

Apples versus Apples HVL Comparison Finally Arrives

Comparing OVM SystemVerilog to OVM e

Brett Lammers

Cadence Design Systems, Inc.
2670 Seely Avenue
San Jose, CA 95134

1-408-943-1234
 brettl@cadence.com

Riccardo Oddone
Cadence Design Systems, Inc.

2670 Seely Avenue
San Jose, CA 95134
+39 (025) 755 8202
ric@cadence.com

ABSRTACT
 Over the past few years the discussion of hardware verification
languages (HVLs) has come full circle. At first, verification
teams tried to assess the strengths and weaknesses of individual
language features with the goal of creating their own verification
libraries and environments but generally without the context of a
reuse methodology. As these groups became more sophisticated
and sought to exchange and reuse verification IP (VIP), they
coalesced on the two IEEE standardized verification languages –
1800 SystemVerilog and 1647 e and moved toward the industry
supported methodologies and libraries built with these
languages. With the advent of a single methodology
implemented in both languages – OVM multi-language – the
discussion has returned to HVL features but now that the reuse
methodology known, a clear apples versus apples comparison is
now truly possible.

As mentioned, methodology is the biggest advantage
verification engineers have to cut through the noise and put the
language features in context. Possibly the most clear division is
between design and verification which helps put into context the
features of the verification languages – assertions, constraints,
interfaces, etc. – as well as the design languages they interface
to including IEEE 1364 Verilog, 1076 VHDL, and 1666
SystemC Another classic comparison is the efficiency of
coding, but in the methodology context this is split between the
test writer and the verification IP developer. This leads to the
context of reuse and the language elements that enable
verification engineers to account for change within a project,
through project integration, and between projects. When the e
and SystemVerilog are set into these methodology elements,
features comparisons like AOP versus OOP, the use of factory
patterns, randomization/generations schemes, SVA versus e
assertions, tool support, and more become apparent and
compelling.

The choice of HVL was once a murky process which resulted
more in a vendor choice then an optimized technology selection.
With the advent of HVL standardization and the popularity of
consistent, open, interoperable methodologies, verification
engineers can once again start the debate of language merits.
The difference now is that whether that debate ends with
SystemVerilog or e, the verification engineering team can make
the selection on technology merit and maximize the
productivity, predictability, and quality of their projects.

Keywords
HVL, SystemVerilog, e, OVM, multi-language, OOP, AOP

1 INTRODUCTION
The purpose of this document is to explain the main

comparison points between OVM e and OVM SystemVerilog
when used for verification. Knowing it is hard to carve out the
time to sit down and read a lengthy document on the subject,
this summary document is intended to give you, as a verification
manager or expert verification engineer, an overview of the
concepts involved as well as some links to additional reference
material. This document assumes some basic knowledge of
OVM SystemVerilog and OVM e as well as OOP fundamentals.
Therefore, it is not intended to replace the language manuals or
methodology guides for either language.

2 WHY IS THE VERIFICATION
LANGUAGE CHOICE IMPORTANT?

A programming language is, of course, how to instruct a
computer to execute a certain task. However, look at any
experienced programmer and you realize that their favorite
programming language is much more then just a means to
communicate with a computer. A programmer’s favorite
language and programming paradigm shapes how they think
about and tackle programming problems. This of course is no
different in verification. If it has not already, the verification
language choice will affect the verification team’s view of
verification and how they attack the problem. Before we dive
into the more specific comparison points, let’s remember some
the characteristics of a verification project and how the language
choice affects those characteristics.

2.1 Verification vs. Design
This is not referring to hardware design versus hardware

verification but rather the difference between creating something
and verifying that it works. When creating something the
problem is fairly well bounded by some set of requirements or
assumptions. However, the verification problem is very much
unbounded as it needs to model all the different situations and
interactions that the design will encounter. This can result in a
large number of required variations or scenarios. It is important
that your verification language matches this concept and gives
you the power and flexibility to create as many of these
situations and interactions in the most efficient manner possible.

Apples versus Apples HVL Comparison Finally Arrives

 Page 2

2.2 Single application vs. multiple
applications
In verification, each test case that is developed is really its

own application. Depending on the complexity of the design,
each test case may need a significant amount of specific
tailoring to present different behavior to the device under test.
Ideally, a verification language will allow you to share as much
functionality between every different test case while minimizing
the amount of code needed to specify the differences between
test cases.

2.3 Need for Efficient Coding
 It would seem to follow that the less actual verification

code that a verification engineer has to write, the quicker that the
verification environment will start testing the design. As
mentioned previously the verification task is unbounded but the
schedule is not. The time taken to create the verification
environment takes away from the time actually testing the
design. Because of this, a verification language needs to support
automation and code reuse to make the verification engineer as
efficient as possible in getting to the actual testing. However, it
is important that this automation and reusability does not
diminish the ability for the verification engineer to control the
environment. Without the control, it will be difficult to target
the specific corner cases that may be needed to really stress the
design. In a similar fashion, it is also important that by raising
the level of efficiency through automation, the code does not
become obscure and hard to debug. If it does, this will also slow
the critical process of developing the verification environment.

2.4 Accounting for Change
 A verification project is very fluid and somewhat

unbounded. There is always more to verify. This again ties
back to the idea of creating something vs. verifying that it is
correct. Verification environments also need to quickly adjust to
enhancements to the environment as well as design changes that
occur over the course of the project, or from project to project.
Adapting to these changes in the most efficient and safe manner
possible requires reusing as much code as possible and rewriting
as little as possible. It is important that the verification language
and the associated methodology support these changes without
jeopardizing the integrity of any existing verification code.

2.5 Making use of non-verification resources
 Verification teams often need to make use of other

resources outside the team, like designers, to complete the
verification. In many cases, a designer will not have this kind of
familiarity with the verification environment, nor do they have
the time to really dig in and learn the code set that makes up the
verification environment. However, to be successful in helping
to achieve verification complete they will need to interact with
the environment in a detailed way. This means that the
verification language, the supporting methodology, and the test
writer API need to facilitate both ease of use as well as a high
level of control.

2.6 Availability of Engineers and Tools
When the verification team forms it often pulls existing

human resources and tools together to meet a specific time and
resource budget. The existing knowledge of the engineers and
the existing capabilities of the tools often create the basis for the
HVL decision. That base decision is then weighed against the
verification project goals along with the training and tooling
necessary to achieve those goals. Additionally, other
contributing factors like how many design and verification
languages will come from existing IP and how the tooling
environment is able to support that language structure further
drive the ultimate decision. In some cases, the language choices
are fully within the control of the team, and in some cases those
choices may be dictated by the availability of verification IP.

2.7 Availability of Verification IP
One of the fastest ways to save time on a verification

project is to be able to reuse existing verification code. Reusing
code, both saves the development time of creating that code, as
well as provides confidence through prior use. Of course, in
order to make use of existing IP it has to exist and it needs either
to be written in the language of choice or have some sort of
multi-language interoperability support. A common reuse case
is reusing an entire standalone verification environment inside
another one, as is needed when moving from block level
verification to chip level verification. When making this
progression, often times the reuse of the block level environment
must be configurable in many different aspects to achieve the
different verification goals of both the block and system level
environment. It is important that the verification language
facilitates the developer of the block level verification IP to
reach the proper level of detail for block level verification, while
also giving the system level developer the control to configure
that lower level IP.

2.8 Performance
It should come as no surprise that when using a constrained

random environment the more tests that can be run with
different and meaningful behavior the more coverage of the
design there will be. However, the number of simulation
machines, licenses, and time to complete the regression is
limited. This means that the faster an individual test runs the
more tests can complete. This is of course an important metric
but it is also important to weigh any tradeoffs that may come
with that faster simulation time. It might seem at first desirable
to invest one time in a faster environment, considering that it
would need to run hundreds or thousands of times per
regression. However, there are other factors to also consider
such as overall development time, the likelihood that bugs will
be introduced when making enhancements or doing
maintenance, and the overall effectiveness of the environment in
reaching your coverage goals. These kinds of non runtime
performance metrics are not what you normally think of when
evaluating performance, but are equally critical in reaching the
overall goals of verification complete for a project. Ideally, a
verification language gives the verification engineer the best of
both worlds: The ability to develop the environment quickly
while carefully targeting the appropriate verification goals, as

Apples versus Apples HVL Comparison Finally Arrives

 Page 3

well as the runtime performance to get all the testcases done in a
reasonable amount of machine time.

3 WHAT ARE THE TECHNICAL
COMPARISON POINTS?

Now that we have some ideas as to where language matters
let’s take a look at some of the differences between OVM SV
and OVM e. The following is a list of the important comparison
points that we will cover in more detail later in the detailed
sections of the document. For each of the points in the list this
section will explain how that point applies to verification.

3.1 Aspect Oriented Programming (AOP) in
e vs. Object Oriented Programming
(OOP) in SystemVerilog
AOP is a key difference between e and SystemVerilog and

very applicable to the verification problem. AOP can be thought
of as a super set of OOP, in the sense that a user generally has to
apply OOP concepts to successfully apply AOP. Both
methodologies share the concepts of objects and enable the user
to organize their code around those objects. Figure 1 illustrates
the relationship between AOP and OOP. Because of this
relationship, AOP languages like e support both OOP and AOP.

Figure 1 - Programming Paradigm Relationships

However, AOP goes beyond OOP in providing the user more
flexibility to organize code modules not only by objects but also
by cross-cutting-concerns. A cross-cutting-concern is
functionality that touches multiple objects in the code set. In
verification, these cross cutting concerns can include DUT
related functionality such as operation modes as well as
verification related functionality like coverage collection or
checking. Essentially, the test itself is a cross-cutting-concern as
it configures and constrains many objects within the testbench.
Figure 2 illustrates this concept. Each of the colored bands
traversing the different verification environments represents a
concern or aspect that is shared across all of those components.

Figure 2-Cross Cutting Concerns

In order to manage these cross-cutting-concerns, an AOP

language like e allows the user to extend objects in the
environment from within different modules without creating
new types. An AOP compiler then collects up the various
extensions to form the final runtime objects with all the
appropriate concerns included. This concept is extremely useful
when maintaining code or reusing existing code. AOP is not
unique to e, and has been around in the software industry for a
while now. Even though AOP has been around in the software
industry for quite some time it seems that this idea of test
writing in verification presents a problem that is uniquely suited
to AOP. A reference for this topic is the book Aspect Oriented
Programming with the e Verification Language by David
Robinson[1].

Since AOP is a superset of OOP, it is important to realize
that AOP requires some of the same software architecture
techniques used in OOP. Just like in OOP, it is good practice to
go through some planning to organize both objects and their
associated concerns into the appropriate modules. This will
prevent code that is difficult to read and hard to maintain. Many
OOP users would argue that the more strict nature of OO is
actually advantage as it allows for rigid control over the code’s
functionality and design. While that is true, if carefully
managed, it is extremely powerful to use the flexibility of AOP
extensions to methodically update the environment with
concerns that were missed in the initial planning or are the result
of changes that have occurred in the project. This sort of “after-
the-fact” manipulation can be difficult in a standard OOP
environment. However, it is also true that the same power that
comes through this flexibility can also become a detriment if not
properly managed through the proper methodology and proper
planning. Figure 3 shows an example of this organization and
how a base monitor module can be augmented by other modules
that add aspects that may be important to different use models of
that monitor. In the figure each of the boxes with colored bars
below the monitor box represents a separate module that extends
the base monitor and adds the associated concern.

Figure 3 - Organizing Concerns

To further illustrate the update concept just explained,

image that a verification engineer is working on testing an SOC
and would like to make use of the monitor but needs to add
some functionality to gather SOC level coverage. In this case,
the engineer would just add the module represented by the last
box in the figure and update the base monitor for SOC level
coverage

3.2 OO Factory Pattern
This is a OO design pattern, used in other OO

programming languages, that allows an OVM SystemVerilog

Apples versus Apples HVL Comparison Finally Arrives

 Page 4

user to capture some of the AOP advantages just discussed. The
factory allows the user to register various types such that when
objects are defined they use the factory registered type. If set up
properly, the type registrations can be overridden in such a way
that, when a declaration calls for the original factory type it
actually becomes the new type. This concept is extremely
powerful in SystemVerilog and like AOP allows the code
developer some flexibility to replace object types at runtime.
However, it is important to realize that the factory concept does
not cover all aspects provided by AOP. SystemVerilog
Factories are an advanced topic in SystemVerilog that requires
careful planning to be used properly. Since the factory pattern is
not built into the language, as AOP is in e, one of the most
important steps in this planning process is the decision to
consistently use factories in the code. If this is not decided
upfront and adhered to throughout the code, the potentially error
prone activity of retrofitting existing code to use factories can be
costly. Also, it is important, to have this upfront planning to
keep the number of registered factory overrides controlled.
Without this planning, the number of registered factory patterns
can become unwieldy and like uncontrolled AOP usage, result in
difficult to read and maintain code. For more information on
SystemVerilog factories refer to the OVM SV documentation
that can be downloaded from OVMWorld
(www.ovmworld.org).[2] Another interesting comparison point
related to factories and general OOP inheritance in
SystemVerilog is the fact that certain verification elements
cannot be redefined or reused through the factory or even OO
inheritance as they can in e. For example, functional coverage
constructs. Using AOP in e, a user can extend functional
coverage to add additional coverage items or refine goals. This
ability becomes extremely important when reusing environments
from block to system level or even reusing third party
verification IP that needs to be configured to a specific design.

3.3 Randomization and Generation Schemes
There are a number of differences between e and

SystemVerilog in the area of randomization and generation. For
the purpose of this discussion, it is important to separate
generation from randomization. Generation refers to the engine
or process that creates the randomized variable or randomized
structure. Randomization refers to the process by which the user
controls how an entity will be randomized and the actual values
that the variables will arrive at. In the area of randomization, the
e language implements a concept referred to as “infinity minus”.
This means that in e one must specify that a given field or
variable is not randomized. As with most languages in the
world, in SystemVerilog, the verification engineer must specify
which fields are to be randomized. This requires careful up
front planning in order to determine the proper fields and their
interactions. It might seem like a small difference at first, but
the “infinity minus” approach acts like a built in safety by
creating interactions that were never originally thought about.

Another important difference between e and SystemVerilog
in the area of generation is memory allocation. In
SystemVerilog, memory must be manually allocated for a given
object before that object can be randomized. In e, generation
automatically allocates memory saving the code writer a little
code for each field. However, the code savings is not really the
key advantage. Instead, the real advantage is how this automatic

allocation allows you to easily model complex transaction
scenarios and really enables the “infinity minus” approach for
complex compound structures. Consider the following example:
Imagine modeling a set of CPU instructions in SystemVerilog.
Table 1 shows a few hypothetical CPU instructions and how
they could have different operand contents

Table 1 - Example CPU Instructions
opcode operands

wr_mem address data_h data_l

jmp address

add dest_addr value1 value2

rd_mem address

… … … …

 In this case, you wish to create a list of CPU instructions

where each instruction is a different opcode, and therefore as
shown has a different structure and a different memory footprint.
This is extremely difficult and inefficient to model when manual
allocation is required. One option would be to create some
procedural code to manually allocate each list item individually.
In e, this operation is as trivial as creating a list of homogeneous
structures and constraining the subtype field. To further
illustrate the difficulty, imagine that we want to add another
instruction subtype. In SystemVerilog, the user would have to
add the new type and update the manual code that created our
list of CPU instructions to allocate the new type. In e, the user
would only have to add the new type and the code dealing with
the list would automatically pick up the new type seamlessly.

3.4 “When subtyping” in e
This concept is unique to e even among other AOP

languages. “when subtyping” allows the user to define
subtypes with their own specific characteristics based
conditionally on the value of a field in the base type. Then using
random generation and simple constraints on these “when
determinant” fields the user can easily change the structure from
one subtype to another. To illustrate this concept imagine the
CPU instruction example, just discussed, which has different
field definitions and structure based on the value of an opcode
field.

Figure 4 - JMP and ADD structures

Figure 4 illustrates the idea that each instruction is still a CPU
instruction, but when a particular instruction is a JMP
instruction it has a different structure then when it is an ADD
instruction. When combined with the “infinity minus”
randomization and automatic memory allocation, discussed
earlier, when subtyping is an extremely valuable and easy way
to express variation from one transaction to the next. IN the
situation where we want to send different CPU instructions
representing some program streams, we would want to generate

Apples versus Apples HVL Comparison Finally Arrives

 Page 5

one instruction after another worrying only about the kind and
not the associated structure. This “variation modeling” is
extremely difficult to capture in an OOP language like
SystemVerilog. There are however, a number of OO design
patterns to mimic this capability. One solution is to create a
flattened object which is a union of all the subtypes. Based on
the value of some type field, the code using that flattened object
would interpret it differently. Another possible solution is to
create a new class for each subtype. Unfortunately, these
solutions can become cumbersome as the number of variations
grows but is none the less successful if managed appropriately.

3.5 Design Related Assertions
 Both e and SystemVerilog support assertions. However,

SystemVerilog assertions (SVA) have some advantages over
those created in e. One strong advantage is the ability to use
SVA’s in multiple verification flows. SVA’s can be used in
formal analysis, they can be used in the traditional simulation
flow, and they can be synthesized for use in hardware
acceleration environments. Another reason SVA’s have some
advantage over e assertions is the idea of maintaining assertions
within the design by the designers. This is a great area to share
some of the verification work with the design team without
forcing them to learn a completely new language or new
programming paradigms like AOP or OOP. Designers can help
by creating both checking and coverage related assertions,
which inherently reflect the design intent, as they are creating
the design.

 It is important to remember that SVAs also work very
nicely in conjunction with an e testbench environment. Sort of
the best of both world type scenario. In fact, there are a number
of hooks added into Specman to allow SVAs to “call back” into
the e testbench for additional processing.

3.6 Macros
Traditionally, a lot of programmers shudder at the thought

of using macros in their code because they are often hard to
debug and often affect the code’s readability. However, they
play an important role in both the SystemVerilog and the e
languages. In OVM SystemVerilog, over 350 different macros
help programmers in accomplishing common verification tasks
and simplifying the coding effort needed to achieve these tasks.
In e, macros provide a powerful way to, in a sense, extend the
language itself. Somewhat in contrast to macros in most other
languages, e macros are not just text substitution, but rather
appear very naturally just like other language constructs. In fact,
macros are so natural that probably many e users that don’t
realize that some of the most common functionality is actually
implemented using e macros. In addition to the natural feel,
macros in e can be debugged with much the same capability as
normal code. This additional debug support and the natural look
and feel remove the old stigma that historically surrounds
macros. For more information on e macros and how to use
them, refer to the Macros chapter of the e Language Reference
manual in the Cadence help documents.[3]

3.7 Tool Support
While the focus of this document is intended to be on the

languages themselves it is also important to look at the tools that
support these languages. One area where tool support greatly
affects the ability to successfully use a language is code debug.
Debugging has always been a huge portion of the verification
effort and debugging contradicting constraints can be one of the
more complicated and time consuming debug activities. The
Intelligen debugger in Specman provides the user with an easy
to navigate GUI debug view of all the information related to the
generation of fields. This tool allows the user to browse through
interactions between constraints and see how various values
were chosen, In contrast, most SystemVerilog simulators have
only recently gone beyond only printing out a detailed error
message when a problem occurs and started adding constraint
debugger functionality. It is difficult without theses debugging
tools to dig into the environment and see why generation
occurred the way it did.

Of course, in addition to generation debug, debugging the
verification environment and debugging the design are also very
important for verification success. Often times, these two
activities go hand in hand but in some cases done by different
resources. Many times a verification engineer needs to debug
through a good portion of the design under test to find a bug in
the verification environment. The reverse is also true of a
designer that needs to gather debug information from the
verification environment to isolate a design bug. Again, this
means it is important to have the proper tools to make this effort
as efficient as possible.

3.8 Compiled vs. Interpreted Mode Support
This concept involves the tradeoff between runtime

performance and code control. In general, all SystemVerilog
code, the testbench, the design, and the tests are all compiled
together into “executable code”. Compiled code of course has
the advantage of running fast and therefore is desirable for
runtime performance. However, having to compile in all of the
tests at once can present some compile time performance
problems if the number of tests is large. Specman takes further
advantage of e’s AOP characteristics and allows the user to mix
and match interpreted code with compiled code. This allows the
user to layer an interpreted mode test on top of a compiled
environment which gives the perfect blend between compile
time performance and runtime performance. Another area
where this mix can be useful is in debug. Imagine debugging a
failing test case that was layered on top of a large compiled
verification environment. The problem is found to be something
in the base compiled code. Instead of recompiling that code, the
user can take advantage of AOP and layer on an interpreted
mode fix to the compiled code without recompiling. This can
often save precious debug time while trying to test out a
proposed fix.

4 WHICH LANGUAGE FITS BEST?
In this section, let’s look at a few common scenarios that

you might encounter and why a certain language may be a better
fit then others.

Apples versus Apples HVL Comparison Finally Arrives

 Page 6

4.1 Raising the Level of Reuse
One of the biggest challenges in reuse is creating

something flexible enough to meet the needs of multiple users in
multiple situations with the least amount of maintenance to the
core code. Figure 5 illustrates how a smaller block level piece of
IP can be reused at the system level as well as across the
different systems in the larger ecosystem.

Figure 5 - IP reuse

 It should be obvious that the concepts and methodologies

provided in OOP as well as verification methodologies like
OVM facilitate this reuse. However there are some
characteristics of verification reuse that can benefit from the
additional flexibility and control of an AOP language like e.
Such examples are sharing code between projects, layering
constraints onto existing data items, or creating a commercial
VIP with IP that needs to be hidden. While the concept of the
SV factory and OOP objects can facilitate some of this reuse it
can become very difficult if the shared code needs to remain
static, is invisible to the user, or needs to express many
independent variations. To really achieve these kinds of reuse
cases, it is extremely advantageous to go beyond the capabilities
of standard OO software design and even the SystemVerilog
factory to a language that supports AOP. Whether you are
creating standalone IP that you deliver to other groups or you
just want to increase the productivity of your verification group
by increasing reuse, e’s AOP characteristics likely make it the
better choice.

4.2 Full Chip Verification Environments
Similar to the previous reuse discussion there are scalability

issues that require additional configurability and control when
moving from the block level to the full chip level. It is
important to factor in e’s maturity for this case. Having been
around longer, and already used by verification engineers to
solve the full chip verification problem, it has picked up some
additional methodology to support full chip issues such as reset
testing. If you are looking to address this full chip verification
case, it would be good to look into OVM e and see how it goes
beyond OVM SV and eRM to solve the problems presented in
full chip verification. For more details, check out Cadence’s
OVM e reference manual in the OVM e package delivered as
part of the OVM Multi-language Release. The Library can be
downloaded from the contributions area on OVMWorld
(www.ovmworld.org)[2] For cases needing to support high
levels of reuse, e may be a better choice.

4.3 Designers Having Dual Responsibility for
Design and Verification
In general, this is going to be a challenge when adopting

any of the advanced verification languages for advanced
verification. SystemVerilog having roots in Verilog seems like

an obvious choice here. Assuming that these design resources
do not have the bandwidth to take on a software design project,
it may be better to focus them on the simpler module based
SystemVerilog environment. This will allow them to pick up
some quick and dirty verification enhancements like
randomization and coverage without having to learn more
strictly software concepts such as OOP or AOP. While
SystemVerilog is likely the better choice for this case, there are
a couple of additional notes to keep in mind:

• What is the long term goal/plan? It is likely that
there will be a future desire to reuses the
verification code created by the designers from
one generation of the design to the next and
maybe even across groups. To be most efficient
and enable this later reuse, it is best to create the
module based environments following the OVM
for SystemVerilog. The OVM specifies an
architecture, terminology, and process that will
help facilitate this later reuse.

• Once created, these SystemVerilog environments
can be reused in an e environment for example at
the system level. This reuse is again facilitated
by the multi-language support in the OVM.

• If this module based environment is intended for
reuse by multiple project and to possibly become
verification IP, it may be a good idea to consider
the use of e for the same reasons mentioned
above in the “Raising the level of reuse”
discussion.

• A designer who tries to implement an OOP
based environment without proper training will
likely experience some difficulty. Advanced
verification requires knowledge of software
development disciplines, like OOP and AOP, to
really be successful and must not be overlooked.

• Performing verification using a
different language then the design language can
help reveal bugs that could have otherwise been
missed. Using the design language could pose
the same problem as having the designers
verifying their own blocks. The same language
might have implementation or behavior details
that end up hiding bugs.

4.4 Simple, less complex designs
 Since the design is simple, the verification environment is

likely simple also. This may mean that it will be harder to
realize the real power and efficiency gain that e provides in a
more complex environment. The same is likely true of an
advanced class based SystemVerilog environment. For this use
case, either language is a good choice form a technical
perspective. Therefore, you might want to let other criteria,
such as existing resource experience, guide your decision.

Apples versus Apples HVL Comparison Finally Arrives

 Page 7

4.5 Tapping into the Existing Ecosystem
One very attractive feature of OVM SystemVerilog is that

it is supported by multiple simulator vendors. Historically, e has
only been supported by Specman. However, e is an IEEE
standard language and is open to be supported by any supplier.
There are cases, for example on government projects, where it is
required that the verification environment code itself be run on
two different engines. As Cadence Specman is currently the
only official e engine, it may not be the best choice in this
scenario. However, there are a couple of important things to
remember with respect to existing ecosystems around
SystemVerilog and e:

1. Do not to confuse this requirement with multi-vendor
simulation support. Specman and therefore e does
interoperate very well with non-Cadence simulators
and has been doing it for quite some time. Refer to
the “Supported Simulators” section of the Specman
Integrators Guide in the Cadence Help for a
compatibility list.

2. The e language is an IEEE standard.[5] While there is
not yet officially another verification engine available,
other companies are currently providing e based
utilities like parsers, development tools, and linters.

3. Since e coding with eRM, now OVM e, began five

years before a commercial methodology for
SystemVerilog came into existence, there is a lot of
silicon proven Verification IP available in e that is not
yet available in SystemVerilog. As mentioned earlier
the ability to reuse this existing Verification IP
ecosystem can provide additional confidence that your
verification environment is correct.

5 CONCLUSIONS

5.1 Pick a Strong Methodology
Both SystemVerilog and e provide a lot of power to help

you achieve verification success. However, as with most
powerful things, this power needs to be accompanied by the
correct knowledge and methodology or it can backfire and
become ineffective. It is important when choosing either
language, that you accompany this choice with the proper
training. It is also important to choose a verification
methodology like OVM that guides you to create consistent and
organized verification environments that can be more easily
reused later on. In evaluating the different methodologies
available, it is important to take into account the reuse capability
that OVM multi-language support provides. This multi-
language support gives you the freedom to most efficiently
make use of existing talent within your team, pick the best
language for the task at hand, and then reuse work from both
languages across projects and up through full chip verification.

5.2 OVM SystemVerilog
There is no doubt that you can create a successful

constrained random coverage driven verification environment

using SystemVerilog. Its historical roots in design and
similarity to Verilog make it an attractive option for designers
responsible for both design and verification. It also provides a
lot of strength in the area of assertions as SVA’s can be used
directly in formal verification, simulation, hardware
accelerators, and even in conjunction with e testbenches. When
used in conjunction with strong OOP techniques, and with a
strong verification methodology like OVM, SystemVerilog is
very successful in creating an advanced verification
environment.

5.3 e
There are several technical advantages that make the e

verification language more efficient and more reusable. When
used correctly, the AOP and when subtyping capabilities
provide an enormous amount of power in the form of flexibility
and control. You will find this power critical to more efficiently
accomplishing long term and higher levels of reuse. These
features also help engineers better manage the functionality that
touches the various objects in your verification environment,
one of the most important of which is the testcase itself. In the
area of coding efficiency, in general, it will take less code then
other verification languages to capture a given task in the e
language. It should stand to reason that less code can often lead
to less errors, which in turn can lead to less costly debug time.
These advantages result in e also being a great choice for
advanced verification environments but also making it better
suited for full-chip verification and higher levels of reuse across
multiple projects or multiple groups.

6 ACKNOWLEDGMENTS
Special thanks to the following and many others for providing

useful feedback to the early drafts of this document.

Shlomi Uziel – Cadence Design Systems
Michael Stellfox – Cadence Design Systems
Matan Vax – Cadence Design Systems
Zeev Kirshenbaum - Cadence Design Systems

7 REFERENCES

[1]Robinson, D. 2007, Aspect-Oriented Programming with the e
Verification Language: A Pragmatic Guide for Testbench
Developers. Elsevier Inc.

[2] OVMWorld web site. http://ovmworld.org

[3] e Language Reference manual

[3] IEEE Standard For SystemVerilog - Unified Hardware
Design, Specification and Verification Language, IEEE
Computer Society, IEEE, New York, NY, IEEE Std 1800—
2005

[4] IEEE Standard for the Functional Verification Language 'e',
IEEE Computer Society, IEEE, New York, NY, IEEE Std
1647—2006

Apples versus Apples HVL Comparison Finally Arrives

 Page 8

[5] IEEE1647 Working Group website
http://www.eda.org/twiki/bin/view.cgi/P1647/WebHome

