
Abhisek Verma
Varun S

Application Abstraction Layer:
The Carpool Lane on the SoC

Verification Freeway

Subramanian
Kuppusamy

Agenda:
• VIP usage Challenges
• Application layer to deal with it
• CASE STUDY : The Testbench
• CASE STUDY : The Test Flow
• CASE STUDY : Stimulus Generation
• Interrupt-based C++ interaction
• Re-use @ Silicon Validation
• VIP coding guidelines
• Take Away!

Challenges With Verification
IP Integration

Configure VIP

Debug
Protocol
Activity

Run with
different

seeds

Analyze Coverage &
Results

Develop Test Plan

Highly configurable and scalable custom
testbench component created as a result
of application layer. C/C++ for re-use at
firmware.

Provide the user with an application layer
to create tests, application specific
sequences and VIP configuration classes
as extensions of the base HDMI VIP
classes through a utility. Can be C/C++ for
re-use at firmware.

Compliance to UVM enables a highly
configurable testbench template and ease
of integration of the VIP

Industry wide rapid adoption of 3rd party
VIP based on widely used and emerging
protocols, to accelerate the development
of a complete verification env.

How to deal with them our
way?

4

The Testbench

C COMPONENTS

SNPS HDMI VIP

QCOMM DUT

The Test Flow

• The C application layer initializes and then calls test
library functions to set high-level knobs. DPI-C
functions are used to set fields which eventually go
into SystemVerilog constraint blocks within the
configuration class. Constraints include video, audio
and packet mode and traffic profile.

• The C application layer APIs are generic to either
hook to simulation VIP or synthesizable transactor or
final firmware.

The Test Flow (2)

• The C application layer calls a SystemVerilog function
which builds and randomizes the configuration class with
the applied constraints

• The C application layer reads back low-level constraints
which were solved by HDMI VIP and then configures the
DUT with same constraints.

• C application layer starts HDMI traffic sequence in the
VIP. In the UVM VIP, the sequence generates N
transactions and sends it to driver and then to the DUT

Stimulus Generation
C-side

SV/UVM-side

Stimulus Generation (2)
• The video frame stimuli needed to be generated

from C test library and sent to the HDMI VIP via
DPI-C tasks.

• The DPI-C export task sv_hdmi_send_frame_line()
is invoked from C test library, and within the task a
DPI-C import task c_hdmi_get_frame_line_pixels()
is invoked from HDMI VIP to retrieve the frame line
from C test library and pack it to the HDMI VIP
sequence item for transmission.

reqs=snps_reg::regRead(usbdev.status());

snps_reg::regWrite(usbdev.intMask(),0xFFFF);

extern “C” int
usb_dev_isr_entry(int context)
{

usbdev_t usb(context);
return usb_dev_isr(usb);

}

Interrupt-based C++
interaction

static slave_t Sys("Sys", 0);

int
main(int argc, char* argv[])
{

return slave_driver::dev_drv(Sys);
}

Environment for an interrupt-driven C++ interaction

C++ test entry taking context as an input

Device driver accepting
reference of the reg model

void slave_driver::dev_drv(slave_t dev)
{

uint32 mode_status;
regWrite(dev.SESSION.SRC(), 0x0000FA);
regWrite(dev.SESSION.DST(), 0x000E90);
regRead(dev.MODE_STATUS);

switch (mode_status)
{
case 0x0001: regWrite(dev.IDX(), 0x5aa5);

break;
case 0x0080: regWrite(dev.IDX(), 0xa55a);

break;
default: regWrite(dev.IDX(), 0x0000);

}
};

import "DPI-C" context task dev_drv(int ctxt);

class cpp_test extends uvm_test;
int context_val;
`uvm_component_utils(cpp_test)

virtual function void connect_phase(…);
super.connect_phase(phase);
context_val =

snps_reg::create_context(env.model);
endfunction: connect_phase

virtual task run_phase(uvm_phase phase);
super.run_phase(phase);
phase.raise_objection(this);

// C++ device driver called via DPI-C
dev_drv(context_val);

phase.drop_objection(this);
endtask: run_phase

endclass: cpp_test

C++ device driver code

Device driver scheduled
for execution as software

The C++ Device driver
being used in

simulation test

SystemVerilog
Testbench

To be compiled and executed as
a standalone C++ code
on the target processor

Re-use @ Si Validation

Firmware

C++ DPI interface

To be interfaced to the SystemVerilog
register model using DPI-C
to be simulated on a HDL simulator

The need of the hour is to ensure that
the sequences can be reused in post-
silicon validation from RTL simulation.

Guidelines for VIP’s

Adhere to the
UVM guidelines

and best
practices. Use
UVM features

such as
configurations,

factory overrides
& callbacks.

Provide
constraints within

a VIP defining
valid ranges for all
configuration and
data parameters.

UVM-VIPs should
provide a rich set
of sequences to
enable user run
many tests with

very minimal
effort.

Make the VIP
components
configuration

aware.

12

Guidelines for VIP’s (2)

Provide validity
checks for data &

configuration
within the

Verification IP.

Use strongly typed
set() and get()

while using
uvm_config_db.

Provide a default
coverage model
with a possibility

for user
extensions.

13

Take Away!
• Advanced methodology provides appropriate hooks for VIP

adoption
– Can be leveraged to create simple application layer for a

Verification IP user.
– VIP users can focus on verification requirements.

• The simulation performance was measured as a tradeoff
between the relaxed System Verilog constraint solver efforts
and overhead for DPI-C calls.

• Though the UVM based HDMI VIP was used to demonstrate
this flow, the approach can be well leveraged with other VIPs
and methodologies across various constrained random
verification environments to increase the verification
productivity

14

	� Application Abstraction Layer: � The Carpool Lane on the SoC Verification Freeway
	Agenda:
	Challenges With Verification IP Integration
	How to deal with them our way?
	The Testbench
	The Test Flow
	The Test Flow (2)
	Stimulus Generation
	Stimulus Generation (2)
	Interrupt-based C++ �interaction
	Re-use @ Si Validation
	Guidelines for VIP’s
	Guidelines for VIP’s (2)
	Take Away!
	Slide Number 15

