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Abstract—Virtual prototypes have become a critical tool for software development, architecture design, and
importantly to bring software and hardware developments together. The introduction of the SystemC and the TLM-2.0
standard [1] has enabled a degree of interoperability and model re-use. However while the ambition for TLM-2.0 was
wider, in reality it has only enabled interoperability for memory mapped bus based protocols. Since a typical virtual
platform contains a wide variety of interconnect, individual designers have to define their own, often non-interoperable
solutions. Our aim in this paper is to propose improvements to the existing TLM-2.0 standard, and a methodology
around the TLM standard with the objective to facilitate the definition of a wide range of interfaces (not just memory
mapped buses) in a consistent manner. Therefore in this paper, the existing Accellera TLM-2.0 standard is analyzed,
together with existing interface ’kits’ (e.g. Accellera’s OCP-IP TLM kit). Then, we examine a selection of serial protocols
(SPI, I2C, CAN, UART, Interrupt) to ascertain what is required outside of memory mapped buses in terms of a SystemC
interface, and what is lacking in TLM-2.0 which prevents its adoption for non memory mapped bus interfaces. Concrete
proposals are made to improve the TLM standard for interoperability. A methodology is also suggested for building
a new TLM interface standard kit. One important criteria is that there should be a singularity of outcome, a clear
methodology that, given an interface protocol, yields a consistent modelling solution, such that the choice of one designer
is likely to match that of another. Thus we hope to reducing the difficulty of providing standards for all interfaces.

I. INTRODUCTION

With the increase of the complexity of programmable devices and systems of programmable devices, virtual
prototypes are an essential tool used both during the conception of systems (both on chip (SoC) and more distributed
systems). Virtual prototypes bridge software and hardware teams in the development and verification flows. They
enable specifications and constraints to be checked during the design exploration.

Transaction Level Modelling (or TLM) is the term given to the levels of abstraction at which virtual platforms can
be modelled. It’s based on a technology, namely the use of “Transactions” for simulations. The TLM abstractions are
designed to facilitate model creation, to provide early virtual platforms addressing software development, hardware
and software integration, performance analysis and architectural constraint investigation. The models are also used
within hardware, software and full system verifications to drive high level synthesis. The TLM abstraction levels
are therefore relatively broad, and cover a wide range of use cases. This is potentially one of the problems with
the TLM-2.0 standard as it tries to satisfy a wide range of requirements.

The Accellera TLM-2.0 standard is a part of IEEE 1666 and is built on top of SystemC. It standardizes the
TLM abstraction levels from the perspective of model interfaces. It provides an interoperability layer and some
utilities. TLM-2.0 is a layered standard built on interfaces between three kinds of elements : initiator, target and
interconnect. While a single interface remains statically assigned to a specific role, the standard allows the three
types of models to possess multiple interfaces and dynamically change their role between those interfaces. TLM-2.0
introduced the notion of time decoupling and “quantums”. We will return to the question of the use of quantum’s
below in Section IV.

TLM-2.0 enables models to be built and operate at different levels of abstraction. Two principle levels are
defined, so called “Loosely Timed” (LT) and “Approximately Timed” (AT). These names do not help to identify
the abstraction level in terms of the use cases they cover, nor the technology that is used to implement them. Their
names are confusing and unhelpful.

In reality, LT is the abstraction level aimed at supporting virtual platforms for software development, with only
as much timing information as the programmer needs. It is implemented using a blocking function call across the
interface which is expected to ’complete’ a transaction in a single call. Conversely, AT is aimed at providing more
accurate timing, that can be used driving architectural exportation, synthesis, etc. It’s based on a non-blocking call
mechanism and a sequence of phases which are protocol specific. It also defines the timing points of the protocol.
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Fig. 1: OSI model layers

The additional modelling of time has a cost in terms of simulation performance. The transaction remains common
between the two types of interface.

The rest of the paper is organized as follows. In order to guide the choice of how specific interfaces should be
modeled within TLM, Section II proposes a more formal definition of the transaction. Some common non memory
mapped protocols are examined and proposed TLM implementations suggested in Section III. Then, different
approaches and issues to time and synchronization are discussed in Section IV and a solution is proposed in
Section V. In section VI, improvements to the TLM-2.0 standard are discussed. Finally, Section VII proposes what
should make up a ”first class” standard interface.

II. TOWARDS A DEFINITION OF A TRANSACTION

Care was taken in the original TLM-2.0 standard to try and ensure that models written at one abstraction level
could be re-used at another one. It requires a transactor (hidden in the socket) to bridge between abstraction levels.
The commonality between all abstraction levels is expected to be the transaction itself. It is therefore critical to
understand what exactly is meant by a “transaction”, what should be held in a transaction, and what should be left
out.

Within the context of a wider scope of interfaces, there is no clear agreement of what constitutes a transaction,
and little literature on the subject. This leads designers to make radically different decisions about how to model
interfaces (for instance see [2] and [3]). Our principle motivation is to try and ensure a common approach. To this
end, we propose a more formal definition of what should constitute a “transaction”. But, we cannot loose sight
of the fact that the TLM standard is broad in it’s applicability. Our aim is to guide the choice of “transaction” to
support the wide range of use cases. Our proposal should re-confirm the choices taken for a memory mapped bus
in the existing TLM-2.0 standard, while guiding decisions for non memory mapped bus interfaces.

A. OSI model transaction

In making a proposal for formalizing what constitutes a transaction for TLM, we draw on an existing standard,
the OSI (Open Systems Interconnection) communication model [4]. It divides communication protocols into multiple
layers of abstraction as described in Fig. 1. This model is extensively applied to describe Internet communications.
But it is designed to have wider applicability. For instance, the CAN (Controller Area Network) bus standard refers
to the OSI model to describe layers of the CAN protocol.

From bottom to top, the first OSI layer, named the physical layer, treats communication at the digital bit level
as raw data on a communication channel. This layer has to define physical characteristics like voltage levels and
timing.

The second OSI layer, the data link layer, acts as a binder. This layer describes the transformation of the physical
atomic information (bits) into frames (sequences of bits). This layer has to detect frame borders and manage errors
during transmission. This is the layer at which data congestion and buffering is handled. The unit of information
of this OSI layer is the frame. However, this layer doesn’t take data routing feature into account when multiple
devices are interconnected.

The third OSI layer is the network layer. This layer manages routing to support networks and sub networks. It
also manages resource conflicts and interconnect between networks. The unit of the information to this OSI layer
is the packet. This layer is used for “One to Many” or “Many to Many” communications.
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Higher layers like the transport layer will define flow control of data and systems for higher level error checking
and recovering. We propose that the second and third layer, the data link layer and the network layer, map directly
onto the transaction level modelling abstractions for AT and LT. We consider that the forth layer is frequently
already part of the software domain that we expect to be written as part of one of the main use-cases for TLM
models (software development especially of device drivers).

As shown previously, the TLM-2.0 standard introduces two levels of abstraction. Our proposal is that the OSI
layer two maps onto the lower level of abstraction (AT), dealing with frames and buffer congestion (covering the
common use case of bus sizing and architectural exploration of bus fabrics). The third OSI layer maps onto the
higher level of abstraction (LT) dealing with routing and packets. In other words, we expect a TLM to expose the
details of the network layer, and to use something akin to the OSI ’packet’ as the transaction.

This mapping is not totally without issue, the OSI network layer includes resource conflicts along with routing.
This makes perfect sense, but in the case of a TLM model that is more abstract in its timing, time-based resource
conflicts may be ignored or un-modeled at the LT layer. Hence, we consider resource conflicts of this sort to more
naturally belong at the lower level of abstraction in terms of TLM. Nonetheless, we consider that the OSI model is
a good basis to determine what constitutes a transaction, namely an OSI layer three packet. The OSI model defines
a packet as a bank of data containing control information and the payload. The control part contains information to
deliver the payload like the address (if applicable) to destination, error and sequences. The packet provides enough
information to route the data between multiple nodes for “One to Many” or “Many to Many” communications.

TLM-2.0, as we will see in Section VI, has focused heavily on memory mapped buses. A transaction for a
memory mapped bus is universally assumed to be a read, a write, or in some cases a read-modify-write operation
performed on that bus. The transaction carries all the data that are necessary for complete operation. For buses that
are capable of performing bursts, the data covers the entire burst ([5]). In other words, the notion of transaction
is the full operation. This fits perfectly with the OSI layer three definition. The packet contains the address and
the data, just as does a TLM generic protocol transaction, and is route-able. Furthermore, the ’frames’ and timing
points associated with frames are exactly akin to the burst packets. They are modelled at the AT level in a complete
bus modelling kit, such as the OCP modelling kit referenced above. Hence for a memory mapped bus, we consider
that the OSI model to fit well. We therefore believe this somewhat validates the use of the OSI model to guide the
choice of transactions for other specific interface protocols.

In order to guide designers choice about how to write interface models, we believe that it is critically important
to have agreement on what constitutes a transaction. We consider that the adoption of the OSI model is not only
technically robust, but also comes with the benefit of an existing, well documented, and well understood standard.

In the next Section, the implications of choosing the OSI model is discussed. Some protocols are analyzed. We
will see how the OSI model can guide the choice of a transaction, and hence the appropriate phases, and how that
can then be represented in a SystemC TLM context.

III. NON MEMORY MAPPED INTERFACES

This section examines a non exhaustive list of interfaces commonly used in and between SoCs. First, the family
of “One to One” serial protocols is examined including signal (GPIO, IRQ, etc.) and RS232 [6]. Then, “One to
Many” protocols are analyzed with RS485[7] and SPI (Serial Peripheral Interface). Finally, I2C and CAN, “Many
to Many” protocols are examined. The analyses shows how the OSI model can help establish the transaction, and
associated phases. The intention is to exploit these protocols to examine different aspects of how interface kits
should be constructed, and to validate the use of the OSI model. A complete analysis or implementation is not
provided for each protocol.

A. “One to One” protocols

The most common and low level communication protocol is surely the signal. A signal, often a single wire, can
be used for an interrupt, for GPIO, reset etc. Although in general, all of these examples are considered as “simple
signals”, often that masks a level of detail. For instance an interrupt can have different levels, depending of the
interrupt vector IP and their physical wiring. Neither it is always the case that because a protocol is implemented
on a single wire, the protocol is in any way ’trivial’. In many cases, single wire protocols can be some of the most
complex.

By considering only signals that can be active (asserted), or not active, the ’packet’ is the assertion of the
signal. This can be modeled with no payload whatsoever, simply the fact that the signal has been activated is
enough information. Many if not all of these “simple” signals often carry extra information such as vector address.
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In real hardware this may be encoded by their physical placement, their wiring or indeed by multiple wires. Hence
we consider its good practice to include the TLM-2.0 extension mechanism in the payload.

Our first conclusion is that the TLM-2.0 extension mechanism should be present in all payloads (even, and
possibly especially, trivial payloads).

In the case of simple signals, there is only one OSI layer two frame in the layer three packet. Hence we consider
such protocols to have only two phases: the start and end of the packet, e.g. when the signal becomes active, and
when it stops to be active. Note that for something such as an interrupt, this can mean that the transaction is ’live’
for a considerable amount of time.

A suitable TLM-2.0 implementation of a simple signal can be found in GreenSignalSocket, a part of GreenLib
[8], a library based on TLM-2.0. In this case the payload only has the extension mechanism inside it.

UART (Universal Asynchronous Receiver Transmitter) is based on transmission (TX) and reception (RX). The
communication between two UARTs is bidirectional. The protocol can be simplex, half or full duplex. The useful
data length is typically between 5 and 9 bits. UARTs can be seen as a family of multiple serial protocols like
RS232 or RS485. The RS-232 standard is a simple point-to-point serial communication protocol.

A start bit and one or multiple stop bits delimit a typical UART frame. These are OSI layer two features, and
should be modelled as timing events (phases) by marking the start and end of a frame. It can also be a parity
bit to check the received data. Parity is a layer two feature, and should be modelled as content in the transaction.
Parity errors can be generated by transmission collision on certain UART protocols. These would be handled by
requesting re-transmission on a parity error. This may be handled in software or hardware depending on the UART
protocol and/or system configuration.

A suitable TLM-2.0 implementation of an UART can be found in GreenSerialSocket, again a part of GreenLib
[8]. GreenSerialSocket provides an initiator and a target bidirectional serial socket and also a payload for UART
communication including RS232 protocol. It simplifies interoperability of nodes exporting a UART interface. As
the UART protocol is not memory mapped, the payload does not follow the Generic Payload defined in TLM-2.0,
but is designed specifically for the UART case. Indeed, fields like address, byte_enable or dmi don’t make
sense for a UART. The parity bit has been left in the payload. Though the parity bit is correctly part of the payload,
the TLM-2.0 implementation should be revisited in future work as it may not be ideal.

B. “One to Many” protocols

The RS485 standard is similar to RS-232 except it uses a different physical layer, and contains a master/slave
relationship adding routing. Hence, some aspects of RS485 are in layer three as well as OSI model layer 2, and a kit
supporting RS485 would have to consider ’routing’ between multiple masters/slaves on the same ’wire’. RS485 trans-
actions will contain both address and data information, while an RS-232 implementation would only need to contain
data. In this respect an RS485 implementation is relatively trivial to conceive, though it ideally requires a “broadcast”
socket. A socket can be trivially constructed by using a multi_passthrough_initiator_socket. A router
with single socket can also be used.

The SPI protocol, a “One to Many” protocol, is also used for communication between multiple nodes. A SPI
node is either master or slave, ie an initiator or a target in terms of TLM. The communication is full duplex.
There is no defined address to select the receiver node. Moreover, the master must enable a chip select on a slave
to communicate. In this way, once set up, SPI is fundamentally a point-to-point protocol. The issue is the setup.
Typically, a SPI controller or a GPIO interface can be used (which is like a DIY SPI controller), and all of this can
be combined with SPI models being daisy-chained. In that case, communication for one slave node is passed onto
another. However, the make up of the data packet itself (including any information used for daisy chain addressing)
is not standardized. This issue has been pointed out by [9].

Viewing SPI through the prism of the OSI layer model, routing information should be handled in layer three.
However, it is by no means clear that the routing mechanism actually forms part of the protocol. If we consider a
simple SPI connection in which a master enables a single slave, then within a TLM context this can be adequately
modelled as a point-to-point connection. The socket binding enforces the topology of the system. There is no
“routing” as such. More complex systems that make use of SPI controllers, and/or chaining effectively layer routing
on top of this. In the case of a controller, the controller itself has a bus interface, and “routing” happens within the
controller. The controller itself sets up multiple SPI interfaces to the various slave nodes. In this case, the controller
is acting as a sort of router, and SPI bridge. Finally, in the case of a chained SPI, there is a notion of “address”
embedded within the data transmitted through the SPI interface. However, this is non-standard, and typically has
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TABLE I: Serial protocols in regard of TLM

TLM / Protocol Signal RS232 RS485 SPI I2C CAN

Family One to One One to Many Many to Many

Payload Empty data ptr,
data length

data ptr,
data length,
address

data ptr,
data length,
address

cmd, data ptr,
data length,
address

frame type,
identifier,
data ptr,
data length,
address

TLM Phases start, stop start, stop start, stop start, stop start, stop, ack,
pause, restart

start, stop

to be set up under software control. Therefore, it seems appropriate that the SPI interface should transmit the data
just as SPI does, and should leave the devices to interpret the data as best they see fit.

Another common implementation of the SPI interface is based on a GPIO controller as a sort of ’DIY’ (Do It
Yourself) SPI controller. In this case, the GPIO interface is acting as OSI layer 1. Typically, GPIO pins are used
to drive chip select, and potentially the data and clock signals. In order to model the SPI device at OSI layer 3,
we have to ’abstract’ the layer 1 interface. To abstract the low level pin interface to the TLM interfaces requires
a TLM transactor. Transactors are used for communication between models (including at the RTL level) or real
implementation . We will examine later how all ’good’ interface kits should include transactors down to OSI layer
1, the physical layer. This will be a key recommendation.

SPI is often used to communicate with memories. Some embedded devices use SPI memory to boot the software
stack (often using Quad SPI). In that case, it may be helpful to abstract from the SPI protocol to the memory
interface and support a DMI interface. Our expectation is that this should happen through a SPI controller, which
has a memory mapped bus port, capable of supporting DMI.

C. “Many to Many” protocols

The I2C protocol is a “Many to Many” protocol. Each I2C node can be a master or a slave or a multi-master.
A multiple master can talk at the same time on the bus to a number of slaves. I2C protocol is half duplex. Each
node on the bus has an address or several addresses. The communication consists of multiple frames (OSI layer
two) that contains address, command and data information in packets (OSI layer three). Hence at OSI layer 3, these
three elements must be present in the transaction content. At OSI layer 2, there are frames for address, control
and data, with start and stop phases. Collisions cause the completion times of some frames to be prolonged. It
is important to model this at an “AT” level of abstraction in order to model potential bus throughput. To detect
collisions, an I2C implementation has to find overlapping frames by using their start times and to check that their
data isn’t identical. According to the I2C standard, the first master that attempts to write a 0 while another master
writes a 1 looses the bus arbitration. This can then be used to delay some master frames. I2C also has the concept
of a frame acknowledge, pause and restart. These are all OSI layer 2 features, and should be modelled using phases
in TLM. These phases can occur during the frame transmission, and may abort the frame or the packet.

Finally, the CAN bus is a broadcast protocol just like a standard memory mapped bus. Each node on the bus can
be a master or a slave. There can be multiple masters. Messages are received by all nodes. Nodes use the message
identifier to differentiate potential recipient(s). The message identifier is also used as a priority field. As collisions
can happen, the standard guarantees that the highest message identifier will be distributed first. Each CAN frame
contains a CRC (Cyclic Redundancy Check) to detect error during transmission. Again, the identifier is used by a
routing mechanism which sits as OSI layer three. In terms of modelling, routing can of course happen as it does
in hardware via a broadcast. However, it is computationally much more efficient to use a “router” to model the
bus medium itself, and only pass transactions to the correct node. The OCP (Open Core Protocol) SLD Kit [5]
shows how this can be effectively achieved using standard parameters (for instance those that will be standardized
by the Accellera CCI (Configuration, Control & Inspection) WG) within the target sockets to hold the addressing
information.

Data and error information (as with UARTs) similarly sit in the transaction contents as they are an OSI layer
three feature. The CAN protocol defines four kind of frames: data frame, remote frame, error frame and overload
frame. The data frame is the general frame used to send data to another node. It seems perfectly reasonable to have
a frame identifier in the transaction and a union of the components that each frame carries. As the size of a CAN
frame is not fixed, the data can be from 0 to 8 bytes, the TLM-2.0 data mechanism can be used to handle the data
itself. Only one frame is considered per transaction, so at OSI level 2 there is nothing more than the single frame
whcih can be modelled at AT using two phases.
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The Table I sums up several protocols. In this section, a number of protocols are examined with reference to
OSI layer model, the transaction and associated phases have been identified. As the OSI model is an international
standard applicable to communication protocols, it decreases ambiguity between developers about how to define the
transaction. The OSI model has been established for many years and the content of each layer is clearly defined.
It fits with the existing Accellera TLM-2.0 generic protocol designed for memory mapped buses, and it seems to
work for a wide cross section of other interfaces. Therefore, it seems a good approach for determining what should
be identified as a transaction.

However important a transaction is, there are unfortunately other issues with the TLM-2.0 standard which also
allows for ambiguity when building a new interface. The next section examines synchronization issues between
models, which could be nodes of a serial protocol.

IV. ORDERING AND TIMING OF THE SIMULATION

One of the most important features of the SystemC library is way time is modelled. SystemC defines it’s own
notion of time that is normally called the simulation time. The SystemC kernel manages this time and provides
a global time stamp. The SystemC kernel advances time to the next outstanding SystemC event. Hence SystemC
time is non-linear and bares no relationship to real time. Furthermore, activity can occur in zero simulation time.

TLM 2.0 introduced temporal decoupling and the notion of a quantum. Time decoupling is the term given to
models which run within their own time reference “decoupled” from the SystemC kernel simulation time. Typically
they run ahead of the kernel simulation time. The quantum is a measure of the amount of time that a model is
permitted to be decoupled. SystemC is fundamentally constructed to provide a “co-operative serialization” of parallel
threads. Each (parallel) thread in SystemC (SystemC threads) is expected to periodically yield to other threads in
the system, allowing all threads to advance. In terms of TLM-2.0, it is expected that initiators are SystemC threads.
A quantum simply indicates how often they should guarantee to relinquish control to other threads.

As initiators in a TLM context are typically complex IP blocks, it is very often the case that to simulate them
efficiently requires considering a relatively large block of functionality. In reality, it may take considerable time to
execute, but as an entire block can be more easily modelled. Therefore, it is advantageous from a simulation point
of view to execute these blocks atomically, effectively decoupled from time. The Quantum limits the size of these
blocks. Hence in general, the larger the quantum is the larger the block of functionality that can be considered, and
the more optimal the simulation performance may be. Clearly, this is very dependent upon the technology used for
the model concerned, and there will be a limit to the size of block that is optimal, an examination of this effect
can be found in [10].

TLM doesn’t enable a hierarchy of quantums, with local quantums and a global quantum. At the end of a
quantum a model is expected to be re-synchronized with the simulation time. For instance SystemC’s wait function
can be called so other events can occur. A convenience function is provided in the TLM Quantum Keeper. The
TLM Quantum Keeper is present in the TLM-2.0 kit to help manage local quantum time. TLM-2.0 recommends
the usage of the TLM global quantum, but it is possible to use different local quantums in different section of
systems.

Additionally, TLM-2.0 introduced the notion of annotated time on transactions. This is a means of sharing the
current temporal decoupling time from initiators to targets. Temporal decoupling and the use of a quantum is only
supported at the higher (LT) level of abstraction defined by TLM-2.0. Overall, different notions of time exists: wall
clock time experienced by the person running the simulation, the SystemC simulation time, the quantum time, and
the annotated time.

Generally, local quantum time of initiators increases through local compute operations or through TLM
transactions by using annotated time. Typically, an initiator can send a transaction with a delay α. The target
reads this delay, prepares an answer, possibly increases the delay by including the time it takes to compute the
answer and then sends it back to the initiator. The initiator sets local quantum time by using the value received
from the target. Hence, the expectation in the TLM-2.0 library for typical target models is that they may not need
to interact directly with a quantum keeper (and the initiator local / quantum time), rather they simply use annotated
time.

In previous works [10], we have reported on the efficacy of using quantums, and how much of a speed increase
we are able to get by correctly adjusting the quantum length. However it is apparent that there is no simple formula
to calculate the quantum length. This is a significant disadvantage of this approach. Indeed when the effect on
simulation speed against quantum length is plotted, it shows that there can be several optimal values. Meanwhile
the commonly accepted practice within industry seems to be to set the quantum to the minimum interrupt period
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expected in the system. Indeed our earlier work shows a minimum simulation time at exactly the point where the
quantum is set to the period of the clock used to drive the Linux kernel. In our case, 10ms as the kernel clock
is set to 100Hz. This is a reasonable approach and to be expected, as what ever is driving those interrupts will
need to be triggered from the SystemC kernel. However this approach has it’s own limitations. System clocks are
typically responsible of regular and frequent interrupts. They are not only programmable but different operating
systems have more or less tolerance of different clock ’skew’ and require different frequencies. Hence, the quantum
need adjusting by the very end user. As systems become more complex, of course finding a common denominator
for all the clocks in a system becomes more complex, especially if some of those clocks are not known, and the
result could be a very short quantum.

A different approach has been proposed in which ordering, rather than time is considered. In this approach,
rather than periodically yielding each quantum, specific points are found in the design where yielding is imperative.
These are typically where information is passed between initiators. In this case, models are “synchronized” with
each other as often as required. It’s not necessarily with the SystemC simulation time. Effectively, an optimal
serialization of the different simulation threads is achieved [11]. This has a number of advantages: it assists by
finding problems in a design architecture caused by the expectation of synchronicity that is not enforced in the
hardware architecture. It forces designers to consider how synchronization will happen in their architecture. It does
not require any adjustment of the quantum by the end user. However, it has a number of disadvantages, not least,
as noted above, models of this sort may not work with sub-systems that expect quantums to be used.

In an attempt to mitigate these issues, we propose some changes to the way in which the quantum keeper is
implemented and used. Models that are capable of generating interrupts from external sources (e.g. clocks) are a
critical driver for quantum lengths. We have focused on them, though our solution should work for a much wider
range of events in the system. It is detailed in the section V.

V. IMPROVED TLM QUANTUM KEEPER

We have seen how the critical driver for quantum lengths seems to be timer interrupt generators and other
sources of interrupts. These are typically driven from events based on the SystemC simulation time. However,
really their time relates to the local quantum time of the device that they will be interrupting. It would make more
sense if they were based, not on the simulation time, but on the quantum time.

Doing so would also remove the need to base quantums on events that were essentially local to the local quantum
domain (typically a SystemC thread). This would allow system designers to concentrate on the inter-thread issues,
either adopting an ordering, or a quantum based approach. Enforcing an ordering approach across these interfaces
does not preclude the use of quantums in addition, this may be a way forward in terms of standardization. In
other words, one possibility is that the standard stipulates that any communication between a quantum domain is
accompanied by a synchronization between the domain and the SystemC kernel. There is currently no technical
means of ensuring this which does not also effect internal-quantum domain communication.

A. Notification system

Currently, a timer can use SystemC events (sc_event) to get a periodic callback based on simulation time.
If the period is smaller than a quantum, the timer will be called less frequently than it aught to (with respect to
the initiator that it will interrupt). Conversely, if the quantum is too short, there will be a detrimental effect on
simulation performance. Our proposal is to modify the TLM Quantum Keeper class, and provide an event queue
based on the local quantum time. Using the same mechanism for interface registration as the transport interfaces
use, the improved quantum keeper class adds methods to register a callback at a certain time. As quantum time
progresses under the control of the initiator for instance the improved util class checks and executes any pending
callbacks. Typically, a timer can use this notification system to run a clock decoupled from SystemC time, without
synchronization between the local quantum time and the simulation time. As the timer is now based on the initiators
local quantum time, this solution also improves the timing accuracy of the model. Note that, while we provide an
example Quantum Keeper utility class, the key is the API.

B. Experimental results

Two major changes are required to implement a notification mechanism based on the local quantum time. First
the quantum keeper itself needs modification - the API to the quantum keeper needs extending. Second the quantum
keeper must be ’findable’ by all models within the quantum domain (which is likely to be the SystemC thread, and
is likely encapsulated by an element of the SystemC model hierarchy). We propose that the quantum keeper should
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template<typename MODULE> c lass QuantumKeeperPlus : p u b l i c tlm quantumkeeper {
p u b l i c :

typedef vo id (MODULE: :∗ N o t i f y P t r ) ( sc core : : sc t ime &) ;
QuantumKeeperPlus ( ) : tlm quantumkeeper ( ) , m no t i f y p t r ( 0 ) , m mod( 0 ) , m not i fy t ime (0 , sc core : : SC NS) { }
v i r t u a l vo id sync ( ) {

i f ( m not i fy t ime >= get global quantum ( ) )
m not i fy t ime −= m local t ime ;

tlm quantumkeeper : : sync ( ) ;
i f ( m local t ime >= m not i fy t ime )

n o t i f y ( ) ;
}
v i r t u a l vo id inc ( const sc core : : sc t ime& t ) {

t lm quantumkeeper : : i nc ( t ) ;
i f ( m no t i f y p t r )

i f ( m local t ime >= m not i fy t ime )
n o t i f y ( ) ;

}
v i r t u a l vo id set ( const sc core : : sc t ime& t ) {

t lm quantumkeeper : : se t ( t ) ;
i f ( m no t i f y p t r )

i f ( m local t ime >= m not i fy t ime )
n o t i f y ( ) ;

}
vo id n o t i f y ( ) {

asser t (m mod) ;
N o t i f y P t r no t i f y p t r copy = m not i f y p t r ;
m no t i f y p t r = 0 ;
(m mod−>∗no t i f y p t r copy ) ( m local t ime ) ;

}
vo id r e g i s t e r n o t i f y (MODULE∗ mod, vo id (MODULE: :∗ cb ) ( sc core : : sc t ime &) , const sc core : : sc t ime& t ime ) {

m not i fy t ime = t ime ;
asser t ( ! m mod | | m mod == mod) ;
m mod = mod;
m no t i f y p t r = cb ;

}
MODULE∗ m mod;
N o t i f y P t r m no t i f y p t r ;
sc core : : sc t ime m not i fy t ime ;

} ;

become a first class object (sc_object) supportable through the upcoming Accellera CCI standard, such that it
can be found through the CCI parameter searching system. Below is our proposed Quantum Keeper itself.

The improved version of the TLM Quantum Keeper has been tested with a timer. In our implementation, the
target accesses the TLM Quantum Keeper as a constructor parameter on instantiation, in the future we would
rather see this use the CCI mechanism. Before the end of the elaboration, the timer registers a callback using the
notification system for a time equal to it’s period. Then, as quantum time moves in the initiator (e.g. as a result of
annotated time from transactions) the timer callback is triggered. The timer will generates its IRQ and re-register
the callback for the next timer cycle. The improved quantum keeper should be a native CCI object. This will allow
models to find the correct quantum keeper in the hierarchy. It also avoid the need to pass a quantum keeper to all
models whether they need it or not which would be an invasive change to large quantities of models. This approach
will allow new models to be written, taking advantage of the new quantum keeper, and removing dependencies on
the quantum duration, while allowing co-existence with existing models.

VI. IMPROVEMENTS TO THE EXISTING TLM-2.0 STANDARD

Each TLM transport class is based on two interfaces : one for forward and another for backward communication.
The forward interface inherit from four interfaces all containing exclusively pure virtual methods. These classes
contains methods for blocking/non blocking transport but also for DMI (Direct Memory Interface) and debug. This
means that the DMI and debug methods must be implemented even if they are not applicable. As we showed
for signal, RS232 and RS485 protocols, the DMI mechanism makes no sense. To solve the issue, we purpose to
re-factor the current TLM standard and we believe this can be done while maintaining backward compatibility.

Typically, “One to Many” protocol will inherit from tlm_base_fw_transport_if and
tlm_base_bw_transport_if without inheriting from DMI interfaces. The DMI interface should only
be used when it is suitable for the interface concerned. Our conclusion is the debug is always valuable and makes
(some) sense. Hence, we recommend all interfaces to inherit debug. However, DMI makes no sense for signals,
UART based protocols and CAN. On the other hand, the DMI interfaces does make sense for memory like nodes
with an I2C or SPI interface. These protocols support a sort of burst read/write. The authors of the document
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Fig. 2: Transport Forward interface fitted for
memory and non memory mapped interfaces

Fig. 3: Transport Backward interface fitted for mem-
ory and non memory mapped interfaces

[3] preferred to implement new interfaces inheriting only from the blocking transport interfaces. However, we
consider the blocking and non blocking transports as one of the key cornerstones of TLM-2.0. Hence we build on
tlm_base_fw_transport_if and tlm_base_bw_transport_if.

The base socket classes (initiator and target) add a notion of bus width as a template parameter (BUSWIDTH)
with a default value equal to 32. These classes also implements a method to retrieve bus width. This is a significant
issue. Our proposal is to refactor this providing a more generic initiator socket as illustrated on Fig. 4 for the
initiator socket. A more generic base class tlm_base_generic_initiator_b has been implemented to
replace tlm_base_initiator_b removing related bus width fields and methods. Convenience sockets for non
memory mapped protocols can be implemented inheriting from tlm_base_generic_initiator_socket
without redefining port related methods. The TLM-2.0 class has been left for backward compatibility using the new
proposed base classes.

A. Socket and binding

The TLM-2.0 core interfaces pass transactions from initiators to targets using blocking or non-blocking transport.
As found in Section III, many serial protocols requires bidirectional communication, for instance those based on
full duplex UARTs. GreenSocs has an implementation of a TLM bidirectional socket in the GreenSocket library (a
part of GreenLib). The GreenSocket implementation instances a pair of initiator and target socket in a single top
level socket. As GreenSocket is based on the TLM standard, this implementation is considered as a good candidate
for supporting backward compatibility. From a users perspective, it simply looks like a bidirectional TLM socket.

For all the “One to Many”, “Many to Many” protocols a solution to the binding and routing problem, just like
with a normal memory mapped bus is to use a router as has been mentioned in Section III-C. This is computationally
efficient (as it eliminates the need for each target to check the relevance of each transaction). “Addresses” can be
associated with targets as they should be, and the router itself can be relatively generic and lightweight. It can also
be used at both levels of abstraction: at the AT level it is used to calculate collisions and delays on the transport
medium.

However, for completeness it is useful to see what solutions exist for “routerless” simulation of broadcast
protocols. In that case a bidirectional multiple socket is required. The current TLM standard defines single initiator
and target sockets but also multiple initiator and target sockets. It doesn’t define bidirectional sockets and TLM
multiple sockets only permit a single socket to be bound to multiple sockets. We believe these should be added
(potentially drawing on the GreenSocket library).

GreenSocket sockets would be suitable for SPI for instance. For “Many to Many” protocols we require both
multiple-socket binding for broadcast and bidirectional data flow. In this case, the TLM standard doesn’t offer
a ready to use socket. However, GreenSocket also defines a multiple bidirectional socket class enabling multiple
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bidirectional binding. This solution would be suitable to bind all nodes of a broadcast based “Many to Many”
protocol like the CAN bus.

B. Payload

On top of the current communication mechanism, TLM-2.0 defines a “generic payload”
(tlm_generic_payload class). Again the naming is somewhat misleading as it is actually an example
memory mapped bus. It is however the case that some considerable care was taken to allow many simple memory
mapped buses to be modelled at least at the LT level using this “generic payload”. It does not explicitly cover
many bus features, but rather allows an ’extension’ mechanism to allow those to be modelled. We have noted
above the usefulness of this extension mechanism, and recommend it’s use in all protocol classes. For a “One
to One” serial protocol implementation, address, byte enable, byte enable length and other fields of the generic
payload are useless and add confusion in the transaction. However we have also noted the usefulness of the Data
structure for some protocols. Overall there are certain aspects of the Generic Payload that are useful for different
protocols. Fortunately, although TLM-2.0 defines the TLM generic payload, it’s clearly stated that it’s possible
to implement a different protocol which will clearly be non-interoperable with the generic payload. However,
implementing a new payload, and re-using elements of the Generic Payload is current hard with the current
standard. The extension mechanism and other payload fields are in the same unique generic payload class. It is not
possible to define a new payload without duplicating some of the features of the original generic payload. This is
a pity as the generic payload gives us the start of a pallet of fields that can be re-used in other protocols, again
increasing interoperability. To solve this issue we propose to re-factor the generic payload. The idea is to separate
payload fields and the extensions mechanism. We believe the extension mechanism should form the basis of all
payloads, hence the extension mechanism is exclusively defined in a new class called tlm_base_payload
as in Fig. 5. It allows specific payloads to inherit from this class. Then, for a memory mapped payload, a
tlm_memory_mapped_payload class is defined inheriting from tlm_base_payload which only reuses
the fields specifics to the (generic) protocol. We leave to future work the mechanism by which fields themselves
can be standardized and re-used, probably using a macro approach like the extension mechanism.

Some issues with the terminology associated with the TLM-2.0 standard have been noted. TLM-2.0 proposes the
bus protocol as the most interoperable layer of the standard. Calling this protocol “generic” is at best misleading and
at worst counter productive as it leads people to believe that TLM-2.0 only addresses such buses. Hence we propose
the new memory map payload should not use the name “generic” but instead tlm_memory_mapped_payload.
For backward compatibility, a typedef between the new definition and the old payload name could be provided.

Most of the serial protocols could be covered by a single definition for serial payloads, with the exception
of any protocol specific “commands”: for example, for the I2C protocol, an implementation will be a class
tlm_i2c_payload inheriting from tlm_base_payload and adding cmd, data_ptr, data_length and
address with associated setters and getters as illustrated in Fig. 5. However the phases of many of the protocols
are different, depending on how the protocol is constructed.

A payload also defines the TLM responses status and commands. The current TLM implementation defines a
default enumeration for both. However the enumeration does not cover the needs of each protocol as noted above
it is likely to be protocol specific. The TLM reposes status on the other hand is perfectly adequately defined in the
TLM-2.0 standard as it is essentially used to manage the mechanics of the TLM interface itself.

C. Phases

TLM default class for phases is named tlm_phase. Methods of this class are based on the default enumeration
tlm_phase_enum which defines four phases. It’s currently possible to add new phases on top of the default one
through a macro. However, as described in serial protocols analysis, the default TLM phases are not appropriate
for every protocol. Again this means we can’t re-use the tlm_phase class, and it is necessary to define a new
enumeration specific to each protocol. However, in order to improve class inheriting and to avoid code duplication,
we propose to add a template parameter to the tlm_phase, the TLM phase enumeration. We will then be able
to alias tlm_phase for backward compatibility. Again we suggest that, as far as possible, Phase names are kept
within a pallet.

D. Generic Serial Protocol

A TLM-2.0 protocol is a structure containing the payload type and the phase type. The default TLM protocol
uses the “generic” payload and the (generic) tlm_phase class. The Generic Protocol is an abstract “bus like”
protocols. For many it has been helpful to get going with TLM. However it does not model the specifics of a bus
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Fig. 4: Generic TLM initiator socket with backward
compatibility

Fig. 5: TLM I2C payload inheriting from TLM Base
Payload

protocol such as OCP, for which a dedicated kit is needed. These features are present in the OSI Layer three (LT)
as much as they are in Layer two (AT).

The OCP [5] kit has been constructed in such a way as to allow models to ’degrade’ gracefully to the generic
protocol. This way, an IP block written using the OCP kit can be used in a different context, and will behave without
the extra features that OCP brings. There are a complex mixture of OCP features some of which are mandatory for
the communication to work, others are not. The OCP kit allows model writes the flexibility to assert which features
they rely on, then during bind time, the models will automatically “configure” themselves, potentially reporting
errors. The technology for this exists within TLM-2.0 (based on the extension mechanism). It can be deployed for
any family of interfaces. To this end, we could conceive of a ’Generic Serial Protcol’, and then specific protocols
could build on that, just as OCP builds on the Generic (memory mapped bus) Protocol.

VII. TLM INTERFACE KIT PATTERN

The Accellera OCP SLD kit is a ’full’ TLM kit available openly. The kit is based on TLM-2.0’s Generic
Protocol, providing a set of extended phases and payload extensions. OCP is a (very) large family of protocols with
many options, the kit supports the automatic negotiation of which options will be used in communication, reverting
to the generic protocol if appropriate. In addition the kit provides transactors to go between the physical layer (OSI
layer 1, OCP TLM 1, TLM “CC”), AT and LT levels of the protocol. In doing so, the kit can be directly used in
mixed simulations. The kit also contains protocol checkers and analysers, examples and documentation.

Taking the OCP kit as the basis of what should be expected in a TLM interface kit, we would suggest the
following:
• OSI analysis : An analysis of the protocol in terms of it’s OSI layer 2/3 characteristics. This should directly

guide the choice of payload and phases, and should form part of the documentation of the kit. This is absent
from the OCP kit.

• Protocol : This is the only mandatory part of the interface definition as it defines the API. The protocol
phases and payload must be defined. Specifically this means for a payload defining all the fields of the
transactions (ideally selecting from the pallet of already defined fields) and associated setters/getters inheriting
from tlm_base_payload, implementing get_response_string() and defining deep_copy_from
and update_original_from() methods. An enumeration of TLM response status has to be defined and
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passed as a template parameter to tlm_base_payload. A phase class specific to the protocol also need to
be defined (except if the default phases are ok), specifying an enumeration of phases as a template parameter
of tlm_phase class. Again, where possible the phases should be defined referencing the phases defined by
the TLM WG.

• Convenience sockets : Protocol kits should provide convenience sockets to cover common use cases.
• Transactors : In order to support software protocol emulation, RTL or even real hardware, a transactor down

to OSI layer one (physical) should be provided. This becomes especially important for interfaces such as SPI
that are commonly implemented using GPIO where there will be a need to abstract up from the lower level.

• Host Bridges : In addition to connecting to RTL or real hardware, for many interfaces it also makes sense to
provide connectors to host interfaces. In other words an Ethernet interface kit might provide a way to connect
to the hosts Ethernet.

• UVM (Universal Verification Methodology) : UVM-SystemC [12] is currently under public review; interfaces
kits should provide transactors to work with this standard (this is currently missing from the OCP kit).

• Routers : For routed and broadcast protocols a router provides a convenient way to model the transport medium,
and should be provided in the kit as it’s a “generic” part for the protocol.

• Documentation and Examples. Note that the documentation will ’inherit’ mostly from the TLM documentation
itself. To the degree that phases and payload fields are used from the pallet of existing items, their documentation
can also simply be referenced.

• Legal : Though listed last, this is perhaps the most important feature, the interface kit should make it clear
under what license the kit is made available (and the writes that have been given to construct the kit in the first
place). IP that uses this interface kit will become a derivative work, hence the license is exceedingly important.

VIII. CONCLUSION

This paper has proposed a formal approach to defining the transaction in transaction level modelling, working
towards a common understanding of how protocols should be modelled. We have introduced the use of the OSI
layered communication model as the basis for defining transaction. We have analysed a number of protocols and
shown how the OSI model can be used to identify the transaction, and guide the construction of an interface kit.

We have gone on to look at how time is modelled and synchronization between time domains is achieved,
finding that there are currently ambiguities in the standard and different approaches. We have proposed a new
Quantum Keeper that provides an event queue that we believe will assist in simplifying the differences between
these approaches, and allow more efficient models.

We have examined in some detail the existing TLM-2.0 library and made concrete proposals about re-factoring
the code to better allow more interoperable interface kits to be written, covering a wider range of protocols, including
non memory mapped and serial protocols.

Finally we have provided a blue print for the contents of a full TLM interface kit, with reference to existing
standard kits already available from Accellera (namely the OCP SLD kit).

Future work will focus on concrete implementations and proposals of serial protocol standards for TLM. Our
contributions are planned to be open source.
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