasonable and valid constraints as

part of the VIP. These constraints ensure that the protocol

specification is not violated. For example, in Digital Visual Interface

(DVI) mode the VIP ensures there are no data island packets by

constraining the attribute no_of_di_pkt of the frame line class to

zero. The user-constraints added for this testbench ensured that some

of the configuration values which came from C-side got applied to

the system configuration of the HDMI VIP.

5. Feature Verification
Hooking up of the Protocol Analyzer helped a lot in debugging

purposes as shown in Figure [11]. It provided a GUI based view of

the transaction and its synchronization with the waveforms helped a

lot in debugging at the transaction level.

Figure 11 :- Hooking of the Protocol Analyser with the

HDMI VIP

5.1 HDCP Authentication
The HDCP (High-bandwidth Digital Content Protection)

authentication for the source model can be enabled by using a

configuration attribute. The authentication in terms of reading and

writing registers happen on the DDC (digital down-converter) or the

i2c bus connected to the sink. Once the authentication is successful,

the encrypted frames appear on the TMDS interface. As per protocol

we also needed to apply a default pull-up on the sda and the sclk

lines.

EVENT_HDCP_AU_DONE event is triggered by the source driver

once the authentication is done. The default keys for the cipher

process have been taken from the appendix A of the HDCP 1.4 spec

[7].The user had the flexibility to use his own defined set of Key

Selection Vectors (KSV), Key set and AN through a callback task

[pre_hdcp_keyset] in the source driver and the monitor. There is a

minimum requirement for a frame to have at least 508 pixels (which

is equal to `SVT_HDMI_HDCP_KEEP_OUT_START) when run

with HDCP enabled. This will lead to errors from the model if not

met.

There is an array in source configuration "hdcp_seq", which the

Source used to read/write from/to registers. Check the reasonable

constraint shown in figure 12 below –

Figure 12:- HDCP Authentication sequence by using

SystemVerilog constraints.

It was a set of reads and writes to various registers in the sink thru

the ddc interface. This was the first authentication process, once this

goes thru without any errors, the source will start sending encrypted

frames on the HDMI tmds interface from the subsequent frames.

The above read and write to the registers was observed on the DUT

interface as shown in Figure 13 below.

Figure 13: HDCP sequence as viewed on the DUT ddc

interface

5.2 VESA DMT frame generation in DVI mode
The HDMI source model was configured to generate the VESA

DMT format frames during DVI mode apart from the HDMI CEA

frames. The configuration to switch the mode from HDMI to DVI

came from the C-side via an API. This was then used to constrain the

op_mode attribute of the source configuration to DVI_MODE and

switch off the reasonable_op_mode constraint which sets the

op_mode to be in HDMI_MODE by default. The video_standard

attribute of the current frame video configuration was also obtained

from the C-Side and set either to VESA or CEA as shown in

Figure[14] below.

Figure 14: Configuration of SV model from C

5.3 Non-standard frame generation
The concept discussed in Section 5.3 was extended to generate non-

standard HDMI frames. The typical parameters present in the HDMI

database object that define a frame are shown in Figure [14]. The

values in the figure is for VIC=1 extended resolution format. . The

set_format_field and get_video_id APIs of the HDMI database were

overridden to generate a frame of user choice i.e the frame

parameters were redefined using the set_format_field API as shown

in Figure[15] and subsequently the get_video_id API needs to map

the new values of the frame parameters to the video id code.

Figure 15: Frame parameters

6. Guidelines for Generic VIP architecture to

enable application layer.
Although, we created application layer on top of HDMI UVM VIP

the philosophy can be extended to any VIP given that it adheres to a

certain set of guidelines as outlined below –

1. One of the most important guideline is to have the VIP code

strictly adhere to the UVM guidelines and best practices. Each

component inside the VIP should enable UVM features such as

configurations, factory overrides, callbacks as these enable a lot

of re-use and scalable testbenches

2. VIP code must have a rich set of constraint defining the valid

ranges of all the parameters inside the configuration or the

transaction data classes. This helps in coverage convergence as

well as faster debug, in case of invalid values being driven.

3. VIPs should provide a rich set of sequences to enable user run a

many tests with very minimal effort

4. Most of the VIP components should be made configuration

aware. This ensures that the VIP configuration can be made

available to data objects as well. For eg – Once the sequencer is

made configuration aware, the sequences running on the same

can request the same via the handle of the parent sequencer and

use them accordingly as shown in Figure -8

5. One of the interesting features of the HDMI UVM VIP which

helped us debug while using test-gen was the is_valid check

done by the VIP on the transaction and the configuration data

object before using it. Primarily, these checks available inside

the configuration and the transaction classes ensure that these

objects do not assume in-valid values either not supported by

the VIP or illegal as per the protocol.

6. Use of strongly typed set and get while using uvm_config_db

by the VIP ensured correct assignments especially if such codes

are automatically dumped. Whenever the VIP gets a value via

uvm_config_db it provided a check to ensure that the get was

correctly executed.

7. A default coverage model implemented as user extensions or

callbacks to a monitor. This ensures ease of adding new cover-

groups to the monitor by extending the coverage model adding

new cover group and appending it to the correct model.

7. Results and Conclusion
A challenge in the verification of a modern SoC is in creating traffic

patterns that are of relevance to the end application. It is the task of a

SoC verification engineer to create these traffic patterns using

Verification IPs. But the programming interface to these VIPs is

complicated with complex protocols such as HDMI, PCI Express,

USB etc. This challenge can be mitigated to some extent by adding

an abstraction layer on top of the Verification IP.

Creating system level tests using a Verification IP can be a tricky

problem to solve. Generally such users want a quick way to create a

test and do not want to delve into the details of programming each

attribute of the Verification IP whereas a typical UVM based

Verification IP requires a bunch of configuration attributes to be

programmed either through the configuration class of the VIP or the

transaction object flowing through the VIP. This is integral to a VIP

as they provide enough flexibility to test any scenario. In this paper

we talk about a novel approach of having an application layer on top

of any VIP to be able to translate between the system level tests and

the VIP level configuration settings etc.

Thus, with minimal user involvement, we were able to create and

control the desired application level scenarios, re-use them for

validation or prototyping and thus concentrate on converging in

completing the verification tasks efficiently.

Though the UVM based HDMI VIP was used to demonstrate this

flow, the various approaches techniques and guidelines can be well

leveraged with other VIPs and methodologies across various

constrained random verification environments to increase the

verification productivity.

Figure 16 :- Coverage Vs Time for various test gen

strategies.

The graph in Figure 16 shows the reduced turn-around time by using

an application layer such as ours. This provides coverage

convergence much ahead of the project deadline. This is achieved by

significantly reducing the time to adapt the third party VIP and

reducing the time spent to write VIP specific code to configure the

VIP or write new sequences and tests.

Such an approach reduces the stimulus generation time using a third

party VIP and the efforts on VIP specific code development. One can

argue that an exhaustive set of tests supplied with the VIP can solve

the same purpose, but with protocols like HDMI which has too many

possibilities of audio and video types for example, it is an overkill to

run all possible sequence of the protocol.

7. REFERENCES
[1] Accellera, Universal Verification Methodology (UVM) 1.1 User’s

Guide, 2011

[2] HDMI-1.4 Specification

[3] Synopsys HDMI UVM VIP User Guide

[4] CEA-861-F Specification

[5] UVM Reference Guide

[6] Mark Glasser, Mohamed Elmalaki, Advanced Testbench

Configuration with Resources, DVCon 2011

[7] HDCP 1.4 Specification

[8] VESA DMT version 1 revision 12

