An Experience of Complex Design Validation: How to Make
Semiformal Verification Work

Sabih Agbaria, Dan Carmi, Orly Cohen,
Dmitry Korchemny, Michael Lifshits, and Alexander Nadel
Intel Corporation
P.O. Box 1659
) . Haifa 31015 Israel _
{sabih.agbaria,dan.carmi,orly.cohen,dmitry.korchemny,

michael.lifshits,alexander.nadel}@intel.com

ABSTRACT

There are two main techniques used for RTL validation: simula-
tion and formal verification. The main drawback of simulation is
its inability to provide satisfactory design coverage when the num-
ber of important scenarios is very large. Formal verification pro-
vides exhaustive coverage, but its capacity is insufficient for realis-
tic designs. In this paper we describe our experience with semifor-
mal verification (SFV) techniques used to validate two CPU design
blocks each of which included novel features carrying high risk to
the project. On the one hand, the number of different scenarios in
these blocks was enormous, and thus simulation could not provide
satisfactory coverage. On the other hand, these blocks were too
complex to be formally verified. Applying the proposed method
to these designs, believed to be mature after many weeks of in-
tensive dynamic and traditional formal validation, revealed bugs
in both the design and validation collateral, some of them critical.
The results obtained show that SFV has good potential for RTL
validation, and that it can save a substantial amount of the effort
required to cover important scenarios in simulation or to manually
build an abstraction model for formal verification. Our semiformal
algorithm uses formal engines only (and runs only on the formal
verification model) to explore scenarios requiring many clock cy-
cles to execute, and it has an important advantage over most other
approaches (which combine formal engines with simulation) — it
circumvents the consistency problems between the simulation and
formal verification models of the design.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids— Verification

Keywords
Semifotmal Verification, Model Checking

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The complexity of contemporary hardware (HW) designs im-
poses a heavy burden on their validation. Validation has become a
bottleneck of HW projects, such that many important new features
are dropped because of the inability to verify them in a reasonable
time. Though raising the design abstraction level would certainly
provide a significant validation efficiency boost, there is still a long
way to go to the enforcement of high level modeling and verifi-
cation methodology in big HW design projects. In this article we
focus on Register Transfer Logic (RTL) level design description.

There are two main approaches to RTL validation — dynamic
simulation and formal verification (FV). FV is exhaustive, but its
complexity grows exponentially as the size of the design increases.
There is a common belief that simulation scales well since its com-
plexity relates linearly to the size of the design. However, this is
not correct, as simulation is not used per se, but rather to ensure at
least some minimal coverage of the design space to get confidence
in design correctness. Of course, no practical number of simula-
tion runs can provide exhaustive verification of the design. The
number of important scenarios to be exercised in simulation grows
exponentially with design complexity; thus the required number of
simulation runs also grows exponentially [13]. Since in practice the
total number of simulation tests cannot grow that fast, the valida-
tion gap keeps increasing.

One promising direction for bridging the verification gap is to ex-
plore semiformal verification technologies that combine simulation
and FV algorithms. Semiformal verification methods do not pro-
vide the exhaustiveness of purely FV methods, but they do achieve
much larger coverage of the design space than simulation methods.
On the other hand, the capacity of SFV is far superior to that of FV.

Since part of SFV is FV, in order to run SFV, a FV environment
is needed. The FV environment requires specifying assumptions
which constrain the inputs of the device under test (DUT) to model
the DUT environment. This is relatively simple to do for big blocks
with well-defined functionality, since their interface protocol is also
well defined. To fit FV capacity limitations, it is usually required
to verify only a part of the DUT, whose functionality is described
only in a larger context. In this case, creating an FV environment
becomes painful and time consuming. Since the capacity of SFV is
usually significantly higher, it can often run on the original blocks,
so that the effort of building the environment in SFV may be much
smaller than in the case of FV. This is a huge advantage of SFV.

In this paper we describe our experience applying SFV to the
verification of several key modules of leading Intel CPU designs,
among them Resource Manager and Request Tracker. Our ex-
perience clearly shows the added value of SFV. Using SFV we
were able to find several important functional bugs that could not

be revealed during many weeks of intensive dynamic simulation.
Neither could these bugs have been revealed by FV tools, as run-
ning exhaustive FV was unfeasible, and bounded model checking
(BMC) could not get to the deep bounds necessary to reach these
bugs.

The notion of SFV is not new (see, for instance, [17]), and there
exist several industrial and academic tools [2,7,9,12] implementing
different SFV verification algorithms. However, we were unable
to run our design on any third party tool available to us because
of the numerous limitations of these tools in handling our design
methodology and in SystemVerilog support. Adapting the existing
design to meet the tool limitations turned out to be impractical, and
instead of adapting the design to existing tools we had to create our
own SFV tool. The SFV verification algorithm we used shares the
main idea described in [11], but the area of application is different.
The algorithm described in [11] was applied to post-silicon debug,
while our primary area of application is pre-silicon validation. In
addition, we implemented many important enhancements, the most
significant of them being multiple witness generation, as described
in Section 3.3.

Our design was written in SystemVerilog, and we used Sys-
temVerilog Assertions (SVA) as our assertion specification language
[14]. All assertion examples in this paper are also written in SVA.
For clarity and conciseness we omit explicit clock and reset specifi-
cation in assertions, and assume that some default values are used.

The rest of this paper is organized as follows. Section 2 provides
a short overview of SFV methods relevant for our work. Section 3
describes our SFV algorithm. Section 4 reviews the expertise re-
quired to apply the suggested SFV solution, and identifies design
areas where SFV is most beneficial. Section 5 contains high-level
description of the design blocks to which SFV was applied. Sec-
tion 6 presents the results obtained. Conclusions follow in Sec-
tion 7.

2. SEMIFORMAL VERIFICATION
METHODS

There is a large variety of SFV methods, and an exhaustive overview

and detailed taxonomy of them are beyond the scope of this paper.
We refer the reader to the survey of Bhadra et al. [3] for a detailed
description. In this section we mention only those features that are
important for the justification of our choice of implementation.

One of the basic ideas of SFV suggested by Yang and Dill [8]
is the idea of waypoints, or guideposts. Waypoints are predefined
points or areas in the state space of the model. Instead of trying to
formally prove an assertion directly, the SFV tools try to hit some
subsets of the waypoints in the order defined by a specific search
policy. The assertion to be verified is checked not directly from
the initial state, but from one of the waypoints. If this waypoint is
close enough to an assertion failure state, then it will be easy for
the FV tool to hit this failure state. This method can be used for
bug hunting only; the inability to discover a bug does not guarantee
that the design is correct. However, the coverage of the design
space achieved by the described SFV framework is much higher
than that of dynamic simulation, and even in the absence of bugs,
the confidence in design maturity when using SFV is higher.

We limit our discussion to SFV methods using the idea of way-
points. The waypoint-based SFV methods may be classified using
the following parameters:

e Waypoint definition.
e Waypoint traversal policy.

e Propagation policy.

e Formal verification engine.

e Number of search threads.

This taxonomy is not perfect since its classification parameters
are not independent, and it is by no means complete. However,
we will stick with it as it serves our needs well, and covers major
EDA SFV tools such as Synopsys Magellan [18] and Mentor 0-in
Dynamic Formal Verification [10].

2.1 Waypoint Definition

Waypoints may be defined explicitly by the user [9,11], or gener-
ated automatically by a SFV tool [5,15,20]. Users have key knowl-
edge about the behavior of the DUT, and they can provide a small
group of highly efficient guideposts. For example, if we want to
check for a queue overflow, the waypoints could be: “queue is 1/4
full”, “queue is half full”, and “queue is 3/4 full”.

The advantage of automatically generated waypoints is that they
do not require user intervention and manual waypoint specifica-
tion. Automatic waypoints are usually generated based on proxim-
ity metrics. For example, for property
a |=> b ##1 c the automatically generated waypoints could be
states where a is true, and states where b is true such that they have
a predecessor where a is true. Other methods might include, for
example, waypoint selection among states of an abstracted version
of the design space at a specific distance from the assertion failure
state [6].

The main disadvantage of automatically generated waypoints is
their large number and the fact that many of them are inefficient.
Both these factors may significantly increase verification time or
even make verification unfeasible, as reaching each and every way-
point is computationally expensive.

Some tools use a mixed strategy, where some waypoints are pro-
vided by the user and others are generated automatically by the
tool.

2.2 Traversal Policy

The waypoint traversal policy defines the order in which the way-
points are traversed when the failure state of the assertion being
verified is searched.

The simplest traversal policy is waypoint traversal in a specific
order. More sophisticated policies may include hitting the closest
waypoint, hitting the closest waypoint among those that are closer
to the assertion failure area, etc. The latter policies usually also in-
clude retreat and restart strategies: if there is no significant progress
detected for a long period, the search is restarted from an earlier
point and the latter part of the path is inserted into a “black” list in
order not to repeat the same path twice.

2.3 Propagation Policy

The main policies for reaching new waypoints are dynamic sim-
ulation, random simulation, and FV-based propagation. In a dy-
namic simulation policy some existing simulation test is run and
the waypoints are selected on the simulation trace either manually
or automatically. From each of these waypoints an assertion vio-
lation condition is searched for using FV methods, such as sym-
bolic simulation or BMC [10]. These FV runs are usually shallow,
and their goal is to look for assertion violations in the proximity
of the simulation trace. Since the simulation trace effectively be-
comes “thicker” from the coverage point of view, this method can
be referred to as simulation trace amplification. The big advan-
tage of this method is that it explores real-life scenarios. It has,
however, two important drawbacks: it requires the availability of
a simulation environment and simulation tests in addition to the

FV environment, and it requires that the FV and simulation models
be consistent. The latter drawback is very serious, as in practice
simulation and FV models may differ significantly. For example,
the FV model may have a smaller memory than the dynamic ver-
ification model or several parts of original logic may be replaced
with shortcut logic in order to fit the capacity of the FV tools. This
circumstance makes the use of a dynamic simulation policy prob-
lematic for complex HW designs.

In a random simulation policy, the model is simulated randomly
when trying to hit the next waypoint (e.g. this method is included
in Ketchum [12]). This policy does not necessarily require creation
of a simulation environment and tests, when the external inputs are
constrained with SVA (and treated as assumptions), but its main
challenge is the necessity to respect these constraints. To be able
to conduct FV, it is crucial to specify assumptions constraining the
behavior of the environment in order to prevent false assertion fail-
ures. Since FV engines are part of the SFV flow, random simula-
tion should take into account all constraints imposed by assump-
tions when generating random stimuli. Though random simulation
is very popular in SFV, assumption handling is the Achilles’ heel of
this policy. While random simulation can handle simple assump-
tions on inputs rather effectively, it is difficult to resolve complex
temporal assumptions, especially to generate high quality random
stimuli. Some kinds of assumptions cannot be resolved in prin-
ciple, such as those that constrain input behavior that depends on
output behavior, for example “Output ready cannot be asserted
without previous assertion of input req”. These issues limit the
applicability of random simulation.

In FV-based propagation, waypoints are treated similarly to as-
sertions. For example, the waypoint “queue is half full”” may be rep-
resented as an assertion “queue is never half-full”. The FV engine
tries to violate the latter assertion, and if it succeeds, it generates a
counterexample telling what stimuli should be applied to make the
queue half-full. This is exactly a path to the waypoint, also called a
waypoint witness. FV-based propagation does not require any addi-
tional environment except for the regular FV environment which is
needed in any case to conduct FV and which is always part of SFV
methods. Unlike random simulation policy, FV-based propagation
does not impose any limitations on the form of the assumptions.
In other words, a big advantage of FV-based propagation is that the
verification environment required for it is exactly the same as in the
case of classical FV, except, of course, for waypoint specification,
if explicit waypoint definition is used (Section 2.1). The drawback
of this policy is the requirement that consecutive waypoints be rel-
atively close to one another in order to fit the capacity of the FV
engine.

2.4 Formal Verification Engine

SFV methods differ depending on the FV engine used: symbolic
simulation [16], BDD-based model checkers [16], BMC [4], etc.
In the early days of SFV, BDD-based model checkers were mostly
used, but at the present, BMC methods have became more popular,
as they posses much higher capacity than other FV engines.

2.5 Number of Search Threads

Depending on the number of search threads, SFV methods can be
subdivided into single-threaded methods and multi-threaded meth-
ods. Here “thread” is not necessarily a thread in the program-
matic sense; an SFV-application exercising multiple search threads
may be implemented as one single-threaded process, though such
implementations are rare. In single-threaded methods, only one
path through waypoints is sought, while in multi-threaded meth-
ods many paths through waypoints are considered. Multi-threaded

Run Time
Run Time

Bound Bound
(a) Formal verification (b) Semiformal verification

Figure 1: Verification time reduction

methods provide better coverage of the design space than single-
threaded methods, but this comes at the price of verification per-
formance, as multi-threaded methods require much more computa-
tional resources than do the single-threaded methods.

3. BMC-BASED SEMIFORMAL
VERIFICATION

In this section we describe our new SFV method. Our method
is purely BMC-based, i.e. no simulation is involved, and thus no
synchronization between dynamic and formal verification models
is required.

3.1 Basic Algorithm

BMC is a powerful (and the most commonly used) FV tech-
nique that verifies the behavior of the DUT for input sequences
of bounded length. It starts from the initial state of the DUT and
searches for a run of one clock cycle that violates an assertion. If
no assertion violation is found, the number of run cycles is iter-
atively increased. The number of different scenarios grows very
quickly with the length of the run. The proposed BMC-based semi-
formal algorithm executes multiple shallow BMC runs, trading the
exhaustiveness of a search for speed. The user provides an ordered
set of waypoints which direct the search engine towards the desired
deep design state. The algorithm searches for a path from one way-
point to the next, starting from the initial state; the BMC engine
is restarted at each waypoint in order to avoid exponential blowup.
This idea is illustrated in Fig. 1. The time needed to reach a deep
design state is reduced from exponential to approximately linear in
the number of clock cycles, which makes it possible in practice to
get to states that would never have been reached with traditional
BMC.

As described in Section 2.2, some SFV methods automate the
waypoint search and use various heuristics to guide the tool. In
our approach, however, we let users provide high-level direction
for the semiformal search towards the desired area by encoding
the waypoints with SVA cover points. Our experience shows that,
being familiar with design behavior, most users define these high-
level directions quite naturally. For example, consider a queue that
requires 200 clock cycles to be filled. To validate the queue control
logic in a stress "full queue" state, possible waypoints could be "1/4
Sfull queue", "1/2 full queue”, and "3/4 full queue”, each waypoint
being easily reached by the tool. We did implement an automation
of the traversal, (see Section 3.4 for details), but our experience
shows that most users prefer provide high level direction for the
tool manually.

The stages of the SFV flow are outlined in Fig. 2. First, the user
defines a series of high-level waypoints modeled with SVA cover

User defines tool a series of ™\
high-level waypoints ~ /

Calculate the set of relevant assumptions
and initialize the design

last waypoint
reached

e Choose next waypoint W and run
Gun BMENeLinglproperty a BMC from the current DUT state

Report result and generate
counterexample trace if a failure

Report inability to follow
waypoints

Figure 2: Semiformal verification flow

points c¢i,c2,...,c, and the assertions to verify pi,p2,...,Pn.
SVA is part of SystemVerilog — it can be embedded in the DUT
code or written in a separate bounded module using the same com-
pilation command. Design engineers use a familiar language quite
easily to embed SVA assertions/waypoints in their code. It is rec-
ommended to capture sophisticated, multi-cycle SVA expressions
required by a project in a library using functional templates. Given
the assertions, the set of relevant user-specified assumptions for all
p; is calculated statically by traversing their cones of influence. It is
important to use the whole set of assumptions in detecting of each
cover point’s witness (in addition to the assumptions relevant for
the specific cover point), because otherwise, when a property fail-
ure is found and the witnesses of all waypoints are concatenated to
form the counterexample trace, some part of the trace may not com-
ply with the assumptions and may make the whole trace spurious.
Two actions are performed for each waypoint: BMC verification
to find the witness for the cover point or a counterexample for an
assertion failure, and simulation’ to properly initialize the data for
the next BMC run (see details in Section 3.2). These actions are
repeated, targeting subsequent waypoints ca, . . ., ¢,, thus analyzing
deepening design behaviors. If a witness is not found for some c;,
an indeterminate result is reported. If there is an assertion failure,
its counterexample is appended to the concatenation of witnesses
ci,...,cn. If atimeout or required BMC bound is reached, a lack
of failure is reported. Note that this is one of the two traversal
policies we implemented; we review both policies in detail in Sec-
tion 3.4.

3.2 Calculation of New Initial States

Calculation of a new initial state when the engine starts from
some intermediate waypoint should take into account the recent
state of the DUT (the values of all the sequential elements in the

'In this case the FV model is simulated, which is different than
in the case of dynamic formal verification, where the DV model is
simulated, a fact which requires synchronization between the mod-
els

bit g1, 92, 93, g4;
initial {gl, 92, g3, g4} = '0;

// posedge clk is the assumption clock
always ((posedge clk) begin

ql <= a; g2 <= gl; 93 <= g2; g4 <= g3;
end
wire fail = !b && g4;

Figure 3: RTL for assumption m1

DUT) and the recent state of the properties: assertions and assump-
tions. We use the same initialization method for both the DUT and
the properties due to the fact that the properties may be represented
as finite automata [19] and that the automaton of a safety property
can be synthesized into RTL [1]. We use a conventional RTL sim-
ulator to simulate both the DUT and the RTL synthesized from the
properties on the waypoint witness. As an example, consider the
following assumption

ml: assume property (a |-> ##4 Db);

The RTL representing its automaton is shown in Fig. 3.

If the value a = 1 in the witness appears in the next to last step,
the initial state of the next BMC run should have g2 = 1. Simulat-
ing the property automaton is important: blindly reusing the initial
property condition
initial g1, g2, g3, g4 = ’0; would have led to a disconti-
nuity of the adjacent BMC runs, and potentially to false negatives
and to bogus witnesses and counterexamples.

3.3 Using Multiple Witnesses to Enhance Co-
verage

Our experiments described in Section 6 show that the proposed
basic single-threaded algorithm will likely miss corner-case bugs.
The reason for this is that a randomly chosen path, constructed from
a series of witnesses each of which satisfies the corresponding in-
termediate waypoint, does not exhibit sufficient coverage of the de-
sign space.

To achieve better design space coverage we implemented a multi-
threaded search algorithm that advances towards the desired deep
states along multiple paths in parallel. For each intermediate way-
point, a random set of witnesses is calculated instead of a single
witness, and for each such witness a separate verification process
towards the next waypoint is launched. Fig. 4 illustrates a scenario
where using two witnesses for the waypoints resulted in bug de-
tection, whereas the chances of detecting the bug would have been
much smaller otherwise.

As described in Section 3.1 our basic algorithm is BMC-based.
In BMC the reachability condition from one waypoint to the next is
coded as a Boolean formula which is then solved with a SAT solver
to produce a waypoint witness. To produce multiple instances we
modified our SAT solver to provide several satisfying assignments
instead of one. The main challenge was to generate several satis-
fying assignments to the same formula which were as different as
possible in order to minimize overlap.

Our results (Section 6) show that the quality of the multi-threaded
algorithm is far superior to the quality of the single-threaded algo-
rithm. However, the number of verification threads grows exponen-
tially with the number of the waypoints, since at each waypoint a
fixed number of new threads is generated. This may be remedied by
limiting the total number of threads by a predefined upper bound.

3.4 Manual and Automatic Traversal Policies

Initial state X/

waypoint (a)
waypoint (b)

Figure 4: Multiple witnesses

Algorithm 1 Automatic usage mode

1: Try to find a failure for any of the assertions from the initial
state of the model. This is a regular BMC run

2: Try to reach each cover point in the model starting from the
model initial state

3: When a witness of any cover point is found, the above steps are
repeated starting from the initial state specified with the newly
reached cover point

We identified that there are two major usage modes for the SFV
algorithm. In the first, the “manual single scenario” usage mode de-
scribed in 3.1, the user verifies a set of properties that are expected
to fail in a specific design scenario. This mode employs FV-based
propagation (see 2.3). The user indicates a series of events (way-
points) that guide the way through the scenario and lead to a poten-
tial property failure. Consider, for example, a block that stores the
incoming requests in a queue. The correct behavior of the control
logic (e.g. calculation of the STALL condition) should be vali-
dated in appropriate stress scenarios, e.g. when the queue is full. In
this case, FV-based propagation following the waypoints specified
by the user and verifying the properties once a stress condition is
reached will achieve the highest confidence in the correctness of
the properties.

In the second, the “automatic multiple scenarios” usage mode,
the user verifies a set of properties that may be violated in a wide
range of design scenarios. In this case, especially if the user is
not very familiar with the design, it is difficult to specify a large
number of scenarios with waypoints. Therefore, because it lacks
user guidance (a series of events leading to a potential property
failure), the algorithm’s traversal policy should uniformly cover as
much of the reachable design space as possible to achieve the high-
est confidence in the correctness of the properties. For this, the
algorithm uses the set of available cover points in the model that
were specified for some other purpose, e.g. to qualify the model-
ing (the reachability of these cover points is verified to make sure
that no overrestricting assumptions added to the model interface
are masking important behaviors). Algorithm 1 aims to verify all
the assertions from as many initial states as possible. These algo-
rithm steps are done automatically, and various verification runs are
simultaneously executed using multiple threads. This traversal pol-
icy does not require a good familiarity with the model, but it can be
very computationally intensive, as the maximal number of verifi-
cations can reach the factorial of the number of cover points in the
model. Users generally limit the maximum number of parallel ver-
ifications. Our experience shows that most users prefer the single
scenario mode, where they manually provide high-level direction
for the tool.

4. APPLICATION GUIDELINES

REQ1
—

REQ2
(—

= ‘Request Completion Logic‘

Figure 5: Request Tracker

In this section we review the expertise required to apply the sug-
gested SFV solution. Additionally we specify design areas where
we think the application of SFV would be most beneficial.

To effectively run the flow using FV-based propagation (see 3.4),
users should be familiar with the micro-architectural specification
of the DUT as well as with the property specification language, i.e.
SVA. This is required for specifying the appropriate cover points
and for matching them to the corresponding assertions (usually
resource limitations prevent checking every assertion from every
cover point). Users should also be familiar with FPV tools and
methodology to determine that SFV is the right solution to over-
come FV complexity problems, considering other traditional so-
lutions, such as DUT reduction by abstraction, black-boxing, and
pruning among others.

We found that large DUTs, where classic FPV gets into com-
plexity problems and is unable to achieve sufficient confidence, are
the most fruitful candidates for the application of SFV. Such DUTs
usually include complex logic comprising mixed control */datapath *
logic and involving a big coverage space. For example, long flows
and/or protocols with deep pipelining and queues and/or counters
require high BMC bounds to reach and validate stress scenarios.

S. TEST CASES

We implemented the algorithm in a proprietary formal verifica-
tion tool and applied it to various CPU design blocks. The RTL was
written in SystemVerilog and included novel features carrying high
risk. A significant multi-month effort had already been invested in
the simulation and FV of most of these blocks. The FV confidence
level was not high enough in all cases, as the BMC bound reached
by the traditional BMC approach was insufficient. In most cases,
after reducing the models using both manual and automatic tech-
niques, the full cone of influence of a typical assertion was of a size
FV engines could handle — 1K inputs, 5K state elements, and 75K
gates. Still, design scenarios requiring more than forty clock cycles
could not be addressed by FV. Thanks to the intensive FV work
that had already been done, the environment included hundreds of
assumptions, assertions, and cover points captured in SVA. As a
result, the SFV flow could be instantly applied.

The first block, Request Tracker, is responsible for managing
various request types and ensuring the correct execution order be-
tween requests, giving preference to high-priority requests while
not starving the low-priority ones. The high-level diagram of Re-
quest Tracker is shown in Fig. 5.

The different request types vary in the time needed to process
them, e.g. request REQ1 (path REQ1 — OUT1) requires con-

%producing the values of control signals based on data values and
states

3functions and registers operating on data based on the value of the
control signals

Resource Resqurce
request Pool of allocation
I: Table of S
Resources allocated

resources
Resources Next free
Control UNIT pointer

Figure 6: Resource Manager

siderably fewer clock cycles than request REQ?2 (path REQ2 —
OUT?2). The requests come from different sources, and each re-
quest has a unique ID. We chose to experiment with RE ()2, which
could not be properly addressed in FV due to BMC bound limita-
tions.

The second block, Resource Manager, is responsible for control-
ling resources and ensuring that no resource is allocated twice and
that none are lost. The resources are kept in the pool and allocation-
s/deallocations are recorded using a cyclic table. See Fig. 6 for the
high-level diagram of the block. We will not describe other blocks
in detail.

6. RESULTS

In this section we describe results illustrating the efficiency of
our SFV tool and compare it with that of pure BMC. Section 6.1
describes the results of detecting artificial bugs manually inserted
into the design blocks. Section 6.2 describes real bugs detected by
the SFV tool.

6.1 Testing the Ability to Adequately
Cover Design Behaviors

To verify the SFV algorithm efficiency we inserted artificial bugs
into the designs and allowed choosing waypoints from existing cover
points previously defined by validation engineers for other pur-
poses. We did this in order not to explicitly guide the tool towards
the known bug. We made sure that the bugs were of a “good qual-
ity”, i.e., that they could not be revealed in FV or by existing simu-
lation tests.

The artificial corner-case bug we inserted in the Request Com-
pletion Logic sub-block of the Request Tracker (see Fig. 5) caused
a failure when multiple requests of type REQ?2 arrived from partic-
ular, unusual sources in a specific order. The bug resulted in one of
the requests being incorrectly marked as completed. We used 9 dif-
ferent waypoints modeling several RE Q2 requests in various pipe
stages on a path REQ2 — OUT2; for example, the one marked
by a star in Fig. 5. For each waypoint, we calculated 5 witnesses,
targeting each of 12 assertions, starting verification from 9x5=45
different initial states (defined by waypoints’ witnesses). The cover
points occurred at bounds 64-70, and verification took 1406-3379
seconds (on a machine with 4Gb memory and two Intel Xeon CPU
3.60 processors). A failure was detected by one of the twelve as-
sertions from only one initial state, whereas runs from the other 44
initial states missed the problematic scenario. It occurred at bound
34 after 14707 seconds, starting from a waypoint with a 70 clock
phase long witness and resulting in a 104 (70+34) clock phase long
combined counterexample starting from the original initial state.

The artificial corner-case bug we inserted into the Resource Man-
ager was related to control logic calculating the condition for next
request STALL. This caused Next free pointer to wrap around
early, due to illegal allocation, thereby running over other resources
in the table. The general cover points used as waypoints asserted
that various table lines were allocated, and the table was incremen-

tally filled up in the tested scenario until it it became full and the
wraparound occurred. We ran traditional BMC and SFV with sin-
gle as well as multiple witnesses. The assertion verified that “re-
sources are not being lost in the system”. In all cases a timeout of
20 hours was used. Results are summarized in Table 1.

The cyclic allocation table size is 20, and thus a wrap around
happens after the 19th table line is allocated. BMC could not get
beyond the allocation of line 8, whereas the SFV algorithm easily
reached the required stress scenario. The multiple witness approach
was necessary in order to come across the problematic combination
of resource requests. The total number of verification runs was
3(witnesses)®(WaYPoints) =729 Note that the SFV algorithm does
not necessarily produce the shortest counterexample — “line 8”
was reached with bound 71 using BMC whereas using SFV it was
reached with bound 71 to 83.

6.2 Corner-Case Bugs in Mature Design

The most important result achieved by applying the proposed
SFV tool to the validation of the blocks described in Section 5 is
the exposure of three corner-case bugs in the Resource Manager
design, two of them critical:

e Incorrect ST ALL calculation in a very specific combination
of allocation requests (a real version of the artificial bug we
described earlier), which caused resources to be lost.

e A bug in recovery/restart event handling, which results in not
all of the allocated resources being correctly sent back to the
resource pool.

e Corruption of a mechanism which validates resource integrity
in the Resource Control Unit, in case of extremely high allo-
cation traffic.

Neither FV nor simulation could reveal these bugs, even after
many weeks of continuous, exhaustive testing.

6.3 Other Results

The proposed SFV tool was able to reproduce a number of bugs
previously found in simulation, as well as many bugs in the FV en-
vironment modeling. The tool also made it possible to root-cause a
fatal post-silicon bug after a two-month manual effort to reproduce
it on RTL using other techniques proved futile. The post-silicon de-
bugging activity was performed in a way similar to that described
in [11].

In addition, the proposed SFV tool enabled FV activities on large
DUTSs with deep stress scenarios non-addressable with traditional
FV. The relatively low BMC bound achievable by FV on these units
was sufficient to hop between waypoints towards the stress scenar-
ios. Usually, a considerable manual effort is required to create an
artificial model sufficiently reduced so as to enable achieving sig-
nificant FV confidence on a DUT. Such a modeling effort can con-
stitute up to 50 percent of the validation work. In some cases, this
effort was saved. In other cases, which otherwise would have been
dropped, the SFV tool enabled FV.

7. CONCLUSION AND
RECOMMENDATIONS

The summary of our findings is as follows.

e The proposed SFV solution, in spite of its relative simplicity,
was proved to be efficient. It was able to detect, with reason-
able effort, 5 artificially inserted corner-case bugs that were
missed by FV (due to bound limitations) and simulation (due
to coverage limitations).

Table 1: Resource Manager Verification Results

Cover/Assert. BMC Semiformal, single || Semiformal, multiple
Result Bound Result | Bound Result | Bound

Line 4 covered 69 covered | 69 covered | 69

Line 8 covered 71 covered | 71 covered | 71..83

Line 12 uncovered | 24 covered | 89 covered | 85..95

Line 16 uncovered | 26 covered | 99 covered | 93..107

Line 19 uncovered | 26 covered | 113 covered | 99..119

Line 0 N/A N/A covered | 129 covered | 107..133

Assert. TO 38 TO 42 failed 142

e The proposed SFV solution detected a number of actual, hard [5] P. Bjesse and J. Kukula. Using counter example guided
to expose RTL bugs very close to project release. abstraction refinement to find complex bugs. In DATE, page

10156, 2004.

e It is feasible to build a custom SFV flow on top of exist- [6] F. M. De Paula and A. J. Hu. An effective guidance strategy
ing FV tools in a project. Two main ideas should be kept in for abstraction-guided simulation. In DAC ’07, pages 63-68.
mmd.: 1) no 51mul.at10n is required for the. calculatlc?n of the [7] D. L. Dill. What's between simulation and formal
new 1n1t1gl states if only'boolean properties are being used verification? (extended abstract). In DAC "98: Proceedings
(see .Sectlo.n 3.2 for deta11§) 2) The FV tool should support of the 35th annual Design Automation Conference, pages
multiple witnesses generation to enhance SFV coverage. 328-329, New York, NY, USA, 1998. ACM.

o To run the SVF tool effectively, users should be familiar with (8] D.L. Dill and C. H. Yang. Validation with guided search of
the micro-architectural specification of the DUT, the prop- the state .space. In DAC, pages 5 99_604’ 1998.
erty specification language (i.e. SVA), as well as FPV tools [9] M. Ganai, P. Yalagandula, A. Aziz, A. Kuehlmann, and
and methodology. Applying the SFV solution is most worth- V. Singhal. Siva: A system for coverage-directed state space
while on large DUTs where classic FPV runs into complex- search. J. Electron. Test., 17(1):11-27, 2001.
ity. [10] M. Graphics. 0-in formal verification.

http://www.mentor.com/products/fv/.

In our opinion, the suggested method for pure SAT-based SFV [11] C.R. Ho, M. Theobald, B. Batson, J. Grossman, S. C. Wang,
is very simple to grasp and straightforward to implement, yet it J. Gagliardo, M. M. Deneroff, R. O. Dror, and D. E. Shaw.
exhibits superior abilities to achieve good design coverage and to Post-silicon debug using formal verification waypoints. In
detect deep, corner-case bugs in industrial-scale designs. The en- DVCon, 2009.
couraging results described earlier were achieved with a relatively [12] P. H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano,
small amount of work on the part of the validation engineers. In V. Bertacco, J. Taylor, and J. Long. Smart simulation using
addition, the suggested method boosts the productivity of the val- collaborative formal and simulation engines. In ICCAD,
idation team by rendering unnecessary the substantial validation pages 120-126, 2000.
effort required to reduce design size to fit the capacity limitations [13] A.J. Hu. Simulation vs. formal: Absorb what is useful;
of FV tools. reject what is useless. In Hardware and Software:

Verification and Testing, volume 4899, pages 1-7, 2008.
Acknowledgment [14] IEEE. IEEE Standard for SystemVerilog — Unified Hardware
The authors would like to thank Paul Inbar, Roy Frank, Tamir Salus, Design, Specification, and _/erzﬁcatlon Language, 2005.
. [15] A. Kuehlmann, K. L. McMillan, and R. K. Brayton.
Zurab Khasidashvili, Asi Sapir, Haim Kerem, Dani Even-Haim, Probabilistic state space search. In ICCAD, pages 574-579
Amit Palti, Eli Singerman, and Alon Flaisher for their valuable 1999 ’ ’ ’
suggestions, ideas, experimental results, reviews, and support of ’ . . .
our work. [16] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, Norwell, MA, USA, 1993.
[17] K. Ravi and F. Somenzi. High density reachability analysis.
8. REFERENCES In ICCAD, 1995.
[1] R. Armoni, S. Egorov, R. Fraer, D. Korchemny, and [18] Synopsys. Magellan.
M. Vardi. Efficient LTL compilation for SAT-based model http://www.synopsys.com/TOOLS/VERIFICATION/
checking. In ICCAD, 2005. FUNCTIONALVERIFICATION/Pages/Magellan.aspx.
[2] A. Aziz, J. Kukula, and T. Shiple. Hybrid verification using [19] M. Y. Vardi. An automata-theoretic approach to linear
saturated simulation. In DAC, pages 615-618, 1998. temporal logic. In Proceedings of the VIII Banff Higher
[3] J. Bhadra, M. S. Abadir, L.-C. Wang, and S. Ray. A survey of order workshop conference on Logics for concurrency:
hybrid techniques for functional verification. In /EEE Design structure versus automata, pages 238-266, 1996.
and Test of Computers, volume 24, pages 112-123, 2007. [20] P. Yalagandula, V. Singhal, and A. Aziz. Automatic

[4] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu.

Bounded model checking. Advances in Computers, 58, 2003.

lighthouse generation for directed state space search. In
DATE, pages 237-242, 2000.

