NNNNNNNNNNNNNNNNNNNNNNN

Application Abstraction Layer:
The Carpool Lane on the SoC
Verification Freeway

Abhisek Verma Subramanian
Varun S Kuppusamy

SYNOPSYS QuALcOMWW

NNNNNNNNNNNNNNNNNNNNNNN

Agenda:

* VIP usage Challenges

* Application layer to deal with it

e CASE STUDY : The Testbench

e CASE STUDY : The Test Flow

e CASE STUDY : Stimulus Generation

* |Interrupt-based C++ interaction

* Re-use @ Silicon Validation C

* VIP coding guidelines
 Take Away! -~
UVM

W

\ 2015

DESIGN AND VERIFICATION™

DVCOR Challenges With Verification
IP Integration g\w

N\
~ B
Analyze Coverage & %
Results .
Run with
different
seeds Multiple iterations of
test creation till
Debug ___coverage closure.

Protocol
Activity

apping the umpteen
configuration
variables with
hardware
specifications.

[_[Develop Test Plan l

Configure VIP J

2015

DESIGN AND VERIFICATION™

DvCON How to deal with them our
way?

Highly configurable and scalable custom
testbench component created as a result
of application layer. C/C++ for re-use at
firmware.

Provide the user with an application layer
to create tests, application specific
sequences and VIP configuration classes
as extensions of the base HDMI VIP
classes through a utility. Can be C/C++ for
re-use at firmware.

Compliance to UVM enables a highly
configurable testbench template and ease
of integration of the VIP

Q

Industry wide rapid adoption of 3 party
VIP based on widely used and emerging
protocols, to accelerate the development
of a complete verification env.

\ 2015

DESIGN AND VERIFICATION™

DVLCOIIN

CONFERENCE AND EXHIBITION T h e Test b e n C h

WCAP Subsystem SystemnC Maodel

MIF

- vICO = wiro | PR
= CHA 3
= =

MIF

- vic1 = VIPl ——m= FKR

CHB

WCAP Suj

psystern (HOMI -centric Datapath]

Video,Image C TestLib AP| Compare; DIff
Source Payload Audio PLL Source (TTL, Compare,[
Component/CVBS, Demod)
High-lewvel HOMI

configuration knobs

Low-level HOMI
canfiguration constraints

HDMI Signals [RGB § YChCr)

C Testlib API:
Configuration

AHE Signals {Register 1/F)

— C COMPONENTS

B SNPS HDMIVIP

B ocomm DUT

NNNNNNNNNNNNNNNNNNNNNNN The Test FIOW

* The C application layer initializes and then calls test
library functions to set high-level knobs. DPI-C
functions are used to set fields which eventually go
Into SystemVerilog constraint blocks within the
configuration class. Constraints include video, audio
and packet mode and traffic profile.

* The C application layer APIs are generic to either
hook to simulation VIP or synthesizable transactor or
final firmware.

2015

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN The Test FIOW (2)

* The C application layer calls a SystemVerilog function
which builds and randomizes the configuration class with
the applied constraints

 The C application layer reads back low-level constraints
which were solved by HDMI VIP and then configures the
DUT with same constraints.

e C application layer starts HDMI traffic sequence in the
VIP. In the UVM VIP, the sequence generates N
transactions and sends it to driver and then to the DUT

2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

C-side

T"Void send_hdmi_vip_video_frames(booluse_hdmi vip_params, int num_frames, int num_total lines,
int num_active_lines, inf num_pixels, int va_start,
int min_value, int max_value)

int i, j, line_type, no_lines, no_pixels, num_pixels_actual;

no_pixels=(use_hdmi vip params==1)?¢_sv_hdmi get num_active pixels per line() : num_pixels;

no lines = (use hdmi vip params==1)? ¢ sv_hdmi get num total lines per frame(): num total lines;

for (j =0; j < num_frames; j++)
{

for(i=0:1<no lines; i++)

I

L]
line type =c sv hdmi get line type(i);

/ Vertical Blanking region -> send "empty" video payload
if ((use_hdmi_vip params==0 && (i < va_start || i >=(va_start + num_active_lines))) ||
(use_hdmi_vip_params== | && line type >=6 && line_type <=7))
f
1

num_pixels actual = [;

1
!

/] Active video region -> send video pixels

else
I
s
num_pixels actual=no pixels;
1
i}
@und‘m\mgﬁm{i. num_pixels_actual, min_value, m@

1
i

1
i

Stimulus Generation

task sv_hdmi_send_frame_line(inputint line_no. input int num_pixels,
input int min_value, input int max_value); >

iy

Pixel payloads
int r_cr_data[];
int g v data[];
int b_cb_data[];

Allocate memory for pixel paylos
r_cr_data = new[num_pixels];
g y_data = new[num_pixels];
b_cb_data = new[num_pixels

if (num_pixels > 1)

begin
'/ Send paylo; C library to get frame line with known pixels
¢_hdmi frame line pixels(line num, num_pixels, min_value,

max_value, r_cr_data, g_y_data, b_cb_data);
line_num += 1;
end
else
begin
line_num = 0;
r_cr_data[0] = 1;
g v data[0] =1;
b_cb_data[0] = 1;
end

/I Send payload for item delivery to driver
test.env.gen_item_to_driver(line no, r_cr data, g y data,b_cb_data);

// Deallocate memory
r_cr_data.delete;
g v_data.delete;
b_cb_data.delete;
end
endtask : sv_hdmi_send_frame_line

SV/UVM-side

NNNNNNNNNNNNNNNNNNNNNNN

Stimulus Generation (2)

* The video frame stimuli needed to be generated

from C test library and sent to the HDMI VIP via
DPI-C tasks.

* The DPI-C export task sv_hdmi_send frame_line()
IS Invoked from C test library, and within the task a
DPI-C import task c_hdmi_get_frame_line pixels()
IS Invoked from HDMI VIP to retrieve the frame line
from C test library and pack it to the HDMI VIP
seguence item for transmission.

\ 2015

DESIGN AND VERIFICATION™

DV Interrupt-based C++
Interaction

import "DPI-C" context task dev_drv(int ctxt);

C++ test entry taking context as an input
extern “C” int .

usb_dev_isr_entry(int context)
{
usbdev_t usb(context);

class cpp_test extends uvm_test;
return usb_dev_isr(usb);

int context_val;
“uvm_component_utils(cpp_test)

}

virtual function void connect_phase(..);
super .connect_phase(phase);
Device driver accepting context_val =
snps_reg: :create_context(env.model);
reference of the reg model endfunction: connect_phase
regs=snps_reg: :regRead(usbdev .status ;
q pS_reg 9 ¢ o e virtual task run_phase(uvm_phase phase);
snps_reg: :regWrite(usbdev. intMask() ,0xFFFF) ; super.run_phase(phase);
phase.raise_objection(this);
—
// C++ device driver called via DPI-C
dev_drv(context_val);
phase.drop_objection(this);
endtask: run_phase
endclass: cpp_test : :
void slave_driver::dev_drv(slave_t dev) The C++ Device driver
{ . being used in
uint32 mode_status; g . lati
regWrite(dev.SESSION.SRC(), OXOO00FA); simulation test
regWrite(dev.SESSION.DST(), Ox000E90); =
regRead(dev.MODE_STATUS) ; static slave_t Sys(*Sys", 0);
switch (mode_status e =
{ (mode..) int Device driver scheduled
case 0x0001: regWrite(dev.IDX(), 0x5aa5); ?ain(int argc, char* argv[]) for execution as software
break; }
case 0x0080: regWrite(dev.IDX(), 0xa55a);) return slave_driver::dev_drv(Sys);
break;

default: regWrite(dev.IDX(), 0x0000);

}
¥

Environment for an interrupt-driven C++ interaction

C++ device driver code

\ 2015

DESIGN AND VERIFICATION™

DV LOIN

T Re-use @ Si Validation

To be compiled and executed as
a standalone C++ code

Interrupt Requests on the target processor
SystemVerilog

L |

festbench, To be interfaced to the SystemVerilog
register model using DPI-C
to be simulated on a HDL simulator

C++|Sv

pelipaga, | il

Coverage Model

Pure C++ API UVM REG

RTLDUT

The need of the hour is to ensure that
the sequences can be reused in post-
silicon validation from RTL simulation.

C++ DPIl interface

HIEE N i/]

\ 2015

DESIGN AND VERIFICATION™

Guldelines for VIP's

V

L

Adhere to the Provide UVM-VIPs should Make the VIP

UVM guidelines constraints within provide a rich set components

and best a VIP defining of sequences to configuration
practices. Use valid ranges for all enable user run aware.

UVM features
such as
configurations,

factory overrides
& callbacks.

configuration and
data parameters.

many tests with
very minimal
effort.

2015

DESIGN AND VERIFICATION™

DV LOIN

T Guidelines for VIP's (2)

-
-
\L
-
\

Provide validity
checks for data &
configuration
within the
Verification IP.

Use strongly typed
set() and get()
while using
uvm_config_db.

Provide a default
coverage model
with a possibility
for user
extensions.

13

EEEEEEEEEEEEEEEEEEEE

2015

DESIGN AND VERIFICATION™

Take Away!

* Advanced methodology provides appropriate hooks for VIP

adoption
— Can be leveraged to create simple application layer for a
Verification IP user.

— VIP users can focus on verification requirements.

The simulation performance was measured as a tradeoff
between the relaxed System Verilog constraint solver efforts
and overhead for DPI-C calls.

Though the UVM based HDMI VIP was used to demonstrate
this flow, the approach can be well leveraged with other VIPs
and methodologies across various constrained random
verification environments to increase the verification
productivity

14

IIIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

	� Application Abstraction Layer: � The Carpool Lane on the SoC Verification Freeway
	Agenda:
	Challenges With Verification IP Integration
	How to deal with them our way?
	The Testbench
	The Test Flow
	The Test Flow (2)
	Stimulus Generation
	Stimulus Generation (2)
	Interrupt-based C++ �interaction
	Re-use @ Si Validation
	Guidelines for VIP’s
	Guidelines for VIP’s (2)
	Take Away!
	Slide Number 15

