

An Enhanced Stimulus and Checking

Mechanism on Cache Verification

 Chenghuan Li Xiaohui Zhao Yunyang Song
 Mediatek.inc, Beijing, China Mediatek.inc, Beijing, China Mediatek.inc, Beijing, China

 Chenghuan.Li@mediatek.com Xiaohui.Zhao@mediatek.com Yunyang.Song@mediatek.com

Abstract- Cache verification has been regarded as one of the most challenging problems due to increasing

design complexity. In this paper, we demonstrate a flexible UVM-based verification solution to cache. In order

to fulfill cache's typical scenarios, an elaborately-designed layered sequence using the feedback mechanism is

adopted. Scoreboard based on mesh streams is used for end-to-end data checking. Taking into order and

correspondence into consideration, we demonstrate several customized checking policies.

I. INTRODUCTION

With the prosperous growth of applications such as AI and ADAS in recent years, the application

specific processor has become a hotspot. Those applications usually requires mass of data access, which

raises a higher demand for memory system with high bandwidth and low latency. In order to cater these

demands, a lot specific or tricky designs are introduced in current cache design. The cache verification has

become a challenging task due to the increasing design complexity.

In this paper, we present a UVM-based verification solution to cache which supports multi-thread access,

multi-word access, kill and pre-fetch mechanism. In order to demonstrate its effectiveness and flexibility,

this solution is introduced in two parts: Stimulus generation and mesh stream scoreboard checker. Our goal

is to make cache verification more manageable, scalable and unified.

II. DESIGN OVERVIEW

Our L1 Cache design (L1SYS in short) has three stage pipelines, support multi-thread double/triple word

access. When one thread encountered cache miss, that thread will be scheduled to a ‘shadow command

buffer’, fetch data in background, and switch to another thread automatically as shown in Figure 1. , in this

way, the overall latency will be reduced. The introduced extra design and verification effort as the front-

ground and background access may target to same line.

Figure 1. Demonstration of thread switch when cache miss

What’s more, in order to gain better performance, some specific designs are introduced in the L1SYS,

including but not limited to configurable pre-fetch mechanisms which takes cache spatial locality into

consideration, more aggressive cache line replacement policy avoiding target cache line evicted by another

thread, ‘kill’ mechanism which is aimed at reducing the invalid access to external memory when branch

prediction failed. To achieve these goals, many buffers are introduced in design implementation as shown

mailto:Chenghuan.Li@mediatek.com
mailto:Xiaohui.Zhao@mediatek.com
mailto:Yunyang.Song@mediatek.com

in Figure 2. , which makes cache verification more challenging. For example, to examine whether the

load/store is cache hit or miss, we need to check different combinations of cache and buffer under different

situations.

Read CMD

L1SYS

Store
buffer

Line Filling
buffer

Shadow
command

buffer

Eviction
buffer$

Core Prefetch
buffer

Read data

Write CMD

Hit/Miss ?

Figure 2. L1SYS internal buffers and data flow

The prime reason why cache exists is the locality of memory access, which include two different aspect:

 Temporal locality: recently referenced data is likely to be referenced again soon

 Spatial locality: it’s more likely to reference data near recently referenced data

Let’s revise a typical memory access process to describe the locality during memory access. As shown in

Figure 3, assuming we have a memory space which can be addressed from ‘0a’ to ‘7d’, each address

contains a data unit that core can access, and we have a cache whose cache line can hold 4 data units.

1. Core write 2b, which will be cache miss as all cache lines are invalid, the L1SYS will allocate data

from 2a~2d to fill cache line. Additionally in our design, L1SYS will prefetch the data 3a~3d, store

them into ‘prefetch buffer’ based on spatial locality

2. Core write 2b again, which will be cache hit, which is an example of temporal locality.

3. Core read 3c, which will hit ‘prefetch buffer’, data will be returned to core soon just like cache hit,

meanwhile data in ‘prefetch buffer’ will be moved into cache on background

4. Core read 6c, which will be cache miss, L1SYS will allocate data 6a~6d, prefetch data 7a~7d. As

data 6a~6d will occupy same cache line as 2a~2d, the dirty data 2a~2d will be evicted to external

memory, those data will be firstly move into ‘eviction buffer’ to speed-up cache replace

5. Core write 2b before the eviction mentioned above is done, as data 2b is still inside ‘eviction buffer’,

it will be traded as cache hit from core side, new data will be carried out to external memory

directly along with other evicted data

Figure 3. Example of typical L1SYS memory access

III. TEST BENCH OVERVIEW

Based on design features mentioned above, we propose a UVM-based verification architecture, as shown

in Figure 4.

Figure 4. Demonstration of L1SYS verification architecture

The testbench is organized in gray-box style. For the purpose of accurate data and status check and

predication, some key internal interfaces also need to be observed besides the external core and AXI

interface. With the help of transaction level models including cache and internal buffers, transactions

monitored from those internal/external interfaces are all checked using MESH scoreboard. The MESH

scoreboard are combined by arbitrary number of data streams, each stream can have customized checking

policy using UVM instance override, each stream can be turn on/off separately. In such way, a scalable

scoreboard frame is provided for different check accuracy during different execution stage, especially when

need to add or remove internal interfaces that being observed. The MESH scoreboard will be described in

details in section V.

Due to complexity of L1SYS implementation, the stimulus need to provide cycle-level controllability on

command types, timing, and their combination of different threads. To achieve this, the stimulus are

organized in layered sequences. With the characteristics of both temporal locality, the tendency to reuse

recently accessed data items, and spatial locality, the tendency to reference data items that are close to other

recently accessed items, the only simple random stimulus cannot effectively cover cache’s typical behavior.

FIP (feedback information pool) is introduced in our testbench, FIP which is filled with feedback

information from monitors and models in testbench can provide transaction-accurate feedback to stimulus

generation, which can dramatically speed up verification process. Layered sequence and FIP mechanism

which will be described in details in section IV.

IV. STIMULUS GENERATION

A layered sequence with feedback mechanism is proposed in our solution for stimulus generation.

A. Layered sequence

Following verification requirement need be fulfilled during L1SYS verification.

1. In the normal operation of the L1SYS, it shall go through a completed process including

‘initialize’, ‘configure’ and ‘data’.

2. There’s multiple external interfaces that need hook up active agents, whose sequences need be

executed concurrently once ‘data’ sequence is started

3. Due to our L1SYS’ supporting multi-thread, when one thread encounters the condition of cache

miss, it shall be sent to ‘shadow command buffer’ as shown in Figure 1. The thread in ‘shadow

command buffer’ shall be handled in background (BG), while the other threads still execute in

front ground (FG). When the BG operation of cache miss is finished, the thread switches from BG

to FG. In this situation, the master sequences are required to provide the controllability for the

arbitration among ‘fresh’ commands from FG, ‘redo’ commands from BG.

4. Cache related operations are divided into atomic operation called ‘scenario’, which should be

combined freely to compose more complex stimulus.

In response to the above verification’s needs, the sequences used in L1SYS verification are organized in

a 4 layer structure, as shown in Figure 5. In the following section, we will discuss every layer separately.

Figure 5. Overview of layered sequences

Layer I sequence is the top sequence which control the overall flow of simulation, it is executed as UVM

main_phase’s ‘default_sequence’. To mimic the real case execution, the sequence is implemented in a FSM

(Finite state machine) style. A general sequence class is extended from uvm_sequence_library class, which

provides a FSM style user-defined selection mechanism.

Three concepts are introduced in that sequence, as shown in Figure 6.

 state: based on which the sequence to be executed is selected;

 arc: the sequence to be executed from state-n to state-m;

 weight: to control the statistical distribution multiple sequences which have same current state.

A couple of APIs are provided in the sequence class to build-up to FSM, also built-in functional

coverage is provided in the FSM sequence on ‘state’ and ‘arc’ execution status.

Figure 6. Concepts of FSM sequence

As shown in Figure 5., in L1SYS’verification, four states including ‘INIT’, ‘CFG’, ‘DATA’ and

‘CLEAN’ are defined. When state changes from ‘INIT’ to ‘CFG’, the design initialization sequence will be

executed. When state changes from ‘CFG’ to ‘DATA’, the main data transfer sequence will be executed.

State ‘DATA’ can jump back ‘CFG’, run circularly to ‘DATA’ state, or goes to ‘CLEAN’ state. When state

changes from ‘DATA’ to ‘CLEAN’, some housekeeping jobs are be executed. Related pseudo code to

build the FSM sequence is like bellow.

Comparing to the ‘randsequence’ syntax provided in SystemVerilog , the FSM sequence provide a more

readable style to build sequence, also built-in functional coverage can explicitly show the execution status.

As for UVM phase jump, it’s always not recommended to use due to side-effect it will introduce.

Layer II sequence is composited by sequences on different active agents, which are run in parallel and

independently. The scenario number that determines how many scenarios are executed on each master is

controlled using run-time plusargs. This also allows pattern developer to turn off certain masters while

avoid affecting each other, which is useful during the early stage of verification. Related pseudo code of

this sequence is demonstrated as bellow.

virtual function void build_fsm_sequence ();

this.fsm_seq.register_state(‘{“INIT”, “CFG”, “DATA”, “CLEAN”});

this.fsm_seq.set_init_state(“INIT”);

this.fsm_seq.register_arc(“INIT”, // current state

“CFG”, // next state, after sequence is executed

my_init_sequence::type_id::get(), // sequence to be registered

100 // weight control, optional

);

 // reigster other FSM ‘arc’

endfunction

Layer III sequence is only for core agent. It focus on the scheduling of atomic operation which is called

‘scenario’ (Layer IV sequence). Scenarios are registered through predefined API, associated with a set of

attributes such as ‘scenario name’, ‘weight’ and ‘length’. Using these information, together with UVM

factory mechanism, scenario can be added and composed easily. Scheduling mechanism consists of item

selection and item arbitration. When executed, item selection would selects all available item types, then

item arbitration determines which type to send. Scenario selection is to decide the ‘scenario_name’ of all

available scenarios according to its weight. Some useful APIs are provided in selection and arbitration,

which enables pattern developers to customize the result depending on scenario. What’s more, for

controllability consideration, the ‘selection’ and ‘arbitration’ mechanism are encapsulated into standalone

classes, which support instance override for specific test.

Layer IV sequence defines the ‘scenario’ mentioned above. Some scenario’s execution may need certain

context such as locality and state. In such situation, scenarios are extended from a common base class,

which defines a set of template function for core’s atomic operation, such as init(), run(), clean(). The

function ‘init()’ is called once during this scenario to set execution context and ‘clean()’ is called once to

clear up this context. The task ‘run()’ is called multiple times which is controlled by sequence length to

complete the scenario. This part is what verification engineer pay most effort on after the environment is

ready, a total of 60+ scenarios are created during our L1SYS verification.

task body () ;

 this.get_scn_number_from_plusargs() ;

 fork

 this.ex_dm_seq() ; // Execute Data sequence

 this.ex_pm_seq() ; // Execute Instruction sequence

 this.ex_axi_seq() ; // Execute AXI sequence

 join_none

 wait_fork ;

endtask

task ex_dm_seq() ; // Take DM sequence as an example ;

 repeat (this.dm_scn_num) `uvm_do_on (dm_seq, dm_agent_info.sqr) ;

endtask

layer4_scenario scn ;

task body () ;

 scn = this.select_scenario () ; // Select Layer 4 scenario

 scn.init () ; // initialization for scenario context setup

 repeat (this.sequence_length) begin

 scn.run(); // scenario main body,

// one transaction per ‘run’ for better controllability of ‘locality’

 end

 scn.clean() ; // housekeep after scenario

endtask

task init(); // handle context for this scenario; endtask

task run() ;

 // allocate constraint from FIP; // create transaction with constraint;

 `uvm_send(tr)

endtask

task clean(); // clean context ; endtask

The cooperation between LayerIII and LayerIV sequence is shown in Figure 7.

Figure 7. Cooperation between Layer III and Layer IV sequence

B. Feedback mechanism

In cache’s verification, the stimulus should take cache’s characteristic of both temporal and spatial

locality into consideration. In order to gain better performance (cache hit rate, etc.), our L1SYS introduce a

lot of buffers, which raises a higher demand for stimulus generation. Taking these buffers into account, the

temporal and spatial locality means that stimulus should tend to send command whose address is same with

or close to the cache lines in the buffers in a short time range.

What’s more, when taking multi-thread access into consideration, we must focus more attention on the

stimulus correlation among threads. For example, two threads try to fetch same cache line which is not in

cache. The initial thread could get cache miss result and try to allocate this line from main memory. The

second one may get different results (hit shadow command buffer, hit line filling buffer or hit cache)

depending on the status of former allocation.

Our solution is to introduce feedback mechanism in our stimulus generation. A FIP (Feedback

Information Pool) component is created to reflect the behavior of design, those information is collected

from monitors and models in test bench. To achieve this, some extra APIs for querying usage are

introduced in the monitors and models. The FIP is consisted of L1SYS’s status information, including

pipeline, cache/TCM SRAM and all buffers status in L1SYS. What should be emphasized here is that all

status information is collected from transaction level models in testbench instead of RTL signals. In another

words, the information used for feedback has been proven to be correct in scoreboard and checkers.

When a scenario start to execute, it will request an high ROI (Region-Of-Interst) address range by raising

requirement that encapsulated in a ‘ROI_setting’ object, which include the address size, expected

buffer/cache correlation, etc.. Once received the request, FIP starts to calculate all possible address ranges

which fulfil the requirements, an ‘addr_range’ object will be returned to scenario to describe all satisfied

address ranges. Scenario arbitrarily choose one address range from ‘addr_range’ object, then do further

randomization on the transaction it will send.

The overall feedback mechanism is shown in Figure 8.

Figure 8. Demonstration of feedback mechanism

V. MESH SCOREBOARD

To accurately predict cache hit/miss result, we need to monitor couples of key node of internal data path,

and do cross check on amount of the combination of those key nodes. Those nodes have different data

transaction types. What’s more, those nodes might be added or removed when design changes, or during

different verification phase. In this situation, a flexible and extendable mechanism is needed to cater this

demand.

The checking mechanism we used in L1SYS’s verification is shown in Figure 9. The core component is

named as MESH scoreboard, each data path from one interface node to another is named as a ‘stream’, all

streams together compose the MESH scoreboard. VIP agents are bind to design boundary or inside design

whose functionality we must pay attention to. Subscribers are connected to VIP agents by UVM TLM ports.

Subscriber do pre-check on the transaction it received, and translate the transaction into MESH scoreboard

item, which defines what we want to check. Those function might be delegated to separate ‘transaction

handler’ objects if multiple scoreboard streams are involved for single subscriber.

Figure 9. Demonstration of mesh stream used in Cache verification

All agents created in our L1SYS’s verification share the same architecture which is consisted of a

monitor, a driver, a sequencer and a configuration object. Design under test (DUT) is connected with

monitor and driver via virtual interface. The monitor takes the responsibility of translating the signals of

DUT into transaction and broadcasting via analysis port. Conversely, the driver translates the transaction

from sequencer into signals that is used as the DUT’s stimulus. What’s more, a configuration object is

placed in the agent and the other components share the same handle of it. Controllability of the agent is

provided in the transaction and configuration.

For the purpose of accurate checking, some fields indicating the status of transaction are pre-defined in

the transaction, including address, data and response status. The monitors are designed to broadcast the

transaction handle via analysis port at the very first cycle of the transaction. Also, they take the

responsibility of modifying the status information along the life cycle of transaction. In this way, the

subscriber can do corresponding check by waiting targeted transaction status as shown in Figure 10. For

example, if we want to check the command information in some ports, what we need to do is to wait the

transaction’s address status to become ‘DONE’ and start to execute the related checkers. Similarly, we can

wait data and response status to become ‘START’ or ‘DONE’ to check data and response information

respectively, which is easy to extend to other situations when necessary.

Figure 10. Interaction of agent and subscriber

The implementation of MESH scoreboard is demonstrated in Figure 11. The scoreboard is characteristic

of flexible checking policy. An input stream is a stream from input side, an expected stream is stream that

gathered on the output side. Many expect streams are defined in scoreboard based on the items that need be

checked, each can be enabled or disabled separately. Every expect stream has its own customized checking

policy which is achieved via UVM factory’s instance override. Totally 16 checking polices are defined in

our implementation, including but not limited to ‘in-order’, ‘out-of-order’, ‘with-losses’, ‘any-in-order’,

‘either-in-order’, ‘MISO(Multi Input Single Output)-in-order’, ‘with-redundancy’ etc.

Figure 11. Scoreboard used in L1SYS’ verification

APIs defined in our scoreboard is presented in Table I.

TABLE I APIs defined in MESH scoreboard

API Description

define_exp_stream() Define expect/input streams and the checking policy used for checkout

override_policy() Add customized checking policy

checkin() Check in mesh scoreboard item

checkout() Check out mesh scoreboard item

delete() Delete some items from mesh scoreboard

disable_stream() Turn off check of specific stream

enable_stream() Turn on check of specific stream

In order to illustrate how the scoreboards works, an example is presented in the following part of this

section. Due to L1SYS’s supporting multiple threads, if more than one threads try to fetch the same cache

line when cache is miss, only one external memory access shall be issued to reduce cache miss’s penalty

caused by unnecessary operation. Aimed at checking this behavior, the checking policy of ‘MISO-in-order’

is created, where MI(Multi-input) means requests from multiple thread on core side, while SO (Single

Output) stands for single memory access on AXI side. Once created, this policy is appended to scoreboard.

Using this policy, when checked out, it is judged to be correct as long as this item is found in at least one

stream. What’s more, items same as the checked-out one in all checked-in streams are all removed as

shown in Figure 12.

Figure 12. Demonstration of MISO-in-order

In order to check this behavior, first of all, an expect stream named ‘allocation’ with four input streams

named ‘t0’, ‘t1’, ‘t2’ and ‘t3’ is defined. And ‘MISO-in-order’ is chosen as this stream’s checking policy.

class asip_sb_expect_miso_in_order extends asip_sb_expect_policy ;

 virtual function asip_base::events_e check_out (input xxx, ouput xxx) ;

 // implementation of MISO-in-order

 endfunction

endclass

this.mesh_sb.override_policy (“MISO-in-order”, asip_sb_expect_miso_in_order::type_id::get()) ;

this.mesh_sb.define_exp_stream (“MISO-in-order” , // checking policy

 “allocation” , // expect stream name

 ‘{“t0”, “t1”, “t2”, “t3”} // input stream name

) ;

If one of threads encounter cache miss, the transaction detected by monitor shall be translated in

subscriber into scoreboard item. Then, the item shall be inserted into the ‘allocation’ expect stream. The

selection of the input stream is depended on the thread information of the transaction.

Once detected, the external memory access shall also be translated into scoreboard item. The checkout

method is called according to its thread.

Flexibility is characteristic of the MESH scoreboard checking mechanism. First of all, the verification

precision can be controlled flexibly by binding VIP agents. The verification can be executed loosely by

only covering the design boundary or tightly by binding VIP agent at the key module inside the design,

depending on project schedule and DV resources. Secondly, the items defined in the scoreboard item can

be customized per stream. Thirdly and most importantly, as a lot of tricky designs are adopted in cache to

gain high performance, the simple one-by-one correspondence checking mechanism is not able to meet the

demand, using the facility provided by UVM factory mechanism, the checking policy can be customized

and overridden flexibly stream by stream. What’s more, the verification task can be easily partitioned based

on streams, which is of great benefit for resource management.

VI. COVERAGE MODEL

Coverage model is consisted of code and functional coverage. Functional coverage has two parts: one for

coverage defined in test bench (ex. Monitor/models/subscriber etc.) on transaction level, the other one for

coverage derived from RTL signals. The second part of functional coverage is automatically generated as

shown in Figure 13.

Figure 13. The automation of functional coverage

The excel information is provided by designers based on RTL signals. The Python script is used to

translate information in excel to XML format. What’s more, the script also takes the responsibility of

checking the correctness of the information in excel by comparing with signals in RTL. Coverage groups

and verification plan are generated based on XML. The plan is used to manage the verification schedule,

which is back annotated based on functional coverage.

this.mesh_sb.checkin (item , // checking item

 “allocation” , // expect stream the item shall be inserted into

 $sformatf(“t%0d”, tr.tid) // input stream the item shall be inserted into

) ;

this.mesh_sb.checkout (item, // checking item

 “allocation” // expect stream the item shall be checked out

 $sformatf(“t%0d”, tr.tid) // input stream the item shall be checked out

) ;

VII. SUMMERY

In this paper, we present an enhanced UVM-based verification solution for cache type design. We

elaborately designed a layered sequence to fulfill cache’s temporal and spatial locality. MESH scoreboard

is used as checking mechanism due to its flexibility and extendibility. Also, trading the test bench as an

organic whole, we adopts feedback mechanism from test bench’s passive part for stimulus generation to

accelerate the coverage convergence.

The coverage trend curve based on our project is shown in Figure 14.. Totally 62 scenarios are created in

6 weeks to reach coverage closure, including both code coverage and a total of 26949 functional coverage

bins. We think that the mechanism we proposed in this paper is a practical solution to complex cache

design verification.

Figure 14. Coverage trend curve

