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Abstract- Cache verification has been regarded as one of the most challenging problems due to increasing 

design complexity. In this paper, we demonstrate a flexible UVM-based verification solution to cache. In order 

to fulfill cache's typical scenarios, an elaborately-designed layered sequence using the feedback mechanism is 

adopted.  Scoreboard based on mesh streams is used for end-to-end data checking. Taking into order and 

correspondence into consideration, we demonstrate several customized checking policies.  

 

I.   INTRODUCTION 

With the prosperous growth of applications such as AI and ADAS in recent years, the application 

specific processor has become a hotspot. Those applications usually requires mass of data access, which 

raises a higher demand for memory system with high bandwidth and low latency. In order to cater these 

demands, a lot specific or tricky designs are introduced in current cache design. The cache verification has 

become a challenging task due to the increasing design complexity. 

In this paper, we present a UVM-based verification solution to cache which supports multi-thread access, 

multi-word access, kill and pre-fetch mechanism. In order to demonstrate its effectiveness and flexibility, 

this solution is introduced in two parts: Stimulus generation and mesh stream scoreboard checker. Our goal 

is to make cache verification more manageable, scalable and unified. 

 

II. DESIGN OVERVIEW  

Our L1 Cache design (L1SYS in short) has three stage pipelines, support multi-thread double/triple word 

access. When one thread encountered cache miss, that thread will be scheduled to a ‘shadow command 

buffer’, fetch data in background, and switch to another thread automatically as shown in Figure 1. , in this 

way, the overall latency will be reduced. The introduced extra design and verification effort as the front-

ground and background access may target to same line. 

 
Figure 1. Demonstration of thread switch when cache miss 

 

What’s more, in order to gain better performance, some specific designs are introduced in the L1SYS, 

including but not limited to configurable pre-fetch mechanisms which takes cache spatial locality into 

consideration, more aggressive cache line replacement policy avoiding target cache line evicted by another 

thread, ‘kill’ mechanism which is aimed at reducing the invalid access to external memory when branch 

prediction failed. To achieve these goals, many buffers are introduced in design implementation as shown 
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in Figure 2. , which makes cache verification more challenging. For example, to examine whether the 

load/store is cache hit or miss, we need to check different combinations of cache and buffer under different 

situations. 
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Figure 2. L1SYS internal buffers and data flow 

 

The prime reason why cache exists is the locality of memory access, which include two different aspect: 

 Temporal locality: recently referenced data is likely to be referenced again soon 

 Spatial locality: it’s more likely to reference data near recently referenced data 

Let’s revise a typical memory access process to describe the locality during memory access. As shown in 

Figure 3, assuming we have a memory space which can be addressed from ‘0a’ to ‘7d’, each address 

contains a data unit that core can access, and we have a cache whose cache line can hold 4 data units. 

1. Core write 2b, which will be cache miss as all cache lines are invalid, the L1SYS will allocate data 

from 2a~2d to fill cache line. Additionally in our design, L1SYS will prefetch the data 3a~3d, store 

them into ‘prefetch buffer’ based on spatial locality 

2. Core write 2b again, which will be cache hit, which is an example of temporal locality. 

3. Core read 3c, which will hit ‘prefetch buffer’, data will be returned to core soon just like cache hit, 

meanwhile data in ‘prefetch buffer’ will be moved into cache on background 

4. Core read 6c, which will be cache miss, L1SYS will allocate data 6a~6d, prefetch data 7a~7d. As 

data 6a~6d will occupy same cache line as 2a~2d, the dirty data 2a~2d will be evicted to external 

memory, those data will be firstly move into ‘eviction buffer’ to speed-up cache replace 

5. Core write 2b before the eviction mentioned above is done, as data 2b is still inside ‘eviction buffer’, 

it will be traded as cache hit from core side, new data will be carried out to external memory 

directly along with other evicted data 

 
Figure 3. Example of typical L1SYS memory access 



 
 

III.   TEST BENCH OVERVIEW 

 

Based on design features mentioned above, we propose a UVM-based verification architecture, as shown 

in Figure 4.  

 
 

Figure 4. Demonstration of L1SYS verification architecture 

 

The testbench is organized in gray-box style. For the purpose of accurate data and status check and 

predication, some key internal interfaces also need to be observed besides the external core and AXI 

interface. With the help of transaction level models including cache and internal buffers, transactions 

monitored from those internal/external interfaces are all checked using MESH scoreboard. The MESH 

scoreboard are combined by arbitrary number of data streams, each stream can have customized checking 

policy using UVM instance override, each stream can be turn on/off separately. In such way, a scalable 

scoreboard frame is provided for different check accuracy during different execution stage, especially when 

need to add or remove internal interfaces that being observed. The MESH scoreboard will be described in 

details in section V.  

Due to complexity of L1SYS implementation, the stimulus need to provide cycle-level controllability on 

command types, timing, and their combination of different threads. To achieve this, the stimulus are 

organized in layered sequences. With the characteristics of both temporal locality, the tendency to reuse 

recently accessed data items, and spatial locality, the tendency to reference data items that are close to other 

recently accessed items, the only simple random stimulus cannot effectively cover cache’s typical behavior. 

FIP (feedback information pool) is introduced in our testbench, FIP which is filled with feedback 

information from monitors and models in testbench can provide transaction-accurate feedback to stimulus 

generation, which can dramatically speed up verification process. Layered sequence and FIP mechanism 

which will be described in details in section IV. 



 
 

 

IV.   STIMULUS GENERATION 

 

A layered sequence with feedback mechanism is proposed in our solution for stimulus generation. 

 

A. Layered sequence 

Following verification requirement need be fulfilled during L1SYS verification. 

1. In the normal operation of the L1SYS, it shall go through a completed process including 

‘initialize’, ‘configure’ and ‘data’.  

2. There’s multiple external interfaces that need hook up active agents, whose sequences need be 

executed concurrently once ‘data’ sequence is started 

3. Due to our L1SYS’ supporting multi-thread, when one thread encounters the condition of cache 

miss, it shall be sent to ‘shadow command buffer’  as shown in Figure 1. The thread in ‘shadow 

command buffer’ shall be handled in background (BG), while the other threads still execute in 

front ground (FG). When the BG operation of cache miss is finished, the thread switches from BG 

to FG. In this situation, the master sequences are required to provide the controllability for the 

arbitration among ‘fresh’ commands from FG, ‘redo’ commands from BG.  

4. Cache related operations are divided into atomic operation called ‘scenario’, which should be 

combined freely to compose more complex stimulus.  

 

In response to the above verification’s needs, the sequences used in L1SYS verification are organized in 

a 4 layer structure, as shown in Figure 5. In the following section, we will discuss every layer separately. 

 
Figure 5. Overview of layered sequences 

 



 
Layer I sequence is the top sequence which control the overall flow of simulation, it is executed as UVM 

main_phase’s ‘default_sequence’. To mimic the real case execution, the sequence is implemented in a FSM 

(Finite state machine) style. A general sequence class is extended from uvm_sequence_library class, which 

provides a FSM style user-defined selection mechanism.  

 

Three concepts are introduced in that sequence, as shown in Figure 6. 

 state: based on which the sequence to be executed is selected; 

 arc: the sequence to be executed from state-n to state-m; 

 weight: to control the statistical distribution multiple sequences which have same current state. 

 

A couple of APIs are provided in the sequence class to build-up to FSM, also built-in functional 

coverage is provided in the FSM sequence on ‘state’ and ‘arc’ execution status. 

 
Figure 6. Concepts of FSM sequence 

 

As shown in Figure 5., in L1SYS’verification, four states including ‘INIT’, ‘CFG’, ‘DATA’ and 

‘CLEAN’ are defined. When state changes from ‘INIT’ to ‘CFG’, the design initialization sequence will be 

executed. When state changes from ‘CFG’ to ‘DATA’, the main data transfer sequence will be executed. 

State ‘DATA’ can jump back ‘CFG’, run circularly to ‘DATA’ state, or goes to ‘CLEAN’ state. When state 

changes from ‘DATA’ to ‘CLEAN’, some housekeeping jobs are be executed. Related pseudo code to 

build the FSM sequence is like bellow. 

Comparing to the ‘randsequence’ syntax provided in SystemVerilog , the FSM sequence provide a more 

readable style to build sequence, also built-in functional coverage can explicitly show the execution status. 

As for UVM phase jump, it’s always not recommended to use due to side-effect it will introduce. 

 

Layer II sequence is composited by sequences on different active agents, which are run in parallel and 

independently. The scenario number that determines how many scenarios are executed on each master is 

controlled using run-time plusargs. This also allows pattern developer to turn off certain masters while 

avoid affecting each other, which is useful during the early stage of verification. Related pseudo code of 

this sequence is demonstrated as bellow.  

virtual function void build_fsm_sequence (); 

this.fsm_seq.register_state(‘{“INIT”, “CFG”, “DATA”, “CLEAN”}); 

this.fsm_seq.set_init_state(“INIT”);  

this.fsm_seq.register_arc(“INIT”,                                               // current state 

“CFG”,                                              // next state, after sequence is executed 

my_init_sequence::type_id::get(),    // sequence to be registered 

100                                                    // weight control, optional 

); 

   // reigster other FSM ‘arc’ 

endfunction 



 

 
 

Layer III sequence is only for core agent. It focus on the scheduling of atomic operation which is called 

‘scenario’ (Layer IV sequence). Scenarios are registered through predefined API, associated with a set of 

attributes such as ‘scenario name’, ‘weight’ and ‘length’. Using these information, together with UVM 

factory mechanism, scenario can be added and composed easily. Scheduling mechanism consists of item 

selection and item arbitration. When executed, item selection would selects all available item types, then 

item arbitration determines which type to send. Scenario selection is to decide the ‘scenario_name’ of all 

available scenarios according to its weight. Some useful APIs are provided in selection and arbitration, 

which enables pattern developers to customize the result depending on scenario. What’s more, for 

controllability consideration, the ‘selection’ and ‘arbitration’ mechanism are encapsulated into standalone 

classes, which support instance override for specific test. 

 
 

Layer IV sequence defines the ‘scenario’ mentioned above. Some scenario’s execution may need certain 

context such as locality and state. In such situation, scenarios are extended from a common base class, 

which defines a set of template function for core’s atomic operation, such as init(), run(), clean(). The 

function ‘init()’ is called once during this scenario to set execution context and ‘clean()’ is called once to 

clear up this context. The task ‘run()’ is called multiple times which is controlled by sequence length to 

complete the scenario. This part is what verification engineer pay most effort on after the environment is 

ready, a total of 60+ scenarios are created during our L1SYS verification. 

 
 

task body () ; 

    this.get_scn_number_from_plusargs() ;  

    fork 

        this.ex_dm_seq() ;  // Execute Data sequence 

        this.ex_pm_seq() ;  // Execute Instruction sequence 

        this.ex_axi_seq() ;  // Execute AXI sequence 

    join_none 

    wait_fork ; 

endtask 

 

task ex_dm_seq() ;        // Take DM sequence as an example ; 

    repeat ( this.dm_scn_num ) `uvm_do_on ( dm_seq, dm_agent_info.sqr ) ; 

endtask 

 

layer4_scenario     scn ; 

 

task body () ; 

    scn = this.select_scenario () ;     // Select Layer 4 scenario  

    scn.init () ;                                  // initialization for scenario context setup 

    repeat (this.sequence_length) begin 

        scn.run();                                // scenario main body, 

// one transaction per ‘run’ for better controllability of ‘locality’  

    end 

    scn.clean() ;                                // housekeep after scenario   

endtask 

task init();  // handle context for this scenario; endtask 

task run() ; 

    // allocate constraint from FIP;     // create transaction with constraint; 

    `uvm_send(tr) 

endtask 

task clean(); // clean context ; endtask 



 
The cooperation between LayerIII and LayerIV sequence is shown in Figure 7. 

 
Figure 7. Cooperation between Layer III and Layer IV sequence  

 

B.  Feedback mechanism 

 

In cache’s verification, the stimulus should take cache’s characteristic of both temporal and spatial 

locality into consideration. In order to gain better performance (cache hit rate, etc.), our L1SYS introduce a 

lot of buffers, which raises a higher demand for stimulus generation. Taking these buffers into account, the 

temporal and spatial locality means that stimulus should tend to send command whose address is same with 

or close to the cache lines in the buffers in a short time range. 

What’s more, when taking multi-thread access into consideration, we must focus more attention on the 

stimulus correlation among threads. For example, two threads try to fetch same cache line which is not in 

cache. The initial thread could get cache miss result and try to allocate this line from main memory. The 

second one may get different results (hit shadow command buffer, hit line filling buffer or hit cache) 

depending on the status of former allocation. 

Our solution is to introduce feedback mechanism in our stimulus generation. A FIP (Feedback 

Information Pool) component is created to reflect the behavior of design, those information is collected 

from monitors and models in test bench. To achieve this, some extra APIs for querying usage are 

introduced in the monitors and models. The FIP is consisted of L1SYS’s status information, including 

pipeline, cache/TCM SRAM and all buffers status in L1SYS. What should be emphasized here is that all 

status information is collected from transaction level models in testbench instead of RTL signals. In another 

words, the information used for feedback has been proven to be correct in scoreboard and checkers.  

When a scenario start to execute, it will request an high ROI (Region-Of-Interst) address range by raising 

requirement that encapsulated in a ‘ROI_setting’ object, which include the address size, expected 

buffer/cache correlation, etc.. Once received the request, FIP starts to calculate all possible address ranges 

which fulfil the requirements, an ‘addr_range’ object will be returned to scenario to describe all satisfied 

address ranges. Scenario arbitrarily choose one address range from ‘addr_range’ object, then do further 

randomization on the transaction it will send.  

The overall feedback mechanism is shown in Figure 8. 

 



 

 
Figure 8. Demonstration of feedback mechanism 

 

V.   MESH SCOREBOARD 

 

To accurately predict cache hit/miss result, we need to monitor couples of key node of internal data path, 

and do cross check on amount of the combination of those key nodes. Those nodes have different data 

transaction types. What’s more, those nodes might be added or removed when design changes, or during 

different verification phase. In this situation, a flexible and extendable mechanism is needed to cater this 

demand. 

The checking mechanism we used in L1SYS’s verification is shown in Figure 9. The core component is 

named as MESH scoreboard, each data path from one interface node to another is named as a ‘stream’, all 

streams together compose the MESH scoreboard. VIP agents are bind to design boundary or inside design 

whose functionality we must pay attention to. Subscribers are connected to VIP agents by UVM TLM ports. 

Subscriber do pre-check on the transaction it received, and translate the transaction into MESH scoreboard 

item, which defines what we want to check. Those function might be delegated to separate ‘transaction 

handler’ objects if multiple scoreboard streams are involved for single subscriber.  

 
Figure 9. Demonstration of mesh stream used in Cache verification 



 
All agents created in our L1SYS’s verification share the same architecture which is consisted of a 

monitor, a driver, a sequencer and a configuration object. Design under test (DUT) is connected with 

monitor and driver via virtual interface. The monitor takes the responsibility of translating the signals of 

DUT into transaction and broadcasting via analysis port. Conversely, the driver translates the transaction 

from sequencer into signals that is used as the DUT’s stimulus. What’s more, a configuration object is 

placed in the agent and the other components share the same handle of it. Controllability of the agent is 

provided in the transaction and configuration. 

For the purpose of accurate checking, some fields indicating the status of transaction are pre-defined in 

the transaction, including address, data and response status. The monitors are designed to broadcast the 

transaction handle via analysis port at the very first cycle of the transaction. Also, they take the 

responsibility of modifying the status information along the life cycle of transaction. In this way, the 

subscriber can do corresponding check by waiting targeted transaction status as shown in Figure 10. For 

example, if we want to check the command information in some ports, what we need to do is to wait the 

transaction’s address status to become ‘DONE’ and start to execute the related checkers. Similarly, we can 

wait data and response status to become ‘START’ or ‘DONE’ to check data and response information 

respectively, which is easy to extend to other situations when necessary. 

 
Figure 10. Interaction of agent and subscriber 

 

The implementation of MESH scoreboard is demonstrated in Figure 11. The scoreboard is characteristic 

of flexible checking policy. An input stream is a stream from input side, an expected stream is stream that 

gathered on the output side. Many expect streams are defined in scoreboard based on the items that need be 

checked, each can be enabled or disabled separately. Every expect stream has its own customized checking 

policy which is achieved via UVM factory’s instance override. Totally 16 checking polices are defined in 

our implementation, including but not limited to ‘in-order’, ‘out-of-order’, ‘with-losses’, ‘any-in-order’, 

‘either-in-order’, ‘MISO(Multi Input Single Output)-in-order’, ‘with-redundancy’ etc. 

 
Figure 11. Scoreboard used in L1SYS’ verification 



 
 

APIs defined in our scoreboard is presented in Table I. 

TABLE I APIs defined in MESH scoreboard 

API Description 

define_exp_stream() Define expect/input streams and the checking policy used for checkout 

override_policy() Add customized checking policy 

checkin() Check in mesh scoreboard item 

checkout() Check out mesh scoreboard item 

delete() Delete some items from mesh scoreboard 

disable_stream() Turn off check of specific stream  

enable_stream() Turn on check of specific stream 

 

In order to illustrate how the scoreboards works, an example is presented in the following part of this 

section. Due to L1SYS’s supporting multiple threads, if more than one threads try to fetch the same cache 

line when cache is miss, only one external memory access shall be issued to reduce cache miss’s penalty 

caused by unnecessary operation. Aimed at checking this behavior, the checking policy of ‘MISO-in-order’ 

is created, where MI(Multi-input) means requests from multiple thread on core side, while SO (Single 

Output) stands for single memory access on AXI side. Once created, this policy is appended to scoreboard. 

 
 

Using this policy, when checked out, it is judged to be correct as long as this item is found in at least one 

stream. What’s more, items same as the checked-out one in all checked-in streams are all removed as 

shown in Figure 12. 

 
Figure 12. Demonstration of MISO-in-order  

 

In order to check this behavior, first of all,  an expect stream named ‘allocation’ with four input streams 

named ‘t0’, ‘t1’, ‘t2’ and ‘t3’ is defined. And ‘MISO-in-order’ is chosen as this stream’s checking policy. 

 

class asip_sb_expect_miso_in_order extends asip_sb_expect_policy ; 

    virtual function asip_base::events_e check_out (input xxx, ouput xxx) ; 

        // implementation of MISO-in-order 

    endfunction 

endclass 

 

this.mesh_sb.override_policy (“MISO-in-order”, asip_sb_expect_miso_in_order::type_id::get() ) ; 

this.mesh_sb.define_exp_stream ( “MISO-in-order”                               , // checking policy 

                                                         “allocation”                                        , // expect stream name 

                                                         ‘{“t0”, “t1”, “t2”, “t3”}                       // input stream name 

                                                       ) ; 

 



 
If one of threads encounter cache miss, the transaction detected by monitor shall be translated in 

subscriber into scoreboard item. Then, the item shall be inserted into the ‘allocation’ expect stream. The 

selection of the input stream is depended on the thread information of the transaction. 

 

Once detected, the external memory access shall also be translated into scoreboard item. The checkout 

method is called according to its thread. 

 

Flexibility is characteristic of the MESH scoreboard checking mechanism. First of all, the verification 

precision can be controlled flexibly by binding VIP agents. The verification can be executed loosely by 

only covering the design boundary or tightly by binding VIP agent at the key module inside the design, 

depending on project schedule and DV resources. Secondly, the items defined in the scoreboard item can 

be customized per stream. Thirdly and most importantly, as a lot of tricky designs are adopted in cache to 

gain high performance, the simple one-by-one correspondence checking mechanism is not able to meet the 

demand, using the facility provided by UVM factory mechanism, the checking policy can be customized 

and overridden flexibly stream by stream. What’s more, the verification task can be easily partitioned based 

on streams, which is of great benefit for resource management. 

 

VI.   COVERAGE MODEL 

Coverage model is consisted of code and functional coverage. Functional coverage has two parts: one for 

coverage defined in test bench (ex. Monitor/models/subscriber etc.) on transaction level, the other one for 

coverage derived from RTL signals. The second part of functional coverage is automatically generated as 

shown in Figure 13.  

 
Figure 13. The automation of functional coverage 

 

The excel information is provided by designers based on RTL signals. The Python script is used to 

translate information in excel to XML format. What’s more, the script also takes the responsibility of 

checking the correctness of the information in excel by comparing with signals in RTL. Coverage groups 

and verification plan are generated based on XML. The plan is used to manage the verification schedule, 

which is back annotated based on functional coverage. 

 

this.mesh_sb.checkin ( item                                ,  // checking item 

                                      “allocation”                    ,  // expect stream the item shall be inserted into 

                                      $sformatf(“t%0d”, tr.tid)  // input stream the item shall be inserted into 

                                     ) ; 

this.mesh_sb.checkout ( item,                                 // checking item 

                                         “allocation”                      // expect stream the item shall be checked out 

                                         $sformatf(“t%0d”, tr.tid) // input stream the item shall be checked out 

                                        ) ; 



 
VII.   SUMMERY 

In this paper, we present an enhanced UVM-based verification solution for cache type design. We 

elaborately designed a layered sequence to fulfill cache’s temporal and spatial locality. MESH scoreboard 

is used as checking mechanism due to its flexibility and extendibility. Also, trading the test bench as an 

organic whole, we adopts feedback mechanism from test bench’s passive part for stimulus generation to 

accelerate the coverage convergence.  

The coverage trend curve based on our project is shown in Figure 14.. Totally 62 scenarios are created in 

6 weeks to reach coverage closure, including both code coverage and a total of 26949 functional coverage 

bins. We think that the mechanism we proposed in this paper is a practical solution to complex cache 

design verification. 

 
Figure 14. Coverage trend curve 

 


