
An Expert System Based Tool for Pre-design
Chip Power Estimation

Bhanu Singh, Arunprasath Shankar, Francis Wolff, Christos Papachristou
Dept. of EECS, Case Western Reserve University, Cleveland, USA

Abstract—The power specification of a chip is generally
developed during the product conception stage. Engineers
select technology libraries, IPs, and make architectural
decisions by weighing them against the impact on the
power budget. In this paper, we present a knowledge-base
(KB) system for pre-design chip power estimation, which
uses post-layout power information from previous designs.
KB rules are then used to perform specification analysis
of a new design, against the KB, to estimate its power. We
demonstrate our power estimation technique on a LEON3
System-On-Chip (SoC) design.

Keywords-Knowledge-Base System, Specification Analy-
sis, Power modeling, Pre-design chip power

I. INTRODUCTION

The international technology roadmap for semicon-
ductors (ITRS) has listed power as one of the five cross-
cutting challenges for the semiconductor industry. Low-
power design has become an important design constraint
due to requirements of extended battery life in portable
devices. For semiconductor companies, while trying to
improve performance, there is also a sufficient moti-
vation to minimize power consumption under all real
workload conditions. In a system, most of the power dis-
sipated gets converted into heat, which adversely impacts
the reliability of the device. A SoC, which consumes
less power in comparison to other vendor chips, will
need a smaller battery for same workload. This enables
consumer products, which have smaller form factor and
are optimized in terms of power, performance, and price.

The improvements in process technology and man-
ufacturing capability are enabling integration of digital,
analog and RF IPs on a single silicon die. It is important
that rough power estimation is done for such complex
system-on-chip (SoC) designs at product conception
stage. In later stages of design cycle, the turn around
time is very high and any issue with design severely
impacts time to market. The pre-design phase provides
maximum opportunity to optimize system architecture,
select technology libraries and IPs best suited to meet

chip power budget. The analysis can also reveal chip
power under various power management scenarios such
as supply gating and clock gating.

We consider a common scenario, where marketing
team comes up with an initial SoC product specification
feeding power numbers as benchmark against other chip
vendors. The engineering team then has to do a pre-
design power estimation for the proposed chip to make
sure that power budget specified by marketing team can
be met under different work-load conditions.

In this paper we propose an expert system (KB sys-
tem) based tool for pre-design chip power estimation.
Our approach uses a knowledge base of IP designs
characterized for power dissipation at various functional
modes and a design database of previous SoC designs.
In particular, the paper makes the following key contri-
butions

• It provides a methodology to perform specification
analysis of the chip architectural spec document
and KB search to provide matching IPs and similar
platform based SoCs.

• It provides a methodology to estimate power at full
chip level, taking into consideration architectural
decision about supply gating, dynamic clock gating,
type of IO pads, technology libraries, memory con-
figuration setting, and estimates clock-tree power
analytically.

The remainder of the paper is organized as follows.
Section 2 provides background and related work done on
power estimation. Section 3 introduces our methodology
of applying KB system for pre-design chip power es-
timation. Section 4 discusses IP power characterization
of LEON3 processor, IPs, Memories. Section 5 provides
a case study of pre-design power estimation performed
for a LEON3 SoC. We conclude and provide future
directions in section 6.

II. BACK GROUND AND RELATED WORK

Low power design has been an important research
topic and in past solutions have been proposed for

power estimation at system level, register-transfer level
and gate-level [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
[11]. Power estimation tools are already available from
commercial EDA vendors at implementation level (RTL)
and circuit level (gate-level). These tools can estimate
power consumption very accurately. For gate-level power
estimation, a 10 % deviation from real silicon can be
reached and for RTL power estimation the deviation
is 15-20 % [12]. The highest accuracy in estimating
power is achieved by performing power estimation at
post-layout gate level netlist but at this stage the power
saving opportunities with greatest impact have passed.
For system architects, accurate power estimation at early
stages of design cycle aids in exploring design space
with corresponding impact on power. Early power esti-
mation avoids the lengthy iterations caused by redesigns,
required to meet the power budget during later stages
of design cycle. We define pre-design as chip project
planning stage, when RTL is not available for all the
blocks and the architecture is still being defined. EDA
power estimation tools can not be easily used in this case
as they work on well defined designs, generally at RTL
and gate level. At the pre-design phase, the engineers
perform design space exploration and chose technology
libraries, memory configuration, on-chip bus protocol, IO
pads, and IPs to meet system power specification. Tra-
ditionally engineers have been using spread-sheet based
analytical approach for rough estimation of pre-design
chip power. The spread-sheet based approach is very
time consuming and error-prone as power estimation is
based on engineering judgement of an individual engi-
neer and for complex SoC, all the operating scenarios
with various power management techniques may not be
covered. The approach is also very ad hoc and does not
provide a methodology to capture knowledge obtained
from previous designs.

Our work can be roughly related to research done
in pre-design chip power estimation at system level. A
system-on-chip design is an integration of various het-
erogeneous components with varying power characteris-
tics (e.g. processors, on-chip buses, memories, caches,
custom IP blocks). Therefore suitable power modeling
techniques need to be followed depending on the type
of component. Power estimation techniques proposed for
processors can be divided into structural and instruction
based techniques [8] [9] [10] [11]. Structural models use
the micro-architecture of the processor to estimate power
for each sub-block. In instruction level power modeling,
every instruction in instruction-set of a processor is
characterized for power dissipated during its execution.

Power estimation tools like Wattch and SimplePower
have been proposed for processor design domain [13]
[14]. The memories and caches can be considered as
regular implementations and various analytical models
have been proposed for their power estimation [15].
System architects also use memory compiler available
from memory vendors to generate various memory con-
figurations and associated power dissipation informa-
tion [1]. Tools like CACTI have been proposed for
analytically estimating power for various memory/cache
configurations used in a system [16]. For on-chip buses
transaction level modeling (TLM) based power modeling
techniques have been proposed at system level [17]. For
custom IP blocks and third-party IP blocks, techniques
for power estimation have been proposed from cycle
accurate or behavioral model of the component [4] [7].

In comparison to existing power estimation tech-
niques, we do not perform any system level cycle accu-
rate simulations for the new design and as such do not
assume that system level models are available for each
IP component. Our methodology builds a KB system
using knowledge from previous designs and experience
of design experts captured in a rule-base. The KB is
then used for power estimation. KB systems have been
proposed in the past for hardware-software partitioning
and random stimuli generation for hardware verification
[18] [19]. The application of our work is in pre-design
chip power estimation, which is different from the above
proposed KB systems.

III. METHODOLOGY OVERVIEW

The main elements of our technique are : (a) a KB
of previous SoC designs and IPs (b) Power Modeling
of IPs in KB (c) Specification Analysis (d) Performing
power estimation of a new design. Figure 1 provides
an overview of our approach. We have used CLIPS
expert system shell for developing our KB system [20].
A program written in CLIPS consists of facts which act
as data and a rule-base to analyze data via the inference
engine. For power estimation, this data is power related
information in technology library, data-sheets/specs, and
functional mode power analysis results of designs in
KB. The generation of KB is an ongoing process, as
KB is enhanced with each addition of new IPs. The
methodology assumes that a functional specification of
the SoC design is available. The KB then performs
specification analysis and through a rule-based search
process determines similar IPs in the KB to the ones in
the SoC. The power models of the similar IPs are then
used to perform predesign chip power estimation using

Specification
ontologies

IP Power
Models

IP Design
Specs

IP RTL

Heuristic
Rule-base

Design
database of

previous SoCs

Spec
Extraction

Power
Modeling tool

flow

Expert

Knowledge Base

(a) KB generation

Specification
ontologies

IP Power
Models

SoC
Spec

Heuristic
Rule-base

Design
database of

previous SoCs

Specification
Analysis

Similar IPs

Power Model
extraction

Power
Estimation

Target
Technology

Library

Power
Estimation

Report

Knowledge Base

(b) KB application for Power estimation

Fig. 1. KB system for pre-design chip power estimation

a heuristic rule-base.
Our methodology is based on the assumption that SoC
design teams typically practice IP reuse [21]. We as-
sume that IP library and design database of previous
SoC’s is available in a company. New SoCs are built
mostly by reusing and integrating existing IPs that
are properly configured according to the specification.
Therefore our approach of characterizing and building
specification/power models of existing IPs is one time
exercise while building the KB. The manual effort is
high initially and is minimal afterwards. The reuse of
KB across multiple projects justifies the initial effort.

The characterization effort accounts for various IP
configurations possible and stores corresponding power
model in terms of look up table, mathematical equations.
In addition, we also consider platform based SoC, which
is a family of similar chips that differ for one or more
components but that are based on the same microproces-
sor. The post layout results for a platform based SoC can
be used to estimate clock tree power. We have generated
KB from GRLIB IP library available from AEROFLEX
GAISLER [22]. In the following sections, we describe
each element of our technique.

IV. KNOWLEDGE BASE GENERATION

We have developed knowledge base for limited num-
ber of IPs, e.g. LEON3, FPU, AHB/APB controller,
UART, TIMER, Interrupt Controller etc. The KB gen-
eration involves specification ontology generation and
power modeling tasks, which are described below.

A. Specification Ontology

A specification document in a natural language for-
mat is generally used to describe design behavior. It
has variety of notations that include text, diagrams,
and tables. We define text-objects as words or phrases
used to specify design properties. For example, “syn-
chronous", “asynchronous", “booth encoded" are text-
objects. Through analysis of different vendor specs, we
observed that for a particular design domain, specs ex-
hibit commonality of text-objects. These text-objects are
identified from a corpus of specs and then organized into
a conceptual network, which we term as “spec ontology".
An ontology is defined as a knowledge representation
model to explicitly represent a domain by defining its
concepts and their relationships [23].

TABLE I
FRAGMENT OF SPEC ONTOLOGY FOR AXI BUS

Object Feature Synonym Relation Type Attribute
axi4s axi stream is-a-property bool yes,no
axi4s data transfer data ex-

change
is-a-function bool yes,no

axis interconnect is-a-function bool yes,no
axis signaling axi I/O is-a-io-list bool yes,no
...
signaling tvalid valid

transfer
is-a-signal bool yes,no

...
data
transfer

flow control is-a-property bool yes, no

...
interconnect arbitration is-a-

subfunction
set fixed

priority,
..

A spec ontology consists of objects, features and their
attributes organized in a hierarchy using relationships.
Table I provides an overview of the ontology fragment
for the AXI Bus. Each high level concept in the ontology
is defined in terms of lower level concepts using relation-
ships, for example “has-function", “has-subfunction",
“has-operation" and “has-feature". The relationships cre-
ate a conceptual network, which corresponds to a speci-
fication model for the design. For each IP, such as Leon3
processor, uart, timer etc., specification ontology is super
set of concepts for that domain. Each SoC specification,
which uses a particular configuration of the IP uses sub-
set of concepts from the IP domain ontology. For ex-
ample, LEON3 processor in one configurations does not
include debug support unit (DSU) & floating point unit
(FPU) and in another configuration uses both DSU and
FPU. The ontologies that we have developed describe the
design using four-level-deep functional decomposition.
The first level is soft IP design along with its listed
features. The second level has function objects. The
third level consists of subfunction objects, which are
further decomposed in terms of leaf level operations.
For example, in Table I data-transfer is categorized as
a AXI function and “flow-control” is its subfunction.
We have developed tools to assist experts in ontology
creation [24]. We first filter common words such as
pronouns, conjunctions etc. by using a custom stop word
dictionary. We then perform word frequency analysis and
location analysis on a corpus of specs to provide input
to an expert about lists of important words for a design
domain.

We have also developed a “Spec-Extractor" tool to
automate the extraction of text-objects from an IP spec
document [25]. A spec document is analysed by first con-
verting it from PDF into XML format using Adobe tools.
The spec-extractor then parses the XML and generates
a hierarchical tree based on the location of each word in
a particular section, subsection, paragraph and sentence
of the document. Since each word is a leaf node in the
tree, the key idea is the path back to the root. A unique
location vector is generated for every word derived from
corresponding XML tags for document structure. Spec
words are further clustered under categories as, (i) Spec
ontology words, (ii) RTL symbols (port and module
names) (iii) acronym/abbreviations, (iv) numbers, (v)
custom stop words, (vi) English dictionary words, and
(vii) unknowns. This captured data is outputted as CLIPS
facts, which then gets analysed by the spec rule base.
Each spec gets represented in a machine readable format
by populating a uniform CLIPS fact template with text-

objects existing in that particular spec. This represen-
tation enables us to compare the spec of a new design
with existing designs in the KB and is independent of the
writing style of the document’s author. Figure 2 provides
an overview of our spec analysis technique. Each IP
specification used in previous SoC designs is stored
in the KB in a CLIPS fact format. The requirements
specification for a new SoC is also converted into CLIPS
fact format and is then compared against existing specs
in the KB to find matching IPs and SoC platforms.

SoC Spec
(XML)

Spec
Extractor

Word Knowledge
⁃ English dictionary
⁃ RTL Word
⁃ Custom Stop word

Specs
(CLIPS)

Location

Existence

Function

IO based

Spec rule-base
LEON3

UART

AHB
…

Spec Ontologies

Expert

KB Specs
(CLIPS)

Output
Similar IPs
Simililar Platforms

Fig. 2. Specification Analysis flow

The spec rule-base has multiple level of inference
rules. The higher level rules perform inferences by com-
bining lower level inferences. There are various category
of rules in the rule-base each with a specific purpose.
Location based rules use location proximity of text-
objects to associate design features with their attributes.
For example, for FPU designs, precision is a feature and
it has a attribute value of "single" or "double". Function
based rules infer design functions based on occurrence
of text-objects that identity low level operations and sub-
functions listed in the spec ontology. Existence rules
check if any key design feature required to perform an
inference about a high level design function is missing in
the provided specification. For example, rounding feature
for floating point unit design. IO based rules check
the IO names provided in the specification to infer the
bus interface type. Following is an example of a spec
rule which associates features with attributes using spec
ontologies.

(defrule MAIN::find-attribute (declare (auto-focus TRUE))
(ontoFact (object ?obj)(domain fpu)(feature ?f) (relation ?

rel)(type set)(attribute $?attr))
(wordFact (word ?word1&:(eq ?word1 (string-to-field ?f)))(

locationId $?loc1 ?word1loc) (cat onto))
(wordFact (word ?word2&:(member$ (str-cat ?word2) (create$

$?attr)))(locationId $?loc1 ?word2loc)(cat onto))
=>
(assert (specFact(specId ?*spec*) (object ?obj)(feature ?f)

(attribute ?word2)(relation ?rel)))

Physical
Library

Logical
Library

RTL
Design

Constraints
(.tcl)

Synopsys Design
Compiler

Gate-level netlist
constraint

(.sdc)

IC Compiler

Post-layout
Gate-level netlist

Prime Time - PX

Power Reports

Use-case
testbench

Synopsys VCS

VCD

VCD2SAIF

Activity file
(.saif)

IP Functional Mode
Power Model

Constraint
(.sdc)Parasitics

SDF

Fig. 3. Power Modeling tool Flow

B. Power Modeling

We have used synopsys design compiler and 90nm
generic technology library available from synopsys to
perform synthesis [26]. The IC compiler was used to
perform place & route. The gate level netlist was simu-
lated using VCS simulator by annotating SDF (standard
delay format). Power characterization is performed for
each IP in the KB using the tool flow shown in Figure
3 and is described below

LEON3
Processor

AMBA AHB Bus

USB CAN
2.0

Ethernet
MAC

JTAG
Debug Link

AHB
Controller

Memory Controller
(SDRAM/SRAM)

AHB/APB
Bridge

AP
B

Bu
s

I2C

UART

Timer

Interrupt
Controller

Fig. 4. Example Leon3 System

1) LEON3 Processor: LEON3 is a synthesizable
VHDL model of a 32-bit processor compliant with the
SPARC V8 architecture and the full source code is avail-
able under the GNU GPL license [22] [27]. A typical
LEON3 SoC platform consists of a LEON3 processor
connected to peripherals over the AHB and APB buses as

MAC 16 3-Port Register File

MUL 32

DIV 32

I-RAM

7-Stage
Integer Pipeline

Instruction
Cache

Data
Cache

Interrupt
Control Memory Management Unit

IEEE 754
Floating Point Unit

D-RAM Debug
Interface

Co-Processor

Power
Down

AMBA AHB Interface

IRQ

15

Trace
Buffer

32

Debug
Interface

Minimum Configuration

Co-Processors

Optional Blocks

Fig. 5. Leon3 Functional block diagram

shown in Figure 4. LEON3 can be customized using the
configuration capability provided with the source code
by choosing the optional blocks and co-processors as
shown in Figure 5. In our KB, we have characterized
three configurations, which are minimal, general purpose
and high performance for power modeling. We have used
the approach proposed by Lee et al. in [7] to separate the
processor power model into two parts a) processor core
power model b) cache model. Further we consider two
states of the core, IDLE and ACTIVE. The IDLE mode
corresponds to low power mode of LEON3 as specified
in LEON3 specification [22], where clock can be gated
to LEON3 at module level and only leakage power
comes into picture. The active state corresponds to worst
case power dissipation while processor is executing
instructions. Table II gives two state power information
associated with various LEON3 configuration.

TABLE II
POWER INFORMATION FOR THREE CONFIGURATIONS OF LEON3

PROCESSOR

Configuration Active
power (mw)

Idle power
(uw)

Number of gates
(nand2 equivalent)

Minimum 2.63 87.2 27676
General pur-
pose

6 111.29 35331

High perfor-
mance

6.74 128.4 40765

2) Cache and Memories: LEON3 has a configurable
cache system, consisting of a separate instruction and
data cache. Both caches can be configured with 1 - 4

ways, 1 - 256 kbyte/way, 16 or 32 bytes per line [22].
Cache memories are implemented using SRAM blocks
from the technology library. Previous works in cache
power estimation have used circuit-level information
to generate cache power model [15] [16]. In industry,
memory compiler from vendors is typically used to
generate various memory configurations and the power
values associated with read and write access for each
configuration [1]. We assume in the architecture file,
the designers will provide the physical instance name of
the memory cell and memory compiler generated power
values. If the functional requirements is to have 128KB
memory and it is realized using two physical instances
of 64x8, then this information should be entered in
the architecture file. Table III gives power information
associated with various memory cell configurations.

TABLE III
EXAMPLE - POWER INFORMATION FOR VARIOUS MEMORY

CONFIGURATION

Memory configuration Dynamic Power
(uw)

Leakage Power
(nw)

SRAM32x256_1rw 36 3.7
SRAM32x64_max 124 66
SRAM39x32_max 71 3.7

3) Other IP blocks: For IP blocks like AHB con-
troller, UART, Timer we follow the two state power
model. We characterize each IP for IDLE and ACTIVE
mode power dissipation. For active mode, we consider
the worst case power dissipation use-case. For example,
incase of UART the worst case dynamic power dissipa-
tion occurs when it is either in receive or transmit state.
Table IV is an example of power information associated
with idle and active mode of listed IPs.

TABLE IV
EXAMPLE- POWER CHARACTERIZATION OF SOME IP BLOCKS

Configuration Active
power
(uw)

Idle
power
(uw)

Number of gates
(nand2 equivalent)

AHB controller 410 19.98 6424
Timer 228 11.78 3788
UART 160 7.248 2332

4) Clock tree: Clock tree power is typically 30-
35% of total dynamic power in the design. The design
requirements, floor plan, clock tree building strategy all
impact clock tree power. We assume a clock tree building
strategy with a very tight local skew and flexible global
skew, as in this case less buffers are required to balance
clock skew.

Clock tree power estimation can be best performed us-
ing a post layout gate level net-list. For estimating clock
tree power at pre-design stage, we use previous similar
SoC platforms available in the KB. We describe three
techniques for performing clock tree power estimation.

a) Using per MHz per gate count power: We use
design information of previous similar IPs, to find out
the total gate count and total power, then calculate per
MHz per gate count power as shown in equation 1. This
include both net power and cell power. Clock tree power
can then be calculated as shown in equation 2.

Pmg =
Pip

Fip ∗ nandeq
(1)

where, Pmg = per MHz per gate power,
Pip = Power of IP in previous design
Fip = Frequency at which power was estimated
nandeq = NAND2 equivalent area

clock tree power =Pmg * (gate count) * (toggle rate) (2)

b) Using clock power per flip-flop: Another tech-
nique is to estimate clock tree power by scaling results
from a similar design in KB [1]. The scaling is done
through a set of heuristic rules, which capture engineer-
ing judgement of designers. For example, a clock-tree
in previous design is analyzed to estimate clock power
per flip-flop. For a new design, using information from
designs in KB, an estimation is performed for clock-
tree load counts. To account for library and process
changes, flip flop load scaling factor is estimated by
comparing clock-pin input capacitance of flip-flops in
previous design with similar flip-flops in the new design.
Finally estimation of power per clock in the new design
is performed by scaling frequency and load counts.

c) Using flip-flop count and clock-buffer fan-out:
Alternatively, we can also analytically calculate clock
tree power. In a tree structure, typically one buffer will
drive three or four sinks (buffers) and each of the three
will further drive three. Let us say F is number of flip
flops in a design and f is fanout of each clock buffer.
Therefore, at leaf (flop) level the number of clock buffers
are

F

f

Further at leaf level minus one, the number of buffers
are

F

f2

The number of levels n in clock-tree can be calculated
using the condition listed in equation 3.

F

fn
≥ f (3)

n =
log(F)

log(f)
− 1 (4)

The total number of clock buffers can be calculated
using the following equation

Nbuf =
F

f
+

F

f2
+

F

f3
++

F

fn
(5)

where, n is given by Eq 4.
Equation 5 is a geometric series and following formula

can be used to find sum of first n terms of the series.

Sn =
a(1− rn)

1− r
, r 6= 0 (6)

where in our case, a =
F

f
, r =

1

f
, n is calculated

from equation 4

If we have data about number of flop flops in a design
and assuming certain fan-out number, we can calculate
number of clock tree buffers in a design using above
equations. Now based on the buffer size and power of
selected buffer, we can estimate the total power of all
the buffers in the clock tree. We can use information
from similar designs in KB to find the buffer types
normally used for clock-tree synthesis. Normally, buffers
of middle strength are used for building clock tree. They
will drive sufficient number of buffers without taking
too much power or area. The selection of higher drive
strength buffers lead to electromigration issues and is
avoided.

5) IO PAD: IO pad selection is based upon func-
tional, electrical and physical aspects. Pads are selected
based on required functionality of being input/output/bi-
directional, requiring weak/nominal pull up/down and
depending on maximum frequency. Electrically, we need
to see IO voltage support (1.8/2.5/3.3v), drive strength,
slew rate, and max load. Physically, we need to see
linear/staggered pads (depends upon die size + total IO
count). The system designers choose the IO Pads and list
them in the architecture specification file. The rule-base
uses the power table listed for the corresponding IO pad
in the .lib technology file to use dynamic and leakage
power numbers for the pad.

Fig. 6. SoC Spec mapping with various IP domain ontologies

V. RESULTS

We have built a prototype expert system tool using IP/-
SoC designs available in grlib-gpl-1.3.1-b4135 version
of GRLIB IP library from AEROFLEX GAISLER [22].
To calculate power for any design, certain information is
needed from the process technology to which the design
is being targeted and data specific to the design like num-
ber of gates, types of IOs, power domain voltages, etc
is required. The input to the tool is provided using tech-
data and design-data entry (architecture specification)
spread-sheets. The technology specific data required for
power calculation is extracted from standard cell and
IO data-sheets provided by the vendor and from the
technology .lib files. For memories, power information
in vendor data-sheets or power estimated by memory
compiler for a particular configuration are entered into
tech-data sheet.

As a case study, we created architecture specification
for a reference SoC design from GRLIB library. We
then performed specification analysis on the SoC spec.
In Figure 6, IPs in an SoC spec that were identified
as similar to ones in the KB are shown. The figure
also shows the percentage of concepts that mapped to
corresponding IP domain ontology. The information of
the matching IPs was listed in a preliminary design-data
sheet in a csv format. We observed that certain IPs were

not identified as they were not in the KB and inputs were
manually provided for those IPs in the design-data sheet.

We partitioned SoC design architecturally into various
power domains. We assumed clock gating cells for each
module are available at root level. We worked out modes
of the design like active, clock-gated, and supply-gated.
We also generated post-layout power results using the
tool flow shown in Fig. 3. The experiments show that
power estimation results computed by our tool correlate
with +/- 20 % accuracy with post layout power estima-
tion results obtained from Synopsys primetime tool. The
inaccuracies in the system are currently due to following
reasons.

a) IP or its Configuration not existing in KB: The
rule based matchings are only successful if the IP is in
the KB. In case, the IP power model is not in the KB,
then we ask user to provide the equivalent NAND2 gate
count for the IP and calculate IP power by multiplying
gate count with static/dynamic power listed for NAND2
gate in the tech library. Estimation error can also be due
to configuration differences between IP in the KB and
the IP used in the SoC.

b) Switching activity: Currently we have not built
an architectural level SystemC model for LEON3 plat-
form. We are not doing any use case simulation at
architecture level, and as such do not have switching
activity information for the SoC, which results in an
estimation error for dynamic power.

c) Clock tree power: We use previous designs to
analytically estimate clock tree power for a new design.
Two designs may have similar type of IPs but different
architectures and as such floor plan. There is a variation
in actual clock tree buffer count, interconnect capaci-
tance values and other layout dependent parameters due
to different clock tree synthesis results. This also results
in estimation error.

VI. CONCLUSION

We have presented an expert system based technique
for pre-design chip power estimation. The system is
still under development and in future, we plan to build
systemC based architectural level model of LEON3 SoC
platform. The architectural level model will enable us to
get real work load information while running benchmark
applications and use this information to estimate activity
in new design. We also plan to improve our prototype
power estimation tool by characterizing IPs for more
than two power states.

REFERENCES

[1] B. Eisenstadt, Making ASIC power estimates before the design,
www.edn.com

[2] S. Penolazzi, et al. A General Approach to High-Level Energy and Per-
formance Estimation in SoCs, International VLSI Design Conference
2009

[3] Y. Park, et al.System Level Power Estimation Methodology with H.264
Decoder Prediction IP Case Study, ICCD 2007

[4] N. Bansal, et al. Power Monitors: a framework for system level power
estimation using heterogeneous power models, 18th International VLSI
design Conf. 2005.

[5] M. Onouchi, et al. A system level power-estimation methodology based
on IP-level modeling, power-level adjustment and power accumulation,
ASP-DAC 2006.

[6] E. Maccii, et al. High Level power modeling, estimation and optimiza-
tion, DAC 1997

[7] I. Lee, et al. Power ViP: SoC power estimation framework at transaction
level, ASP-DAC 2006

[8] M. Sami, et al., Instruction-level power estimation for embedded VLIW
cores in Proc. CODES 2000

[9] N. Kavvadias, et al. Measurement analysis of the software-related power
consumption in microprocessors, in Proc. IMTC 2003

[10] J. Laurent, et al. Functional level power analysis: an efficient approach
for modeling the power consumption of complex processors , DATE
2004

[11] S. Penolazzi, et al. Energy and Performance Model of a SPARC Leon3
Processor, 2009 Euromicro Conference on Digital System Design/
Architecture, Methods and Tools

[12] P. Soulard, et al. Accurate System Level Power Estimation through Fast
Gate-Level Power Characterization, www.design-reuse.com

[13] D. Brooks, et al. Wattch: a framework for architectural-level power
analysis and optimizations, in Proc. ISCA 2000

[14] W. Ye, et al. The design and use of SimplePower: a cycle accurate
energy estimation tool, DAC 2000

[15] M. Mamidipaka, et al. Analytical Models for Leakage Power estimation
of Memory Array Structures, CODES 2004

[16] N. Muralimanohar, et al. CACTI 6.0: A Tool to Model Large Caches,
Technical Report HPL-2009-85, HP laboratories

[17] M. Caladari, et al. System-Level Power Analysis Methodology Applied
to the AMBA AHB Bus, DATE 2003

[18] M. L. Lopez, C. A. Iglesias, J. C. Lopez, A knowledge-based system
for hardware-software partitioning, DATE 1998.

[19] Y. Naveh, M. Rimon, I. Jaeger, et al., Constraint-Based Random Stimuli
Generation for Hardware Verification, AI Magazine, Vol 28, 2007

[20] J. C. Giarratano, G. D. Riley, Expert Systems: Principles and Program-
ming, 4th ed.: Thomson Course Technology, 2005.

[21] M. Keating and P. Bricaud, Reuse Methodology Manual: For System-
on-a-chip Designs, 3rd ed. Boston, MA:Kluwer, 2002.

[22] AEROFLEX GAISLER, htttp://www.gaisler.com
[23] Z. Li, K. Ramani, Ontology-based Design Information Extraction and

Retrieval, Journal of AI for Eng. Design, Analysis and Manufacturing,
2007.

[24] A. Shankar, B. Singh, et al. NEFCIS: Neuro-Fuzzy Concept based
Inference System for Specification Mining, ICTAI 2013.

[25] B. Singh, A. Shankar, et al. Knowledge-Guided Methodology for
Specification Analysis, ICTAI 2013

[26] Synopsys, http://www.synopsys.com/Community/UniversityProgram/
Pages/Library.aspx

[27] The Sparc Architecture Manual, Version 8, http://www.sparc.com/

