An Integrated Framework for Power Aware
Verification

Harsh Chilwal
Synopsys India Pvt Ltd
Bangalore, India
Email: harsh@synopsys.com

Abstract—Recent advances in UPF (Unified Power Format)
have enabled ways to query the power objects from the UPF
(power architecture) data base, and ways to bind checkers
without affecting the actual design. In this paper we attempt
to leverage these strengths of UPF to ease the specification of
power intent (properties/assertions) and instantiation of these in
the design for verification. We show that the proposed framework
enables the verification engineer to specify its low power intent
conveniently in a unified manner and the same intent can be
used across different levels of abstractions seamlessly. Though
we show the flow using UPF, the methodology is generic and can
be implemented/supported in any other power formats.

I. INTRODUCTION

Typically in a low power design flow, the design is parti-
tioned into a set of power domains. The power network of the
design is then modeled using power elements like isolation,
retention, power switch, level shifter cells, supply nets, port
etc. In addition to these, there exists power management
units (PMUs) to control this power architecture by issuing
appropriate control sequences to the different elements of the
power architecture. Application of control sequences forces the
design to change its power states (examples of states include
- on, off, stand-by, etc).

In general, both the power architecture and the PMU func-
tionality (in terms of state machines) can be specified using
languages like UPF [3]. This specification can exist in the
individual power domains as well as at a global (top level)
scope. We will call these as - Local Power Management Units
(LPMU) and Global Power Management Units (GPMU). Once
a set of UPFs for a design are read by a tool, an internal power
architecture data base is created which resembles intent of
these set of UPFs.

In addition to its capability to specify the power architecture,
UPF also offers features to help verification of this function-
ality. For example, recent advances in UPF standard have
enabled people to query the power architecture (UPF) data
base. Moreover commands like bind_checker enables attaching
checkers/properties without changing the functionality of the
design.

Once this power intent specification is over, the power
architecture verification for a given low power design starts
and it involves the following steps.

1) First, we need to verify that the power management
architecture is structurally correct.

Manish Jain
Synopsys India Pvt Ltd
Bangalore, India
Email: mjain@synopsys.com

Bhaskar Pal
Synopsys India Pvt Ltd
Bangalore, India
Email: bpal@synopsys.com

2) Second, we need to verify that the design behave cor-
rectly when power management control signals are given
in the correct sequence.

3) Third, we need to verify that the power control logic
will always generate power control signals in the correct
sequence.

The first step is usually carried out by static checking
tools like MVRC [5], which usually do a correctness and
consistency check of the UPFs (written for a design). The
other steps are generally executed during simulation [1], [2],
[4] starting at an early stages (e.g RTL) of the design flow.
Low power architecture verification using simulation is tricky
and its success depends on two key components.

1) In the early stages, the power architecture is specified
only in the UPF it does not exist in the design. There-
fore, the simulation tools use the UPF to internally
synthesize the UPFs in the given design. On the oth-
erhand, the PMUs can be modeled using testbenches or
sometimes these can be part of the design as well.

2) The power intent (for verification) is typically modeled
using properties/assertions. Modeling this can be very
difficult because it includes properties than span a single
power domain (in the context of LPMU) as well as
multiple power domains (in the context of GPMUs).

In this paper, we provide a methodology which leverages
features of UPF to offer a programmable interface to the
designers/verification engineers which can be used to verify
complicated power assertions/checkers very easily. The prop-
erties can be any SystemVerilog Assertion (SVA) [7] and it
can be either domain specific (for the LPMUs) or inter-domain
type (for the GPMU). Specifically the methodology proposes
the following steps:

1) Express the power intent by a set of parameterized SVAs.

2) Once the properties are modeled, the context of attaching
these SVAs is modeled by the proposed programmable
interface. This interface is designed over the query_upf
commands.

3) Once the specific context is modeled by this pro-
grammable interface, the attachment of the checkers
to the power objects is done by UPF bind_checker
command.

We have observed that with the proposed flow, the verifica-

tion process can be hugely automated and the closure can be

achieved in less time.
GPMU

LP MPI Proc
Obe LPM U 3
Fig. 1. Example design

II. A MOTIVATING EXAMPLE

We illustrate the above mentioned steps using an example
design in Fig 1. This example is partially motivated by [4].
The design consists of three power domains, namely, a pro-
cessor (Proc), a backup processor (Bproc) and a On-chip Bus
Controller (Obc). The different power modes of these domains
are given as follows:

1) The Proc has three power modes - on, off and standby.

2) The Bproc works in three power modes - on, lowpower,
off. Lets also assume that there is a design signal
data_rate that controls the voltage supply of Bproc. The
voltage regulator of Bproc switches the supply from
VDDML (low voltage supply) to VDDM (high voltage
supply) whenever data_rate goes above a predefined
threshold (TH).

3) The Obc works in two power modes - on, Off.

Both the Proc and Bproc uses the on-chip bus for their
data transfer. Proc is the main processor that is active most
of the time. When Proc is on standby or off, the Bproc stars
working either using full power (0n state) or in restricted mode
(lowpower mode). The Obc can never go into Off when one of
these processors is working.

Each these three power domains has their own LPMUs. Also
there is a GPMU which controls interactions between these
LPMUs. Note that the states of PMUs are the power states
of the design. Therefore transitions between these states may
not be immediate, it might take several design clock cycles
for transition to a different state. For example, a transition
from on to off state of Proc requires - (a) retention of the
current state of Proc, and (b) enabling isolation cells of Proc
by activating isolation control signals. These are the called the
implicit states in the design.

In Fig 2, we show the power state transition diagram of
Proc. We model these implicit states using state impll and
impl 2.

Now let us try to specify some of the power intents of this
power architecture that we need to verify.

tandb
sigof f stanasy

~Loff —\sigof@

Fig. 2.

LPMU of Proc

« Global Properties: The global properties are applicable to
all the LPMUs. One such property is to verify the correct
isolation of all the power domains.

o Local Properties: Properties that are applicable to a
specific LPMU. The example properties can be:

1) Verify that whenever the Proc is in standby state,
the retention control signals (save/restore) can’t be
active till Proc gets back to its on state. Note that
this property is specific to Proc.

2) A property contains design signals as well. For
example, one of the properties of Bproc can be -
whenever design signal data_rate crosses threshold
TH, the voltage supply of power domain Bproc
should be the high voltage supply VDDM.

o Inter-domain Properties: These are to verify the interac-
tions between the LPMUs. Example properties can be -

1) When Proc switches from its on state, Bproc
switches to one of its active state.

2) Both Proc and Bproc are never in the on state
together.

The above properties are usually high level descriptions us-
ing design signals and UPF signals. The designer/verification
engineers takes this descriptions and then translate these into
some languages like SVA. However, these checkers (in SVA)
need to be instantiated into the design properly such that
the formal arguments of the properties are replaced by actual
design/power signals for verification using simulation/formal
engines.

This task of instantiation in very difficult because:

1) Explicit instantiations of properties consisting of power
control signals is not trivial.

2) Properties consists of power/design signals across the
domains. Moreover properties can be global as well as
local. Therefore manual binding of the signals in the
property can be erroneous and time consuming.

To address the above mentioned difficulties, we propose a
programmable interface that helps to instantiate the properties
in terms of the power/design signals that may span signals
across the whole power architecture/design in a convenient
manner.

III. PROGRAMMABLE INTERFACE USING UPF QUERIES
AND BIND CHECKERS

The most intuitive way to associate power signals with a
checker is through UPF as it acts as the power architecture
database manager where we can get all the power related
information. However, to access these, as users, all we need
is a powerful query interface. Thankfully the current enhance-
ments to UPF provide a powerful set of commands (called
query_upf commands) for searching design elements related
to power architecture, supply nets, supply ports, policies (iso-
lation/retention/power switch) etc. The query_upf command
works on the logical hierarchy from a domain-centric (in the
context of LPMUs) or hierarchy-centric (in the context of
GPMU) approach. A domain-centric approach restricts the
search to design elements, net, or ports that are logically within
the extent of the specified domain_name. A hierarchy-centric
approach searches in the scope only, or in and below the scope
when -transitive is specified [3].

The current standard of UPF also provide a command called
bind_checker that helps to instantiate checker modules into
a design without modifying the design code or introducing
functional changes. The mechanism for binding the checkers to
design elements relies on the System Verilog bind directive [7].
The bind directive causes one module to be instantiated within
another, without having to explicitly alter the code of either.
Signals in the target instance are bound by position to inputs
in the bound checker module through the port list. Thus, the
bound module has access to any and all signals in the scope
of the target instance, by simply adding them to the port list,
which facilitates sampling of arbitrary design signals. One
small syntax example is:

bi nd_checker chk_p cl ks

-modul e assert _partial _clk

-bind _to ahd

-ports {{portl clknet2} {port3 netd}}

However we need to remember that in the early stages of
the design, UPF (power) signals are not there explicitly in the
design. Therefore some mechanism must be there to specify
these signals in terms of UPF names and then internally
associate the original design signals with these.

The proposed programmable methodology uses
bind_checker and query_upf commands to automate
instantiation of any SVA checker consisting of any
design/power signals. The interface is Tcl [8] based
and can be embedded in UPF itself. Therefore there is no
need to learn a new language.

Now we show how to use this interface for the above
mentioned properties. Take out the following property:

A property contains design signalsas well. For example, one
of the properties of Bproc can be - whenever signal data_rate
crosses threshold TH, the voltage supply of power domain
Bproc should be the high voltage supply VDDM.

The above mentioned requirement can be expressed by the
following SVA. Here, power_state_simstate is a predefined
type in UPE.

nodul e checker(d, s, sref, clk);
parameter TH = 1.0; input rea
i nput supply_net_type s, sref;
assert property

(@clk) (d>TH)|->(s==sref));

endrodul e

data rate;

Next this checker is attached to the power-controller using
the enhanced bind_checker and query UPF

foreach domain {query_power_domai n Bproc
-no_el ements -detail ed} {
bi nd_checker data rate_check \
-nmodul e checker -bind to $domain \
-ports {
{d data_rate}
{s $domain. prinmary. power} \
{sref $domai n/ VDDV
}
-parameters {TH 3. 2}

}

Note that we first query about the specific domain and then
uses the domain handle to attach the actual power signals to
the formal port names.

Now lets take the global property: Verify the correct isola-
tion of all the power domains. This property can be expressed
by the following SVA.

nodul e i so_en(simstate, en, pw, gnd) ;
i nput upf_sinmstate simstate,;
i nput en,
i nput supply_net_type pw, gnd;
i mport UPF::*;
bit isolation_enabl e;
assign isolation_enable =
(((pw.state == FULL_ON)
&% (gnd.state == FULL_QON))
&% en) ? 1'bl : 1’ bO;

al ways @simstate) begin

if (simstate == CORRUPT)
assert(isolation_enable == 1’ bl);
endnodul e
This checker can be attached using the enhanced

bind_checker syntax and query UPF as follows:

foreach domain {query_power_domain *} {
foreach isol ation
{query_isolation * -domai n $donai n} {
bi nd_checker $(domain)_ $(isolation)_isen \
-nodul e i solation_en \
-ports {
simstate {${domain}.sinstate} \
{en ${isolation}.isolation_signal} \
{pw ${isolation}.isolation_power} \
{gnd ${isolation}.isolation_ground}

38

Note that this method of instantiating the checkers enables
automated way to attach the checker in all the domainsin only
one step. These steps are described in Fig 3.

In this section, we have used only properties that are
checkers. However, other kinds of properties (like coverage
properties) can also be attached in this manner. Note that most
of the coverage monitors span multiple power domains. There-
fore the above programmable interface is an ideal candidate
for these coverage properties.

LowP
ol oweropee — UPF
SV A
V A instantiated usin [{PF
Checkers

uery Upf and bind checker

Fig. 3. Proposed flow for translating power intent into power assertions

IV. TooL FLOW AND RESULTS

Once the above task is done, the simulation tool (like
MVSIM [6]), can take the design, UPF and these modified
checkers as inputs. Next it internally instruments the design
and instantiates the checkers appropriately with the design
and/or instrumented UPF signals. The tool flow is shown
in fig 4. During simulation it runs the checkers and outputs
appropriate messages. The tool also has capability to control
the assertions such as enable/disable/coverage etc.

We have seen that the proposed methodology has minimal
overhead on the low power verification performance. This
overhead comes for automatic binding of the checkers. We
are sharing the overhead on only some of the industrial
designs(See I). The overhead is more or less same on some
large scale designs as well. The 1st col represents the name
of the design. The 2nd col shows the number of assertion
messages. The 3rd and 4th col show the size of UPF and
RTL respectively. The last col shows the percentage runtime
overhead.

V. CONCLUSIONS

In this paper we have presented a programmable interface
using Tcl that attempts to automate the steps to bind low power
assertions in the design. Though we have used UPF to show
the flow, the methodology is generic and can be incorporated
in any other low power specification format.

TABLE I
SIMULATION PERFORMANCE OVERHEAD

Design | #Msg | #UPF | #RTL | #Time
Designl 25 43 1K < 10%
Design2 118 173 200K | < 10%
Design3 | 1600 366 100K | < 10%

REFERENCES

[1] Bembaron F., Kakkar S., Mukherjee R. and Srivastava A., 'Low
Power Verification Methodology using UPF’, In the Proceedings of
DVCon, pp. 228-233, 2009.

[2] Crone A. and Chidolue G., ’Functional Verification of Low Power
Designs at RTL’, In the Workshop for Power And Timing Modeling,
Opt. and Sim. (PATMOS), LNCS-4644, pp. 288-299, 2007.

[3] Unified Power Format (UPF 2.0) Standard [Draft Version], IEEE
Draft Standard for Design and Verification of Low Power Integrated
Circuits, IEEE P1801/D18, 23rd October, 2008.

[4] Hazra A. et al., 'Leveraging UPF-extracted assertions for modeling
and formal verification of architectural power intent’, In the Proc. of
DAC 2010, pp. 773-776.

[5] Synopsys MVRC

www.synopsys.com/tools/verification/lowpowerverification/pages/mvrc.aspx

[6] Synopsys MVSIM

www.synopsys.com/tools/verification/lowpowerverification/pages/mvsim.aspx

[7] SystemVerilog Language Reference Manual
http://www.eda.org/sv/SystemVerilog_3.1a.pdf
[8] Tcl Developer Site
http://www.tcl.tk/

RTL Design T
‘ |
| J
! Input B
| |
! Processor i
| |
| |
UPF ! !
Power Intent 1 | bind_checkers
: s
Apply !
! Power Intent |
|
| and |
! Checkers |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | i
Simulation ! | Graphical
| |
Messages | i Debugger
| |
| |
| |
| |
. |

Architecture of the Tool

