
An Efficient Verification Framework for
Audio/Video Interface Protocols

Noha Shaarawy1, Mustafa Khairallah, Khaled Khalifa, Hany Salah, Amr Salah and Maged

Ghoneima2

1Boost Valley, Cairo 11361, Egypt,
noha.shaarawy@boostvalley.com,

2Ain Shams University, Egypt
m_ghoneima@ieee.org,

Abstract—Audio/video interface protocols, such as High Definition Multimedia Interface (HDMI) and
DisplayPort, are major components of today's Entertainment products. Given the shrinking time-to-market and the
increasing complexity of System-On-Chips (SoCs), verification teams need to optimize the verification techniques
used to test new audio/video interfaces. This paper proposes a unified framework for building robust, configurable,
and extendible verification environments suitable for different audio/video interface protocols. It suggests
customizable testing mechanisms that can be used to test different profiles. The proposed framework is based on
Universal Verification Methodology (UVM) yet can easily fit into other verification methodologies such as Verification
Methodology Manual (VMM). The paper shows how the proposed framework is used to ease the development of
HDMI transmitter and receiver Verification Intellectual Properties (VIPs), alongside with the testing mechanisms
applied to verify the corresponding HDMI transmitter/receiver Design Under Tests (DUTs), highlighting the amount
of reuse between the two VIPs.

Keywords—Video, Interface Protocols, Functional Verification, HDMI, DVI, DisplayPort

I. INTRODUCTION

Consumer electronics and entertainment products/devices have evolved over the past years to be complex
systems. A typical scenario for entertainment devices nowadays is to operate in an environment that is constantly
changing [8]. In addition, the quality of the entertainment content increases with passing days. Recently, 4K
ultra-HD videos with multi-channel and multi-stream have become commercial [6].

Audio/video interfaces are major building blocks of these products. HDMI and DisplayPort interfaces are the
most commonly used interfaces in consumer electronics. However, designing and verifying such interfaces
represent a challenge. For example, video protocols verification requires the ability to deal with huge video
frames at different protocol layers; in multiple streams and in complex structures [7]. The verification target is to
minimize test run-time and memory consumption, while verifying the design at different levels; block,
sub-system and SoC levels.

To express the verification challenge of the state of the art High Definition Television (HDTV) SoCs, the
authors of [6] presented a challenging verification problem that was faced during the verification of new versions
of Analog and Digital TV chips. Reuse and extension of previously developed verification environment were
applied. The first verification project took 18 months from the development of specifications till the tape-out. The
verification team consisted of 19 engineers utilizing 20 machines. 30 components within the chip were verified
during this project. The problem arose when in a subsequent project, it was requested from a downsized team
(team shrank by 47%), only 10 engineers were available, and a downsized number of machines (machines
availability shrank by 20%), to verify a new TV chip that included 24 new components within a shorter time
frame which was 10 months. The area of the whole chip increased by 50-65% and included 5 new interfaces and
a total of 12 interfaces. HDMI and Transport Stream interfaces were among these interfaces.

A unified verification framework for audio/video interface protocols is proposed in this paper. The proposed
framework helps build robust, configurable and extendible verification environments. In section II, the related
work concerning audio/video interface protocols verification is discussed. The proposed verification framework is
discussed thoroughly in section III. An application example is presented in section IV and an experimental results
are shown in section V. Finally, the paper is concluded in section VI.

1

II. RELATED WORK

 To the best of our knowledge, very few attempts have been made towards developing a configurable, and an
extendible verification framework applicable on different audio/video interface protocols. In [5], the authors
discussed a functional verification environment methodology for audio/video SoC. Usage of Emulation
technology to accelerate verification for maximum performance was introduced. HDMI 1.2 protocol, I2S, S/PDIF
and 32-bit linear Pulse Code Modulation(PCM) audio protocols as well as several video formats; were covered.
However, discussion on any configuration or extension mechanisms to other standards and protocols; wasn't part
of [5]. In [9], the authors presented a configurable testbench component that can drive audio/video streams for an
HDMI or Mobile High-Definition Link (MHL) receiver. However, these efforts cannot be considered as a general
framework as it did not discuss thoroughly many of the verification environment components nor the test
generation mechanisms. Besides, the only checking mechanism used was black box end-to-end checking.

III. PROPOSED VERIFICATION FRAMEWORK

A typical DUT that implements a video interface protocol can be divided into six regions; three
communication interfaces: 1) Main Communication Channel, 2) Auxiliary Channel and 3) Hot Plug and three
protocol-independent blocks: 4) Video Processing, 5) Audio Processing and 6) Control. Thus, the proposed
verification framework divides the verification IP components into six similar regions: Streaming, Auxiliary
Channel, Hot Plug, Video, Audio and Control regions. The DUT regions and the Verification IP are presented in
Figure 1; color coding in the figure represents the regions.

A. Streaming Region

Streamers are responsible for preparing the appropriate bit-stream sent over the main communication channel
of the interface in question. They are also responsible for decoding the bit-stream and monitoring the interface
activity. The function of a streamer is defined in the proposed framework though its implementation depends
entirely on the DUT; as different interface protocols use different bus protocols. HDMI and Digital Video
Interface (DVI) protocols use Transition-Minimal Differential Signaling (TMDS) protocol, while DisplayPort
uses Micro-Packet protocol.

B. Auxiliary Channel Region

All modern video interface protocols use an auxiliary communication channel for authentication, control and
configuration. The channel functions are:

• To act as the Display Data Channel (DDC) carrying Extended Display Identification Data (EDID)
packets.

2

Figure 1: Verification Framework Overview

• To perform High-bandwidth Digital Content Protection (HDCP) Authentication.

• To carry special control packets defined by different video interface protocols.

• Link training as specified in the DisplayPort specification.

The Auxiliary Channel is a two wire channel that either uses I2C protocol, as in HDMI and DVI; or uses
a special bus protocol defined by the interface protocol specification, such as the auxiliary channel
protocol defined by the DisplayPort specification. The channel is represented in the verification IP by the
following components:

• I2C Verification IP.

• Auxiliary Channel Verification IP (for DisplayPort only).

• EDID Simulator: responsible for preparing the appropriate EDID packets to be sent to a source interface
(DUT).

• EDID Analyzer: responsible for analyzing the EDID packets received from a sink interface (DUT), then
verifying their conformance to the standard and sending their content to the rest of the verification IP
components to adjust the video stream accordingly.

• Advanced Control Packet Simulator: responsible for sending or receiving the advanced control packets
defined by different interface protocols, for example: Status and Control Data Channel packets defined by
HDMI 2.0.

• Link Trainer (for DisplayPort only).

• Authentication Agent: responsible for performing the HDCP authentication operation between the
interface source and sink, or between the DUT and the verification IP.

C. Hot Plug Region

Responsible for the hot plug behavior defined by different interface protocols. It is also responsible for testing
scenarios such as the DUT response when the transmission cable is torn or when the sink is powered off. It
includes:

• Hot Plug Monitor: responsible for raising the power-on signal upon the user' request and monitoring the
hot plug signal. It informs the verification environment when the hot plug signal is asserted.

3

Figure 2: Verification Environment for an HDMI Receiver

• Hot Plug Driver: responsible for monitoring the power-on signal and responding with the hot plug signal.
The user can choose whether the hot plug signal should be asserted normally in response for the RX5V or
enforce a de-assertion.

D. Protocol Independent Region

1) Video Agent
This group of components is responsible for all video-related operations. It includes:

a) Application Layer:

• Movie Extractor: It takes a short movie and converts it into binary frames and audio samples that are
processed by the video and audio processors. These frames and samples are used by the testbench to
generate real-world test-cases.

• Video Player: It is an optional block that compares the input versus output video frames and audio
samples.

b) Video Processor: It is responsible for processing the video data stream; by performing a group of video
processing functions such as color space conversion or video pixel encoding conversion ...etc.

2) Audio Agent
This group of components is responsible for all audio-related operations. It includes:

• I2S Verification IP.

• S/PDIF Verification IP.

• Direct Stream Digital audio (DSD) Verification IP.

• Audio Processor: responsible for processing the audio data stream; by performing the following
functions:

a) Generating specific parameters related to the audio clock regeneration.

b) Saving audio configuration information.

• Custom Audio Verification IPs.

E. Control Region

This group of components is responsible for providing the means to control the DUT and configure its behavior
according to the test scenario in-hand. Different DUTs may provide different control interfaces, for example: I2C,
JTAG and SPI.

4

Figure 3: Verification Environment for an HDMI Transmitter

F. Verification Environment Configurations

 Since high definition video frames have huge sizes, which consumes a lot of resources both in terms of
memory space and run-time, the VIP should provide customizable frame formats to help users verify the basic
functionality using smaller frames and less simulation cycles. Other possible configurations for the verification
environment are video formats, pixel encoding, color depths, audio types, audio sampling frequencies, scrambling
enable/disable and HDCP enable/disable.

IV. HDMI 2.0 VERIFICATION ENVIRONMENT

 HDMI is a compact audio/video interface for transferring uncompressed video data and compressed or
uncompressed digital audio data from an HDMI-compliant source device, e.g. DVD or Blu-ray, to a compatible
sink device, e.g. computer monitor, video projector, digital television, or digital audio device [4].

 After the framework base architecture, described in section 3, has been developed, it has been applied to
develop two verification environments emulating and testing the HDMI receiver and transmitter functions.
Figures 2 and 3 represent the two verification environments. These environments are developed using UVM,
where core functionalities are coded in pure System Verilog, so as to be easily used inside any testbench design
using any verification methodology. For this paper, the communication between testbench components is handled
using UVM.

 The testbench incorporating the components described in section 3 is divided into three regions; data
encapsulating components, testing scenarios components and testbench environment components. This additional
classification helped reuse different components in two different environments. For example, the data
encapsulation classes and components are typical in both environments presented this paper and can be directly
used in any audio/video protocol verification environment, not necessarily HDMI (e.g. DisplayPort, MHL ...etc).
Additionally, the test-cases developed are the same for any audio/video protocol, whether the DUT is a
transmitter or a receiver, as the test-cases are simply audio/video streams that are afterwards packed according to
the appropriate protocol.

G. Data Encapsulation

The data is encapsulated inside the testbench in protocol independent classes, such as: video_item (which
holds active video pixels), data_item (which holds video infoFrames and audio samples), vic_configuration
(Video Identification Code that is used to configure the stream into one of the video formats standards). These
classes help build customizable and reusable test-benches, independent of the DUT interface or the protocol
tested, whether it is a transmitter or a receiver.

5

Figure 4: Audio/video extraction tool

H. Test Scenario

The test scenarios used to test the HDMI DUTs are generated using two different approaches which can be
both used for any audio/video protocol. The first approach is to generate protocol compliant video frames, with
random video and audio data. This approach allowed discovering and fixing bugs that are protocol specific, such
as the video frames formats being sent ...etc. The second approach is to use real-life test cases through a movie
extraction software tool that takes as input real videos and coverts them into audio samples and images. The
movie extractor, shown in Figure 4, is a simple C++ software program that use open source applications such as:

• Ffmpeg [3]: Converts a real video to a group of frames (pictures) and audio tracks. It is used in our
framework to convert the video to JPEG format and audio to either WAV PCM tracks or other compressed
formats. It can extract several audio channels within the same video track. The reverse operation also uses
Ffmpeg.

• HexDump [1]: Converts the audio tracks and video frames to a hexadecimal representation, and vice
versa. The hexadecimal representation is easier to handle in the verification environment.

• ImageMagick [2]: A library of image manipulation APIs. The "convert" API is used to convert from the
compressed JPEG format to uncompressed RGB format and vice versa.

The way test cases are generated has enabled reusing the test case generators and end-to-end checkers
(scoreboards) among different audio video protocols and DUTs. Only protocol analyzers and checkers are
protocol specific.

I. Testbench Environment

 The testbench environment developed has two types of components: 1) protocol specific components, such as
sequencers, drivers and monitors which act as an HDMI transmitter or receiver (deframer), these components are
extensions for standard UVM components with protocol specific behavior; and 2) generic reusable components
such as end-to-end scoreboards and coverage models. The later is reused between both verification environments
for the HDMI transmitter and receiver.

6

Figure 5: Different TLM connections from different components to the
scoreboard

a. Protocol Analyzer
The Protocol Analyzer in the proposed environment is protocol specific and could be customized based on the

used audio/video protocol. The Protocol Analyzer is designed to be scalable to any number of transmitters. The
key to the scalability is the usage of Object Oriented Programming (OOP) concepts built in the System Verilog
assertions. In the proposed HDMI verification environment, shown in Figure 3, the Protocol Analyzer is used to
verify the HDMI transmitter (DUT) functionality, by checking its compliance with the HDMI protocol rules and
specifications. Example for these rules/specs is the HDMI standard restriction on the maximum number of data
packets per data island period. The Protocol Analyzer in this case is asserting if the HDMI transmitter (DUT)
sends data island period containing data packets more than that allowed maximum number. To verify the HDMI
transmitter (DUT) functionality, the Protocol Analyzer performs the functionality of the HDMI Receiver. The
protocol analysis occurs at the transaction level. The Protocol Analyzer receives the TMDS outputs of the
transmitter DUT through the monitor, then extracts the information needed to translate it into meaningful events
and status information. The extracted events and status information from the transmitter DUT are compared with
built in protocol rules and specifications of the HDMI.

b. Reusable Scoreboard
As shown in Figure 5, the scoreboard receives different inputs from different testbench components. It can be

configured according to the test scenario and testbench architecture to use any of these inputs to verify the DUT
and perform end-to-end checking.

c. Reusable Stimulus Coverage Model
A functional coverage model monitors and tracks which parts of the design have been stimulated. For the case

of HDMI, two main coverage models were built for transmitter and receiver. The first model, the stimulus
coverage model, is connected to the frame composer, shown in Figure 3. Stimulus coverage model is responsible
for monitoring the output and confirming that all possible valid frame types were generated for different test
configurations. The other coverage model is connected to the protocol analyzer and is responsible for confirming
that protocol analyzer can reconstruct all types of frames and all possible video and data values for different test
configurations. A generic coding style for coverage components is used for smooth integration of reusable cover
groups and cover points.

Cover groups and cover points are reusable across test environments because of the usage of unified
enumeration and objects between HDMI transmitter and receiver. Also higher re-usability was achieved by
building cover groups based on shared points needed to be covered. For example, a stimulus coverage cover
group named "frame feature" that covers frame types and parameters can be reused in any cover model in the test
environment because both transmitter and receiver extract frame parameters using same class. Another example is
a cover point that covers encryption state transition. It is easily reused as long as the same encryption state
enumeration (e.g. enabled, disabled) is used by the transmitter and receiver. Overall coverage is collected using
selective tests coverage databases and central database for all tests.

7

Figure 6: HDMI stimulus coverage result Figure 7: HDMI receiver coverage result

Table 1: Part of the Performance Results of the developed test-cases

Video Format CPU Time (in Seconds)

640*480 248

720*480 270

720*480 (Scrambling Enable) 349

V. EXPERIMENTAL RESULTS

In order to verify the HDMI transmitter and receiver, many test-cases have been developed using the proposed
framework. As shown in Figure 6, total stimulus coverage score collected from 107 test cases with 3 weighted
cover groups is 88.23%. The cover groups shown in Figure 6 are 1) "frame feature" which covers frame formats
parameters crossed with encryption status and scrambling status, 2) "Character type" which covers all valid
period type transitions with possible lengths and 3) "Control value" which covers control period values like
preambles. The total receiver coverage score collected from 72 test cases with 8 cover groups is 75.52% as shown
in Figure 7. The "Frame feature" cover group is reused. Data and video pixel values are covered by "Video Value"
and "Data Value" cover groups. Number of data packets per period and per frame including maximum possible
number are covered by "Packet Per Period" and "Packet Per Frame" cover groups. Possible unscrambled control
period locations are covered by "SSCP" cover group. Number of preambles per frame is covered by "Preambles"
cover group. Finally "Data Guard Matching" cover group covers if the receiver can handle the case of matching
between data and trailing guard bands. Coverage reports were generated by Synopsys VCS report generator.
Moreover, Table 1 shows the performance results for three test-cases, each involves the transmission of 10 frames
to an HDMI receiver DUT, running on Synopsys VCS simulator.

VI. CONCLUSION

In this paper, the verification challenges of audio/video interfaces have been discussed, including protocol
complexity, short time-to-market, tight project schedules, huge processing and memory requirements, huge
amount of required video and audio formats. The short time to market problem has been addressed through the
design of a unified framework for building robust, configurable, extendible verification environments suitable for
different audio/video interface protocols. Re-usability of the proposed framework has been discussed, whether
among different DUTs or different audio/video protocols, showing how the test-benches developed for both the
HDMI transmitter and receiver shared about 50% of the code. This verification environment has been developed
in around 2 months, by a team of 4 engineers. It is easily extendible to include other features or be adapted to
other protocols.

REFERENCES

[1] Hexdump, http://www.richpasco.org/utilities/hexdump.html

[2] Imagemagick, http://www.imagemagick.org/.

[3] Zeranoe mpeg, http:// mpeg.zeranoe.com/.

[4] HDMI 2.0 Specications. HDMI Forum, 2013.

[5] S. Gupta. Hybrid functional verification methodology for video/audio soc. In Quality Electronic Design, 2009. ASQED 2009. 1st Asia
Symposium on, pages 264-265. IEEE, 2009.

[6] Y. Patil and D. D'Mello. Verification of a next-generation single-chip analog tv and digital tv asic. In Metric-Driven Design
Verification, pages 303-324. Springer, 2007.

[7] A. K. Sharma, H. Mittal, M. Singh, R. Mishra, and J. Yadav. Hdmi 2.0 design and verication challenges. 2013. This template has been
prepared and adapted for use in DVCon Europe 2015.

[8] P. van der Stok. Dynamic and robust streaming in and between connected consumer-electronic devices, volume 3. Springer, 2005.

[9] H.-Y. Yang. Highly automated and ecient simulation environment with uvm. In VLSI Design, Automation and Test (VLSI-DAT), 2014
International Symposium on, pages 1{3. IEEE, 2014.

8

	I. Introduction
	II. Related work
	III. Proposed verification framework
	A. Streaming Region
	B. Auxiliary Channel Region
	C. Hot Plug Region
	D. Protocol Independent Region
	1) Video Agent
	a) Application Layer:
	b) Video Processor: It is responsible for processing the video data stream; by performing a group of video processing functions such as color space conversion or video pixel encoding conversion ...etc.

	2) Audio Agent
	a) Generating specific parameters related to the audio clock regeneration.
	b) Saving audio configuration information.

	E. Control Region
	F. Verification Environment Configurations

	IV. HDMI 2.0 Verification environment
	G. Data Encapsulation
	H. Test Scenario
	I. Testbench Environment
	a. Protocol Analyzer
	b. Reusable Scoreboard
	c. Reusable Stimulus Coverage Model

	V. Experimental Results
	VI. Conclusion
	References

