
1 
 

An Innovative Methodology for RTL and Verification IP 

Sharing Between Two Projects 

Albert Xu, Intel, albert.xu@intel.com 

Joonyoung Kim, Intel, joonyoung.kim@intel.com 

ABSTRACT 
This paper will describe a methodology for sharing RTL (Register Transfer Level) databases and verification 

components between different product designs. 

 

Today’s silicon product designs are complex systems composed of multiple components (IP).  Due to market 

demands for shorter product design cycles as well as market-segment specific design requirements, it is not practical 

for every product development team to independently design and validate all of the IP required for a product design.  

Therefore sharing RTL and verification IP is a necessity.  In many cases, the IP blocks themselves are being 

developed in parallel with the product designs and sharing these dynamically changing IP blocks between multiple 

concurrent product design efforts is a challenge. This paper describes an innovative methodology to meet this 

challenge. This methodology consists of two different working models applied to two phases respectively during the 

design production. The first working model applied during the early phase design work, due to heavy changes 

including architecture and feature changes. The second model applied in the later phase of design work when the 

changes were more localized within IP and the requirement of turnaround time gained heavy weight. 

INTRODUCTION 
The Front End (FE) system data are normally collected and stored in a Register Transfer Level (RTL) database. 

Each team maintains its own database with a handful of IPs shared or co-developed between them. 

 

As demonstrated in Figure 1, databases DBX and DBY belong to two different design teams. Only IP blocks 

blk2/blkC and blk4/blkD are shared between the two projects. We chose a commercially available distributed 

revision control product (SCCS
1
) which has the capability to split the entire database into components such that each 

component is a standalone database itself. It can share (i.e. merge and keep the history) the data at any component 

level across the products. The “blk” in Figure 1 is equivalent to the component in SCCS system. 

 

 

                                                      
1
 SCCS stands for Source Code Control System. “SCCS” is used as an “encoded” tool name throughout this paper. 

mailto:albert.xu@intel.com
mailto:joonyoung.kim@intel.com


2 
 

 

In Figure 2, Product X and Y are managed by separated teams and environments. E.g., product X is in “blue” 

environment and Y in “green” environment. The changed component still works in “blue” environment but may not 

work in “green” environment after sync. It is true in vice versa. Furthermore, the product lines X and Y are 

dynamically changing constantly. 

 
 

In order to guarantee the data sharing does not interrupt either side of the product development process, a CI
2
 tool 

developed at Intel was adopted to carry out the tasks. It is a software configuration management tool which was 

developed as part of the RTL system for the CPU microprocessor design work flow. It basically consists of a group 

of CI pipelines which 

 Provide a multi-developer environment of rapid commits (new or changed codes) to the “golden” master 

repository (Product X or Y in the above example); 

 Allow frequently integration going through a serious builds and regresses such that no errors can arise 

without developers noticing them and correcting them immediately. Therefore, the code changes from 

developers and migrated into the master repositories are guaranteed in a good quality; 

Along with the distributed revision control system SCCS and continuous integration CI tools, we also adopted other 

Intel-developed tools serving the purpose of performance measuring (PM
3
) and job scheduler management (NM

4
).  

 

PM is a performance unified measurement application. It is a system for measuring RTL (Register Transfer Level) 

environment performance in a unified manner among different projects. It provides a standard tool kit for tracking, 

analyzing, debugging and profiling performance issues for RTL model simulations/emulations, compilations, and 

turnins; NM is a distributed computing/batch-processing platform. It clusters thousands of compute servers and 

workstations and associates them with queues of jobs, priority schemes and policies. NM tool increases throughput 

of large computing-intensive jobs and increases utilization of computing resources. It is a “smarter NM” which 

manages and runs the flows.   

 

METHODOLOGY DEFINED IN IP SHARING 
As mentioned in abstract, two working models were developed for different design phases respectively. They are 

described in the following as methods I and II. 

Master Repositories configuration (I) 

Each design team carefully defines and partitions their respective master repository into components. Any shared (or 

common) component across the products must have the same directory structures so that SCCS and CI tools can do 

the port (“port” merges the contents from one component to the other while sustains the complete history) as shown 

in Figure 3. 

 

                                                      
2
 CI (Continuous Integration) is an “encoded” tool name in this paper. 

3
 PM (Performance Measurement) is a performance measurement application developed in Intel. 

4
 NM is an application to manage the large number of jobs in the batch mode.  



3 
 

 
 

The above example shows Product X is the source side and Product Y the receiver side. All of the C’s are 

components. The port operation is based on components. It seems quite simple at the first glance. However, as 

mentioned earlier, Product X and Y do not have exact the same environment (mainly tools, collaterals, build flow 

and test bench). The changes ported from Product X may not work in Product Y environment. It is not allowed to 

have any chance to “nuke” Product Y master repository because hundreds design engineers are working under it at 

the same time. Especially, in the early phase of design work, the changes in both products are very heavily involving 

architecture and feature changes. In other words, the big changes from one side broke the other side design work 

most of the time. To resolve the problem, a third master repository Product Z was introduced (Figure 4). The new 

repository becomes a “buffer zone” for “integration” purpose. 

 

 
 

In Product Z, trees from Product X and Y are built together. The entire tree of Product Y is ported to the upper tree 

of Product Z and Product X, except common components C7 and C8 in this example, is ported as Cx in Product Z.  

The common components are ported to the upper part of tree. The components of C7 and C8 of Cx in Product Z are 

the symbolic links pointing to the ‘Product Y’ portion of the tree. This is to make sure that all the components in the 

upper part tree are real entities so that Product Y doesn’t get empty symlinks through “port” operation. In this 

configuration, the integration team builds and regresses against the ‘Product X’ and ‘Product Y’ portions separately 

in their own environment respectively. If an error occurs the team feeds the fix back to Product X followed by a new 

round of port operations. Meanwhile, the ‘Product X’ portion of Product Z is constantly synced with Product Y 

which is continually moving forward. 



4 
 

Master Repositories configuration (II) 

The phase one configuration worked very well in the situation that both products were making big and rapid changes 

concurrently. The negative side is that the turnaround time is longer. The changes from one product went through 

two port operations and then merged into the other one. 

 

When the development work gradually stabilized and the changes in the source side were mostly localized, in order 

to speed up the turnaround cycle, the “integration” repository (the middle “man”) was eliminated. The repositories 

configuration is similar as shown in Fig.3. This flow has only one stage port operation instead of two in the earlier 

phase therefore the turnaround is much shorter. 

Integration flow 

How do we ensure design quality of the “golden” master repository when the changes ported to the destination site? 

This is accomplished by “continuous integration” application “CI” developed by Phil Marden
5
 at Intel. CI is a 

pipeline (queue) that hosts a serious of turnins. Each turnin is a complete repository containing sets of changes from 

individual design engineers. When the turnin is submitted to the CI, it will go through two phases: filter and 

integrate stages. In the filter stage, user’s repository will be merged with the master repository followed by standard 

builds/regresses.  It continues to the second integrate stage if the first stage passes. In the second stage, user’s 

repository will be merged with the master repository plus all the turnins ahead in the pipeline. It then goes through 

builds/regresses again. If all pass, the user’s changes will be written back to the master repository. Either stage failed 

would result “rejected”.  

 

With the help from CI, the ported changes are guaranteed to be healthy and the maser repository is kept as “golden” 

all the time. 

 

AUTOMATION IMPLEMENTED IN IP SHARING 

Automating “port” through cron 

The port operation is automated by scripts using cron so that the frequency of operation can be controlled with full 

flexibility. Helped by other Intel internal tools like CI, NM, PM and etc., we achieved multiple goals: 

 Robust and efficient sharing of IP blocks 

 Ability to apply bug fixes in either product 

 Assurance that the ported data is healthy 

 Concurrent port process (seamless) along with the other users’ turnins 

 Simple debugging and tracking of errors 

 

 

 
                                                      
5 Phil Marden is the application developer of “CI” in Intel. 



5 
 

 

Figure 5 demonstrated the flow in phase one working model. The port flow starts from Product X to Z. It clones the 

Product Z tree to the “sync base” and ports the changes in from Product X. Product Z has two sub-trees (refer to 

Fig.4), one from Product X and the other Product Y. From Product X, the common components are “conceptually” 

ported to both top and bottom sub-trees of Product Z. The rest components of Product X are ported to the bottom 

sub-tree of Product Z. Normally the port operation is automatically done by the scripts unless the merge conflict 

occurs. Once the port is completed, the scripts make the turnins to the CI pipelines which “forks” two independent 

turnins in parallel; one builds/regresses the top sub-tree in Product Y environment and the other the bottom sub-tree 

in Product X environment. The turnin will be rejected if either turnin has error occurred in build/regress; otherwise 

the turnin is written back to the master repository of Product Z. The rejected turnin will be debugged and fixed in 

Product X by design engineers, and the next round of port starts. 

 

After the first stage port completed, the confidence of porting the upper part tree of Product Z to Product Y is very 

high. The scripts follow the similar process: clone the tree from Product Y, port from the upper tree of Product Z and 

turn in to a single CI pipeline (just like the other users) in Product Y environment. The turnin is written back to 

Product Y once it passes the pipeline.  

 

You may ask why Product Z is required in this flow. Can we replace Product Y by Product Z at all? Keep in mind 

that Product Y is the real “tape out” database (DB) of the project. Product Z is just a “buffer zone” for integrating 

the common components from Product X to Product Y. There are two sub-trees (projects) in Product Z, it is hard to 

detect any “cross references” between the two sub-trees. We must ensure that Product Y’s tree is not contaminated 

by collateral from Product X. Effectively we are guaranteeing isolation of the two trees, especially for the tape out 

product Y. Therefore, keeping Product Y with a single tape out tree is necessary.  

 

As the design work in both products entered the later phase, the changes were more localized and the turnin 

successful rate got higher. In order to speed up the turnaround time, the second configuration and flow was 

introduced. The middle “man” Product Z was eliminated. The port automation flow is shown in Figure 6. 

 

 

 
 

The second phase flow is very similar as the one in the first phase. The port flow starts from Product X to Product Y 

directly. It clones the Product Y tree to the “sync base” and ports the changes from Product X. The “sync base” has 

only one single tree, i.e. Product Y. If there is no merge conflict then the turnin goes to the CI pipeline in Product Y 

environment for build/regress. The turnin will write back to the master repository of Product Y when the process 

passed; otherwise, the rejected turnin will be debugged and fixed in Product X followed by another round auto-sync. 

This flow is simpler and has shorter turnaround time. At the same time, the design quality is very tightly controlled.  

 



6 
 

Using the same methodology and flow, the design teams can easily set two-way direction port operations to meet the 

IP co-development requirement. 

 

Using tool “NM” to manage the scheduled jobs 

In the automated flow, the job scheduler tool “NM” has contributed huge benefit to the port process and user turnins. 

It not only manages the jobs in the distributed computing system (utilizing the batch resources) and monitors all 

levels of execution, but also optimized the job dependencies and therefore maximally reduces the job latency. 

Through the GUI, users can keep track of their turnin progress, brows the log files for debugging the errors, and 

even collaborate with other users by looking at their turnin progress. When the first error occurs in the pipeline run, 

user can terminate his/her own turnin in the pipeline immediately and start the debugging. The user can also 

reference the same job in other users’ batch jobs for debug purpose. The tool improves design engineers’ 

productivity and reduces the load on computing batch resource.  

 

Using performance tool “PM” to monitor and improve the efficiency  

With the help from tool “PM”, it is easier to identify the occurrence of performance degradation and thereby 

proactively eliminate the wasted jobs. The ultimate goal is to shorten the job turnaround time and improve the 

productivity. 

 

During the port process, the tool monitors memory, CPU, leaking assertions and simulation stages. It tracks and 

analyzes RTL and validation performance. It compares the data between design projects and therefore promotes 

convergence across projects with enabling benchmarking and sharing by using common data models and 

environment tools. Data from PM dashboard provides the powerful information to the design/validation teams to 

improve the regress productivity and efficiency. 

 

Values added by tools “NM” and “PM” 

Both tools made a significant contribution. They 1) manage, track and analyze the batch jobs and benchmarks 2) 

help debug the errors and 3) shorten the job latency to improve throughputs. 

 

RESULTS 
The model we developed and built provides an efficient and robust flow to manage IP sharing or co-development 

between the products (or design teams) with different environment and design floor plan. We have numerous design 

engineers working on IP co-development. This working model saves significant effort in design and integration and 

contributes to overall design quality. More importantly, the sound and robust process ensure the quality of the data 

shared and the progress of entire design team. There is zero chance that the bad data will be introduced into the 

design databases (master repositories). Therefore less chance to have the production line broken. This is the big 

improvement of the productivity and guarantee of design quality.  

 

 

SUMMARY 
This methodology provided a convenient vehicle to share the FE system data (RTL codes) between the different 

products with different environments, especially the shared data is “scattered” within a huge tree. Generally, in IP 

world every single IP is an independent tree or repository. The receiver side just copies the IP contents and insert 

into the product and use it. However, in our scenario, the project is big and complicated therefore the repository tree 

is “huge”. Due to the complexity and design flow reasons, each project has its own repository (or DB) 

independently. Our IP sharing is actually “IP co-development” in a more precise way, because we need merge 

capability and the codes change history on top of the contents. Moreover, our IP sharing is quite often two-way 

sharing, instead of normal one-way sharing. This is our definition of “IP” sharing which is also the motivation of 

this paper. The sharing flow described in this paper provides the convenient and robust way for frequent data 

sharing; 



7 
 

 

The second big challenge in our methodology is how to continuously integrate the shared IP into the current projects 

while the project itself is still under development and dynamically moving forward. When the shared IP comes in, it 

goes through the continuous integration tool (“piped” with other users) by running the standard builds/regresses. 

Therefore the incoming shared IP is guaranteed to be healthy. It will not corrupt the project master repository and 

interrupt the team ongoing design work. It also ensured the quality of microprocessor design. 

 

On top of the above methodologies and flows, the “job scheduler” manager NM and performance monitor PM also 

made their contribution to the entire flow. The “job scheduler” manager tool largely helped to improve the 

throughput of the port flow. It also helped the users to manage, debug, and reference the jobs from port or turnins in 

the pipelines. The performance monitor helped the flow from the other direction. From the data it collected from 

monitoring memory, CPU, leaking assertions, simulation stages and turnaround time, it compares all the bench data 

across the projects. The analyses data helps us to pin point any performance degradation or process bloating which 

may be caused by some testers or new tool releases.  

 

In conclusion, the methodology designed and implemented in this paper is robust and efficient. It helps the IP 

sharing (or co-development) and database integrate while ensures the data integrity of the receiving DB. It greatly    

improves the design productivity. 

 

ACKNOWLEDGMENTS 
We like to thank CI tool developer Philip Marden and the work groups for developing “job scheduler” flow 

manager, performance monitor tool and job scheduler. They provided excellent tools and flows to make this 

methodology successful. We also like to thank the members of Scott Bakers, Sam Huffman, Lynda Momberg and 

Saeid Monsef in VTM team (Validation Tool and Model build). Their contribution to the methodology defining and 

automation implementing is pivotal to this paper. 

 
 

REFERENCES 
 
[1] JL Gray & Gordon McGregor, “A 30 minute Project makeover Using Continuous Integration”, DVCon 2012. 

[2] Martin Fowler, “Continuous Integration.” [Online]. Available: 

http://martinfowler.com/articles/continuousIntegration.html.  

 

http://martinfowler.com/articles/continuousIntegration.html

