
An Introduction to using Event-B 
for Cyber-Physical System 
Specification and Design

John Colley, Michael Butler
University of Southampton

October 14th 2014

© Accellera Systems Initiative 1



Outline

• ADVANCE Project Overview

• Activities supported by Rodin/Event-B Tools

• The Cyber-Physical Development Process

• The Timing Model

© Accellera Systems Initiative 2



ADVANCE(287563)
Advanced Design and Verification 

Environment for
Cyber-Physical System Engineering

• Cyber-Physical Systems

• Key Innovation

• Technical Approach

• Demonstration and Use

© Accellera Systems Initiative 3



Cyber-Physical Systems

• Integrations of Computing and Physical Mechanisms

– provide physical services

• Transportation

• Energy Distribution

• Medical Care

• Manufacturing

– with increased
• Adaptability

• Autonomy

• Efficiency

• Safety

© Accellera Systems Initiative 4



Cyber-Physical System Challenges

“…. the lack of temporal semantics and adequate 
concurrency models in computing, and today’s 
“best effort” networking technologies make 
predictable and reliable real-time performance 
difficult, at best. ”

Cyber-Physical Systems - Are Computing Foundations Adequate?

Edward A. Lee, EECS, UC Berkeley, 2006 

© Accellera Systems Initiative 5



Verifying Cyber-Physical Systems

• Most Traditional Embedded Systems are Closed 
Boxes

– amenable to Bench Testing

• Cyber-Physical Systems
– are typically networked

– can have complex interactions with their physical 
environment

– pose a much greater verification challenge

• How can predictable behaviour and timing be 
achieved?

© Accellera Systems Initiative 6



Key Innovation of ADVANCE

• Focuses on the key role played by Modelling in Cyber-
Physical System Engineering

• Modelling is used at all stages of the Development 
Process
– From Requirements Analysis to System Acceptance Testing

• Augments Formal, Refinement-based Modelling and 
Verification with
– Simulation

– Testing

in a Single Design and Verification Environment

© Accellera Systems Initiative 7



Technical Approach: Overview

• Formal Modelling supported by strong Formal 
Verification Tools to establish deep understanding of 
Specification and Design

• Simulation-based Verification to ensure that the 
Formal Models exhibit the expected behaviour and 
timing in the target physical environment

• Model-based Testing for the systematic generation of 
high-coverage test suites

© Accellera Systems Initiative 8



The Multi-Simulation Framework

• Different Simulation tools are better suited to 
simulating different parts of a Cyber-physical system

– Environments

– Controllers

– Physical Plant

• The Framework manages the co-operation of 
multiple simulators to enable effective Cyber-
physical system verification

© Accellera Systems Initiative 9



Demonstration and Use

© Accellera Systems Initiative 10

	



ADVANCE Workpackages
WP1Dynamic Trusted Railway Interlocking Case Study              Alstom

WP2Smart Energy Grids Case Study                                               Critical

WP3Methods and Tools for Model Construction and Proof    Systerel

WP4Methods and Tools for Simulation and Testing            Düsseldorf

WP5Process Integration                                                      Southampton

WP6External Dissemination and Exploitation                               Critical

WP7Management Southampton

© Accellera Systems Initiative 11



Achieving high assurance is not easy

• Requirements are poorly understood and analysed

• No software system is self-contained
– it operates within a potentially complex environment

– complexity of environment means that hazards / vulnerabilities
in environment are poorly understood

• Designs are verified only after implementation
– expensive to fix

– verification usually incomplete – many undiscovered bugs

– Ensuring coverage of faults/attacks in testing is difficult

© Accellera Systems Initiative 12



Verified Design with Event-B

• Formal modelling at early stages to prevent errors in 
understanding requirements and environment

• Verify conformance between high-level specifications 
and designs using incremental approach

• Rodin: open source toolset for modelling, verification 
and simulation

© Accellera Systems Initiative 13



Safety/security properties in Event-B

• Aircraft landing gear:
Gear=retracting  ⇒ Door=open

• Railway signalling safety:
– The signal of a route can only be green when

all blocks of that route are unoccupied

sig(r) = GREEN  ⇒ blocks[r] ∩ occupied = ∅

• Access control in secure building:  
– if user u is in room r,   then u must have sufficient authority to be  in r

location( u ) = r    ⇒

takeplace[ r ]   ⊆ authorised[ u ]

© Accellera Systems Initiative 14



Refinement in Event-B
• High level models 

– abstract details, allowing focus on system-level properties

• Refined models 
– introduce more requirements or design details

• Conformance: 
– behaviour exhibited by refined model should be allowed by abstract 

model

• Example, signalling mechanism as a refinement:
– System level property:

Gear=retracting  ⇒ Door=open
– Design level properties:

Gear=retracting  ⇒ GearRetractSignal=TRUE
GearRetractSignal=TRUE  ⇒ Door=open

© Accellera Systems Initiative 15



Main features of the Rodin Toolset

• Model Verification
– Ensure that Event-B models satisfy key properties 

formulated in a mathematical way

• Model Validation
– Ensure that Event-B models accurately capture the 

intended behaviour / requirements of a system

• Model Transformation 
– Transform models from one representation to another, 

e.g., 
• graphical to mathematical representation 

• model to code transformation

© Accellera Systems Initiative 16



Simple Verification Example

Invariant: x  ≤  y  ≤  x+C (y is bounded by x)
IncEvent ≙ when y < x+C then y := y+1 end

• Assume the the system is initialised to a state that 
satisfies the invariant.

• Can the system ever get into a state in which the 
invariant is violated?

• Formulate the question as a mathematical problem
– Is this theorem provable?:

x  ≤  y  ≤  x+C ∧ y < x+C ⇒ x  ≤  y+1  ≤  x+C
• NB: theorem and its proof hold for all values of x,y,C.

© Accellera Systems Initiative 17



Proof Obligations and Provers

• In Event-B theorems such as these are called Proof 
Obligations (POs)

– The Rodin tool generates the POs for a model 
automatically

• The Rodin provers (semi-)automatically construct 
mathematical proofs of the validity of the POs.

© Accellera Systems Initiative 18



Counter examples for invalid theorems

• Suppose our event had a specification error:
Invariant: x  ≤  y  ≤  x+C (y is bounded by x)
IncEvent ≙ when y ≤ x+C then y := y+1 end

• A Model Checker can generate counterexamples that demonstrate 
the consequence of the error in IncEvent :
– Before: x=0, y=2, C=2 ok
– After: x=0, y=3, C=2 fault

• Model checker can also generate error traces from initial states:
– Init: x=0, y=0, C=2 ok
– IncEvent: x=0, y=1, C=2 ok
– IncEvent: x=0, y=2, C=2 ok
– IncEvent: x=0, y=3, C=2 fault

© Accellera Systems Initiative 19



Model Verification in Rodin
• Proof Obligation generation

– Invariant preservation
– Refinement checking

• Automated and interactive proof
– Proof manager uses a range of internal and external plug-in theorem 

proving tools
– Customisable through proof tactics

• Model checking with ProB plug-in: automated search for 
– invariant violations
– refinement violations
– deadlocks

• Proof Support for Domain-specific theories
– Tables and operators for data manipulation
– Hierarchical structures (e.g. file system)
– Train occupancy as chains on a graph

© Accellera Systems Initiative 20



Model Validation

• Requirements tracing
– Validating a formal model against (informal) requirements 

involves human judgements

– Strong structuring and traceability helps to ensure that the 
validation is comprehensive and maintainable

– Tracing is supported by ProR plug-in

• Graphical animation
– ProB provides a simulation engine for Event-B

– BMotionStudio allows interactive graphical animations to be 
constructed, driven by the simulation engine

– Very valuable for validating model, especially with domain 
experts

© Accellera Systems Initiative 21



Model Validation (continued)

• Multi-simulation
– Event-B models discrete event systems

– Some environment variables are best represented as 
continuous quantities

• E.g., voltage, temperature, speed,…

– Rodin multi-simulation framework allows co-simulation of 
discrete and continuous models 

• links ProB with external simulation tools, e.g., Simulink, Modelica

– Co-simulation allows us to validate a discrete controller 
model given certain assumptions about the (continuous) 
environment it controls

• environment variables represented in a continuous model

© Accellera Systems Initiative 22



Continuous / discrete co-simulation

© Accellera Systems Initiative 23



Co-simulation Results

© Accellera Systems Initiative 24

step up/down action is performed (transition tapUp or

tapDown, respectively). The Wait event in this mode is

delayChange.

The co-simulation configuration of the OLTC/controller

had a detection delay set to 5s, a mechanical delay of 1s and

a deadband of 2V. The step period of the controller was set

to 0.1s and the simulation run for 30s to observe the voltage

drop and the reaction of the tap changer, shown in Figure 7.

Figure7. Co-simulation results of theOLTPvoltage control

(simulation time = 30s, step size = 0.1s)

Results demonstrate that controller detects a deviation

from the deadband (vNorm < 229V) at t = 23s and switches

to the sCount state. As voltage continues to stay outside the

acceptance range for 5s an action is taken at t = 28s and is

completed after a mechanical delay of 1s. The tap position

changes from 11 (middle position, denoting the nominal ra-

tio) to 12, i.e. a tap up is performed to step up the secondary

voltage. As a result the voltage jumps to 232V at t = 29s and

becomes outside of the range, but goes back to normal as the

load continues to increase.

A more interesting scenario we would like to model in

the future is a number of different factors affecting the volt-

age (line drop, distribution generation, etc.), as well as a

more complex model of the residential load and an intelli-

gent OLTC control algorithm that minimises the number of

tap changes to minimise the wear of expensive equipment.

6. CONCLUSIONS
REFERENCES
[1] Edward A. Lee. Cyber physical systems: De-

sign challenges. In International Symposium on

Object/Component/Service-Oriented Real-Time Dis-

tributed Computing (ISORC), May 2008. Invited Paper.

[2] K. Balasubramanian, A. Gokhale, G. Karsai, J. Szti-

panovits, and S. Neema. Developing applications us-

ing model-driven design environments. Computer ,

39(2):33–40, 2006.

[3] Torsten Blochwitz, M Otter, M Arnold, C Bausch,

C Clauß, H Elmqvist, A Junghanns, J Mauss, M Mon-

teiro, T Neidhold, et al. The Functional Mockup Inter-

face for tool independent exchange of simulation mod-

els. InModelica’2011 Conference, March, pages20–22,

2011.

[4] Stefania Gnesi and Tiziana Margaria. Formal Methods

for Industrial Critical Systems. Wiley Online Library,

2013.

[5] S. Liu and R. Adams. Limitations of formal methods

and an approach to improvement. In SoftwareEngineer-

ing Conference, 1995. Proceedings., 1995 Asia Pacific,

pages 498–507. IEEE, 1995.

[6] A. Hall. Seven myths of formal methods. Software,

IEEE, 7(5):11–19, 1990.

[7] J.R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang,

F. Mehta, and L. Voisin. Rodin: an open toolset for mod-

elling and reasoning in Event-B. International Jour-

nal on Software Tools for Technology Transfer (STTT),

12(6):447–466, 2010.

[8] Jean-Raymond Abrial and Stefan Hallerstede. Refine-

ment, decomposition, and instantiation of discrete mod-

els: Application to Event-B. Fundamenta Informaticae,

77(1):1–28, 2007.

[9] Michael Jastram. ProR, an open source platform for

requirements engineering based on RIF. 2010.

[10] C. Snook and M. Butler. UML-B and Event-B: an inte-

gration of languages and tools. 2008.

[11] Michael Leuschel and Michael Butler. ProB: an au-

tomated analysis toolset for the B method. Interna-

tional Journal on Software Tools for Technology Trans-

fer, 10(2):185–203, 2008.

[12] Steve Wright. Automatic generation of C from Event-

B. In Workshop on integration of model-based formal

methods and tools. Citeseer, 2009.

[13] Andrew Edmunds and Michael Butler. Tasking Event-

B: An extension to Event-B for generating concurrent

code. 2011.

[14] Jean-Raymond Abrial Wen Su and Huibiao Zhu. Com-

plementary methodologies for developing hybrid sys-

tems with Event-B, 2012.

[15] Jean-Raymond Abrial, Wen Su, and Huibiao Zhu. For-

malizing hybrid systems with Event-B. In Abstract

State Machines, Alloy, B, VDM, and Z, pages 178–193.

Springer, 2012.



Model Transformation
• UML-B

– UML-like graphical notation for Event-B
– Supports class diagrams and statemachines
– Graphical representation of refinement

• Composition and decomposition
– Composition: combine models to form larger models
– Decomposition: split large models into sub-models for further 

refinement and decomposition
– Composition and decomposition need to be performed in a disciplined 

way

• Code generation
– Generate C/Ada/Java from low-level models
– Customisable
– Support for generating multi-tasking implementations

© Accellera Systems Initiative 25



UML-B Class diagrams for Bank Accounts

© Accellera Systems Initiative 26

Abstract Class Diagram

Refined Class Diagram



UML-B Statemachine for ATM

© Accellera Systems Initiative 27

Screenshots*from*Event/B*Statemachines*demo*

*

Screenshot*1*–*Abstract*model*showing*generation*of*withdraw*event*

*

*

Screenshot*1*–*Refined*model*showing*validation*problems*

*

*

*



Refined model of ATM

© Accellera Systems Initiative 28

*

*

Screenshot*1*–*Refined*model*showing*synchronising*events,*pinok,pinko*

*

*

Screenshot*1*–*Refined*model*being*animated*

*



Rodin Architecture

• Extension of Eclipse Open Source IDE

• Core Rodin Platform manages:
– Well-formedness + type checker

– Consistency/refinement PO generator

– Proof manager

• Extension points to support plug-ins
– ProB, Bmotion Studio, ProR

© Accellera Systems Initiative 29



The ADVANCE Process

• Deriving the Safety Constraints from the Functional 
Requirements using STPA

• Modeling the Safety Constraints in Event-B
– System-level Safety Constraints

• Determining how Unsafe Control Actions could occur
• Documenting the Requirements and Design Decisions with 

ProR
• Refining the model and safety constraints to ensure Control 

Actions are safe in the presence of Hazards
– Architecture-level Safety Constraints

• Constraint-based test generation and MC/DC coverage
• Shared Event Decomposition

– Further refinement/ implementation
– FMI-based Multi-simulation

© Accellera Systems Initiative 30



The Functional Requirements

• System Overview

• Monitored Phenomena

• Controlled Phenomena

• Commanded Phenomena

• Mode Phenomena

© Accellera Systems Initiative 31



Controlled Phenomena

Landing Gear Doors

1. The Controller will open the Doors when the Pilot moves 
the Lever to Extend or Retract the Landing Gear

2. The Controller will then close the Doors when the 
Landing Gear is fully Extended or Retracted

3. The Doors will remain open while the Landing Gear is 
Extending or Retracting

© Accellera Systems Initiative 32



Safety Requirements

“Any controller – human or automated – needs a model

of the process being controlled to control it effectively”

“Accidents can occur when the controller’s process 
model does not match the state of the system being 
controlled and the controller issues unsafe commands.”

Engineering a Safer World, Leveson, 2012

© Accellera Systems Initiative 33



System-Theoretic Process Analysis 
(STPA)

1. Identify Potentially Hazardous Control 
Actions and derive the Safety Constraints

2. Determine how Unsafe Control Actions could 
occur

© Accellera Systems Initiative 34



The Door Sub-system Process Models

© Accellera Systems Initiative 35

Controller

Process Model

Door Position

-- Locked Open

-- Locked Closed

-- Opening
-- Closing

-- Unknown

Human Operator

Process Model

Landing Gear

-- Extended/ing

-- Retracted/ing

-- Unknown

Door

Sub-system

Actuator Sensor

OpenDoor

CloseDoor

Extend

Retract

Door is Locked Open

Door is Locked Closed

Controlled Process

35



Step I: Identify Potentially Hazardous Control 
Actions and Derive Safety Constraints

1. If the Landing Gear is Extending, the Door must be Locked Open
2. If the Landing Gear is Retracting, the Door must be Locked Open
3. A “Close Door” command must only be issued if the Landing Gear is Locked Up 

or Locked Down
4. An “Open Door” command must only be issued if the Landing Gear is Locked Up 

or Locked Down

© Accellera Systems Initiative 36

Safety Constraints

Controller 
Action

Not Providing
Causes Hazard

Providing
Causes Hazard

Wrong Timing or 
Order Causes
Hazard

Stopped too 
soon/Applied 
too long

Open Door Cannot extend 
Landing Gear for 
landing

Not Hazardous Not Hazardous Damage to 
Landing Gear/
Not Hazardous

Close Door Not Hazardous Damage to 
Landing Gear

Damage to 
Landing Gear

Not Hazardous/
Not Hazardous



Deriving the Formal Safety Constraints

© Accellera Systems Initiative 37

• Natural Language Constraints developed systematically 
by the Domain Experts

• Formal, Event-B Safety Constraints
– Derived systematically from the Natural Language Descriptions

– Linked to Requirements
• ProR

1. If the Landing Gear is Extending, the Door must be Locked Open

2. If the Landing Gear is Retracting, the Door must be Locked Open

3. A “Close Door” command must only be issued if the Landing Gear is Locked 

Up or Locked Down

4. An “Open Door” command must only be issued if the Landing Gear is Locked 
Up or Locked Down



Deriving the Formal Safety Constraints

© Accellera Systems Initiative 38

• Natural Language Constraints developed systematically 
by the Domain Experts

• Formal, Event-B Safety Constraints
– Derived systematically from the Natural Language Descriptions

– Linked to Requirements
• ProR

1. If the Landing Gear is Extending, the Door must be Locked Open

2. If the Landing Gear is Retracting, the Door must be Locked Open

3. A “Close Door” command must only be issued if the Landing Gear is Locked 

Up or Locked Down

4. An “Open Door” command must only be issued if the Landing Gear is Locked 
Up or Locked Down

gearstate∈ {locked_down, locked_up} ∨ doorstate = locked_open

event Close
where

@grd1 gearstate∈ {locked_down, locked_up}
@grd2 doorstate∈ {opening, locked_open}

then
@act1 doorstate≔ closing

end



The Model Extended FSM

© Accellera Systems Initiative 39

S7

G  locked_up 

D  locked_closed

G  locked_up 

D  opening

G  locked_up 

D  locked_open

G  extending 

D  locked_open

G  locked_down 

D  closing

G  locked_down 

D  locked_open

G  locked_down 

D  locked_closed

G  retracting 

D  locked_open

G  locked_up 

D  closing

G  locked_down 

D  opening

Open

CompleteOpen

Extend

CompleteExtend

Close

CompleteClose

CompleteClose

Close

Open

Close

Retract

Extend

Complete Retract

Retract

CompleteOpen

Open Open



Refinement: Introducing the Handle and Timing

© Accellera Systems Initiative 40

S7

G  locked_up 

D  opening 

H  DOWN

G  locked_up 

D  locked_open 

H  DOWN

G  locked_up 

D  locked_closed 

H  UP

G  extending 

D  locked_open 

H  DOWN

G  locked_down 

D  closing 

H  DOWN

G  locked_down 

D  locked_open 

H  DOWN

G  locked_down 

D  locked_closed 

H  DOWN

G  retracting 

D  locked_open 

H  UP

G  locked_up 

D  closing 

H  UP

G  locked_down 

D  opening 

H  UP

Open

CompleteOpen

Extend

CompleteExtend

Close

CompleteClose

CompleteClose

Close

Open

Close

Retract

Extend

Complete Retract

Retract

Open

Open

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

G  locked_down 

D  locked_open 

H  UP

G  locked_up 

D  locked_open 

H  UP

Close

CompleteOpen

Extend

Close

Retract

Close



Refinement: Introducing the Handle and Timing

© Accellera Systems Initiative 41

S7

G  locked_up 

D  opening 

H  DOWN

G  locked_up 

D  locked_open 

H  DOWN

G  locked_up 

D  locked_closed 

H  UP

G  extending 

D  locked_open 

H  DOWN

G  locked_down 

D  closing 

H  DOWN

G  locked_down 

D  locked_open 

H  DOWN

G  locked_down 

D  locked_closed 

H  DOWN

G  retracting 

D  locked_open 

H  UP

G  locked_up 

D  closing 

H  UP

G  locked_down 

D  opening 

H  UP

Open

CompleteOpen

Extend

CompleteExtend

Close

CompleteClose

CompleteClose

Close

Open

Close

Retract

Extend

Complete Retract

Retract

Open

Open

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

G  locked_down 

D  locked_open 

H  UP

G  locked_up 

D  locked_open 

H  UP

Close

CompleteOpen

Extend

Close

Retract

Close

ProB

• Model Check
• Generate Tests (Constraint-based)
• Measure Coverage (MC/DC)

• all the guards of all the events 
can be set independently to 
FALSE for all states



Refinement: The Component View
Architecture-Level

© Accellera Systems Initiative 42

Controller

Landing

Gear

Sub-system

gear_extended/

gear_retracted

open/close

door_open/

door_closed



Refinement: The Component View
Architecture-Level

© Accellera Systems Initiative 43

Controller

Landing

Gear

Sub-system

gear_extended/

gear_retracted

open/close

door_open/

door_closed

Formal Shared Event Decomposition

• Further refinement/implementation of the Controller
• FMI-based Multi-simulation



Why Model Timing?

© Accellera Systems Initiative 44

A major challenge that CPS present to systems 

modelling is that a well-developed notion of time needs 

to be introduced ..

[Lee and Seshia, Introduction to Embedded Systems   

A Cyber-Physical Approach  2011] 

.. and often this is necessary quite early in the model 

refinement process.

We want to reason formally about the temporal 

properties of a Cyber-Physical System.



Why Synchronous?

• Critical timing paths can be identified through formal 
static timing analysis

– Prove that the clock period is sufficiently long

• Proven synthesis route to a hardware 
implementation

• Enables interrupt-free software implementations

– Easier to verify for safety-critical implementation

© Accellera Systems Initiative 45



Milner's Synchronous Calculus of 
Communicating Systems (SCCS)

• P  ⟶ P’
– An agent P may perform an atomic action a and become P’ in doing 

so.

• Assuming time is discrete
– P at time t becomes P’ at time t + 1
– Actions are atomic in the sense that they are indivisible in time (but 

not indivisible in every sense)

• A system of 3 agents P, Q and R where
P  ⟶ P’,      Q  ⟶ Q’,      R  ⟶ R’

can perform the product (X) of a, b and c simultaneously and X is 
associative and commutative

• An agent that cannot perform an action must at least be able 
to perform an idle action i
– Otherwise “disaster”

© Accellera Systems Initiative 46

Calculi for Synchrony and Asynchrony, 1982 

a

a b c



Abstract Untimed Specification

© Accellera Systems Initiative 47

event EstablishCommsLink
where

@grd1 ControllerActive = FALSE
then

@act1 ControllerActive≔ TRUE
end



Not an Atomic process, so

© Accellera Systems Initiative 48

event InitiateCommsLink
where

@grd1 ControllerActive = FALSE
@grd2 TCInit = FALSE

then
@act1 TCInit ≔ TRUE

end

event CompleteCommsLink  refines EstablishCommsLink
any pack
where

@grd1 pack = TRUE
@grd2 TCInit = TRUE
@grd3 ControllerActive = FALSE

then
@act1 ControllerActive≔ TRUE

end

AND THEN …



Handle Soft and Hard Errors

© Accellera Systems Initiative 49

event RetryCommsLink
any pack
where

@grd1 pack = FALSE
@grd2 TCInit = TRUE
@grd3 ControllerActive = FALSE
@grd4 RetryCount  >  0

then
@act1 RetryCount ≔ RetryCount - 1

end

event CompleteCommsLinkFail
any pack
where

@grd1 pack = FALSE
@grd2 TCInit = TRUE
@grd3 ControllerActive = FALSE
@grd4 RetryCount  =  0

then
@act1 TCInit ≔ FALSE

end

event InitiateCommsLink
where

@grd1 ControllerActive = FALSE
@grd2 TCInit = FALSE

then
@act1 TCInit ≔ TRUE

end

event CompleteCommsLink  refines
EstablishCommsLink

any pack
where

@grd1 pack = TRUE
@grd2 TCInit = TRUE
@grd3 ControllerActive = FALSE

then
@act1 ControllerActive≔ TRUE

end

49



Are we Done?

• P  ⟶ P’
– We have a set of four atomic actions a

– At least one event in the system is always enabled

– Under the interpretation “the evaluation of an event advances 
discrete time” we have implemented SCCS

• BUT
– This is a very simple system

– For complex CPS it is not usually feasible to represent the action 
as a single event

– Recall “Actions are atomic in the sense that they are indivisible
in time (but not indivisible in every sense)”

– and we have only considered a single process ….

© Accellera Systems Initiative 50

a



Implementing SCCS with Actions 
comprising multiple events

• After the system initiates the comms link it 
WAITs for a response

• If there is no response, it retrys and WAITs 
again

• So, we implement an action as a sequence of 
events:-

– Evaluate,  E1, E2, … Wait

© Accellera Systems Initiative 51



Multi-event action: C  ⟶ C’

© Accellera Systems Initiative 52

event CEvaluate
where

@grd1 CEvaluated = FALSE
@grd2 Cstep = 0

then
@act1 Cstep ≔ 1

end

event CWait
where

@grd1 Cstep = 2
then

@act1 Cstep ≔ 0
@act2 CEvaluated ≔ TRUE

end

52

event InitiateCommsLink
where

@grd1 ControllerActive = FALSE
@grd2 TCInit = FALSE
@grd3 Cstep = 1

then
@act1 TCInit ≔ TRUE
@act2 Cstep ≔ 2

end
..
event CompleteCommsLink  refines

EstablishCommsLink
any pack

where
@grd1 pack = TRUE
@grd2 TCInit = TRUE
@grd3 ControllerActive = FALSE
@grd4 Cstep = 1

then
@act1 ControllerActive≔ TRUE
@act2 Cstep ≔ 2

end



Update Event advances Time

© Accellera Systems Initiative 53

event CEvaluate
where

@grd1 CEvaluated = FALSE
@grd2 Cstep = 0

then
@act1 Cstep ≔ 1

end

event CWait
where

@grd1 Cstep = 2
then

@act1 Cstep ≔ 0
@act2 CEvaluated ≔ TRUE

end

53

event InitiateCommsLink
where

@grd1 ControllerActive = FALSE
@grd2 TCInit = FALSE
@grd3 Cstep = 1

then
@act1 TCInit ≔ TRUE
@act2 Cstep ≔ 2

end
..
event CompleteCommsLink  refines

EstablishCommsLink
any pack

where
@grd1 pack = TRUE
@grd2 TCInit = TRUE
@grd3 ControllerActive = FALSE
@grd4 Cstep = 1

then
@act1 ControllerActive≔ TRUE
@act2 Cstep ≔ 2

end

event Update
where

@grd1 CEvaluated = TRUE
then

@act1 CEvaluated ≔ FALSE
end



2 processes: C  ⟶ C’, T  ⟶ T’

© Accellera Systems Initiative 54

event CEvaluate
where

@grd1 CEvaluated = FALSE
@grd2 Cstep = 0

then
@act1 Cstep ≔ 1

end
...

event CWait
where

@grd1 Cstep = 2
then

@act1 Cstep ≔ 0
@act2 CEvaluated ≔ TRUE

end
event Update

where
@grd1 CEvaluated = TRUE
@grd2 TEvaluated = TRUE

then
@act1 CEvaluated ≔ FALSE
@act2 TEvaluated ≔ FALSE

end

Event TEvaluate
where

@grd1 TEvaluated = FALSE
@grd2 Tstep = 0

then
@act1 Tstep ≔ 1

end
...

Event TWait
where

@grd1 Tstep = 3
then

@act1 Tstep ≔ 0
@act2 TEvaluated ≔ TRUE

end

54



Inter-process Communication

© Accellera Systems Initiative 55

event InitiateCommsLink
where

@grd1 ControllerActive = FALSE
@grd2 TCInit = FALSE
@grd3 Cstep = 1

then
@act1 TCInit ≔ TRUE
@act2 Cstep ≔ 2

end
..

event CompleteCommsLink  refines
EstablishCommsLink

any pack
where

@grd1 pack = TCAcknowledgeInit
@grd2 TCInit = TRUE
@grd3 TCAcknowledgeInit = TRUE
@grd4 ControllerActive = FALSE
@grd5 Cstep = 1

then
@act1 ControllerActive ≔ TRUE
@act2 Cstep ≔ 2

end

event TAcknowledgeInit
any pack
where

@grd1 pack ∈ BOOL
@grd2 TCInit = TRUE
@grd3 Tstep = 1

then
@act1 TCAcknowledgeInit ≔ pack
@act2 Tstep ≔ 2

end
.. 

event Update
where

@grd1 CEvaluated = TRUE
@grd2 TEvaluated = TRUE

then
@act1 CEvaluated ≔ FALSE
@act2 TEvaluated ≔ FALSE

end



Inter-process Communication

© Accellera Systems Initiative 56

event InitiateCommsLink
where

@grd1 ControllerActive = FALSE
@grd2 TCInit = FALSE
@grd3 Cstep = 1

then
@act1 TCInit ≔ TRUE
@act2 Cstep ≔ 2

end
..

event CompleteCommsLink  refines
EstablishCommsLink

any pack
where

@grd1 pack = TCAcknowledgeInit
@grd2 TCInit = TRUE
@grd3 TCAcknowledgeInit = TRUE
@grd4 ControllerActive = FALSE
@grd5 Cstep = 1

then
@act1 ControllerActive ≔ TRUE
@act2 Cstep ≔ 2

end

event TAcknowledgeInit
any pack
where

@grd1 pack ∈ BOOL
@grd2 TCInit = TRUE
@grd3 Tstep = 1

then
@act1 TCAcknowledgeInit ≔ pack
@act2 Tstep ≔ 2

end
.. 

event Update
where

@grd1 CEvaluated = TRUE
@grd2 TEvaluated = TRUE

then
@act1 CEvaluated ≔ FALSE
@act2 TEvaluated ≔ FALSE

end

Evaluation of C and T is order dependent!
Does not preserve commutativity required by SCCS

Race Condition



Preserving evaluation order independence

© Accellera Systems Initiative 57

event InitiateCommsLink
where

@grd1 ControllerActive = FALSE
@grd2 TCInit = FALSE
@grd3 Cstep = 1

then
@act1 TCInitprime ≔ TRUE
@act2 Cstep ≔ 2

end
..

event CompleteCommsLink  refines
EstablishCommsLink

any pack
where

@grd1 pack = TCAcknowledgeInit
@grd2 TCInit = TRUE
@grd3 TCAcknowledgeInit = TRUE
@grd4 ControllerActive = FALSE
@grd5 Cstep = 1

then
@act1 ControllerActive ≔ TRUE
@act2 Cstep ≔ 2

end

event TAcknowledgeInit
any pack
where

@grd1 pack ∈ BOOL
@grd2 TCInit = TRUE
@grd3 Tstep = 1

then
@act1 TCAcknowledgeInitprime ≔ pack
@act2 Tstep ≔ 2

end
.. 

event Update
where

@grd1 CEvaluated = TRUE
@grd2 TEvaluated = TRUE

then
@act1 CEvaluated ≔ FALSE
@act2 TEvaluated ≔ FALSE
@act3 TCInit ≔ TCInitprime
@act4 TCAcknowledgeInit ≔

TCAcknowledgeInitprime
end



Preserving evaluation order independence

© Accellera Systems Initiative 58

event InitiateCommsLink
where

@grd1 ControllerActive = FALSE
@grd2 TCInit = FALSE
@grd3 Cstep = 1

then
@act1 TCInitprime ≔ TRUE
@act2 Cstep ≔ 2

end
..

event CompleteCommsLink  refines
EstablishCommsLink

any pack
where

@grd1 pack = TCAcknowledgeInit
@grd2 TCInit = TRUE
@grd3 TCAcknowledgeInit = TRUE
@grd4 ControllerActive = FALSE
@grd5 Cstep = 1

then
@act1 ControllerActive ≔ TRUE
@act2 Cstep ≔ 2

end

event TAcknowledgeInit
any pack
where

@grd1 pack ∈ BOOL
@grd2 TCInit = TRUE
@grd3 Tstep = 1

then
@act1 TCAcknowledgeInitprime ≔ pack
@act2 Tstep ≔ 2

end
.. 

event Update
where

@grd1 CEvaluated = TRUE
@grd2 TEvaluated = TRUE

then
@act1 CEvaluated ≔ FALSE
@act2 TEvaluated ≔ FALSE
@act3 TCInit ≔ TCInitprime
@act4 TCAcknowledgeInit ≔

TCAcknowledgeInitprime
end

Update event
updates the values of the communication variables

and advances time when all processes have evaluated



Timing Summary

• Specification refinement begins with an untimed 
model

• Refinement introduces sequences of temporal events

• Implementing SCCS semantics in the refined Event-B 
model enables synchronisation and communication 
between processes without race

– Implements HDL cycle-based semantics

– Enables HDL and Assertion generation from Event-B

© Accellera Systems Initiative 59



Important Messages
• System assurance can be strengthened 

– using systematic processes and  verified design

• Role of systematic requirements and safety analysis
– Structures to focus the analysis
– Path to formalisation

• Role of formal modelling and refinement:
– increase understanding,  decrease errors
– manage complexity through multiple levels of abstraction

• Role of verification and tools:
– improve quality of models (validation + verification)
– make verification as automatic as possible, pin-pointing errors 

and even suggesting improvements

© Accellera Systems Initiative 60



Questions

© Accellera Systems Initiative 61


