
 

1 

 

An efficient requirements-driven and scenario-

driven verification flow 
 

Walter Tibboel, NXP Semiconductors, The Netherlands (walter.tibboel@nxp.com) 

Heino van Orsouw, NXP Semiconductors, The Netherlands (heino.vanorsouw@nxp.com) 

Shuang Han, NXP Semiconductors, The Netherlands (shuang.han@nxp.com) 

 

Abstract— For Automotive applications Requirements-Based Verification (RBV) is important. For functional 

safety applications, the traceability is even more strict to comply with standards such as ISO26262. In the Automotive 

industry it is common to create test specifications with explicit traceability to functional requirements. Due to the 

growing amount of detail in the test specification, significant more effort is required in test implementation. For top-

level verification with multiple application cores and analog IP, randomization techniques as applied on the IP-level 

are not effective nor efficient. Therefore, for top-level verification the Metric-Driven and Constraint Random 

approaches should be combined in a smarter way, by introducing scenario modeling. On top of that, reuse from IP 

verification into the top-level verification should be improved, both for specification and implementation. This paper 

introduces a smart combination of directed testing, constrained randomization and scenario-driven verification 

concepts to improve the verification efficiency and coverage. 
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I.  INTRODUCTION 

A. Verification approaches 

Functional verification (same for UVM) can be split into a stimuli part (drivers, test sequences, mode settings) 

and a Monitoring part (pass/fail checks, cover points, assertion results). Of course, both parts have close 

dependencies to each other. Functional verification is often a mixture of the following Stimuli approaches: 

1) Directed test 

Known critical cases are easily specified and implemented by directed tests. Directed tests have a clear 

traceability relation to specific functional requirements (Requirements-based verification).  On top-level, directed 

test have a close relation to use-cases. Directed test is often the preferred way of verifying the correctness of inter-

operability of the integrated IP. 

2) Constrained Random 

With less test implementation effort, multiple combinations are easily explored and covered. Corner cases can 

be reached that were not specified upfront, which improves the overall coverage. Especially for IP verification this 

helps to verify many possible combinations, with limited effort. A drawback is result instability [1]: small changes 

in design or verification can have big impact coverage results.  

3) Scenario-driven 

Instead of randomization of implementation details, we can also randomize higher-level configuration options 

in Scenario models. These high-level scenario options have clear relation to the functional requirements. Modeling 

scenarios in e.g. graphs enable automation through test generation and reporting mechanisms. The high-level 

scenario models fit well with the verification targets defined in top-level verification. 

The relation between the approaches is shown in Figure 1. Since each approach has its own strengths, we need 

them all. 



 

2 

 

 

Figure 1 Stimuli approaches covering application space 

All three stimuli approaches can be used in combination with a Coverage-Driven (CD) / Metric Driven 

Verification (MDV) approaches, which focus on the Monitoring part. All monitored results should end-up in one 

overview, to determine the total coverage. 

B. Different roles, disciplines and work environments 

The overall chip development has multiple stages involving multiple disciplines. These different disciplines 

causing different work environments. For this paper, we focus only on two of them: 

1) Specification environment 

This environment supports all kind of requirements and specifications e.g. related to product, design, test, etc. 

The environment gives easy access to a broad audience. In the Automotive domain, DOORS is a widely accepted 

environment for requirements management. Although DOORS offers a rather multi-disciplinary environment, it 

does not have dedicated features for functional verification, such as coverage and assertions reporting. 

2) Functional verification environment 

The design and verification engineers are used to work in an IC design environment. This environment often 

has a verification planning (specification) part and a verification implementation part. The coverage result view has 

direct connection to all the test details, helping to analyze the results. Cadence vManager is a good example of a 

tool in which both test can be run, reported and analyzed within the same verification environment. 

II. RELATED WORK 

Multiple papers have been discussing the differences and benefits of MDV. In [1], coverage-driven is reconciled 

with RBV, for projects that should comply with ISO26262. It discusses pro and cons of both approaches. It 

discusses the nature of the traceability between DUT specification towards both approaches. Also the result 

instability problem of Constraint Random is discussed. Changes in design/verification can have rather unpredictable 

(coverage) results.  

Cadence vManager [2] is positioned in MDV; part of the Functional verification environment. Metrics are split 

into coverage (cover points), checkers (assertions), and test cases (results obtained by parsing log files). The tool 

has a planning center. In a GUI-based manner the specs (vPlan) can easily linked to the metric implementations. 

Metric implementations and results are fully visible in the analysis view. Regressions including parallel job 

submissions are supported in the regression center. The metric results in vManager are compatible with the Unified 

Coverage Interoperability Standard (UCIS) [3]. The specification counterpart (vPlan) is based proprietary structure. 
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DOORS [4] is a requirements management tool of IBM. DOORS supports the OSLC [5] (Open Services for 

Lifecycle Collaboration), which forms a standardized basis for link management by establishing traceability 

relations. Relations are defined between different domains. Obviously, Requirements management is one of them. 

The domain that is most close to specifications for Functional Verification is called Quality management. 

In this paper we are proposing improvements specifically for top-level verification by making use of a specific 

combination of the previously mentioned technologies. The proposed methodology in the paper eases the test 

specification process to resolve the productivity bottleneck in verification. RBV is considered as one of the key 

ingredients to facilitate a more rigid flow for Automotive applications. 

The TrekSoC solution of Breker [6] enables scenario modeling for multiple verification environments. As the 

name TrekSoC suggests, it focusses on complex multi-core, multi-threaded, cache coherent system-on-chip (SoC) 

designs. In this paper we mainly focus on linking requirements with scenario modeling.   

III. RBV AND MDV POSITIONED FOR TOP-LEVEL VERIFICATION 

Figure 2 presents the verification flow from requirements to coverage, which consists of two distinct areas: the 

specification and verification environment. The specification environment covers traceability relations from 

requirement to test items, which are needed for RBV. In the Verification environment three layers are visible, which 

are closely related to the verification approaches as previously discussed in the introduction section. The figure has 

a coloring scheme to make horizontal traceability relations explicit: the green color indicates design requirements; 

the red color shows test specifications, the blue color shows the test implementations, and the yellow color captures 

the corresponding test results (e.g. outcome of simulations). The light-blue parts show the stimuli, and the dark-

blue color represents the monitoring and measurement part. The green and red color cover specification items (the 

“what”), whereas the blue colors defines the implementation as part of the verification environment (the “how”). 

 

Figure 2 Verification flow from requirements to coverage 

Directed tests implement each test item, and each of them reports a pass/fail result. One simulation can cover 

multiple test items. Test items can be also implemented via a Constraint Random (CR) approach. This approach is 

close to MDV, because it’s fully depending on coverage measured by cover points, checkers/assertions. The 

Directed test and CR approaches can also overlap, e.g. a directed test with randomization. Or directed test which 

also contributes to the cover points, part of the MDV approach.  

Top-level verification should benefit from the MDV monitors (UVC including checkers and cover points), 

which are well-matured at IP-level. 
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For top-level verification, we need both stimuli approaches, but on top of that we need something more. Top-

level verification is very naturally expressed in scenarios. The simulations often cover multiple subsystems, each 

can be configured in a different manner, which will influence each other again. Such decision tree can be easily 

modeled in a graph e.g., improving insight on the exploration space at top-level. The scenario model is an extension 

of the test specification (colored red in Figure 2). The configuration options are specified in test items. Other test 

items can specify a characteristic at the scenario level. Formal modeling like graphs enable to automate test 

generation. This test case generation can easily explode; constraining the randomness is also needed at this level. 

Connection to coverage metrics are needed, to monitor what has been executed. Test cases can be implemented as 

UVM sequences or C-code supporting software-based testing. 

IV. PROBLEM STATEMENT 

As discussed above, there is a need to improve on productivity and quality. In the following sections the main 

productivity and quality issues are addressed. 

Productivity issues: 

• To avoid interpretation errors, test specifications tend to become very detailed, containing a lot of 

implementation details. With growing design complexity, this becomes labor intensive, the effort of the 

specification part can easily explode. Maintaining and reviewing will be a huge effort, still not guaranteeing 

completeness. 

• A specification environment has no dedicated support for functional verification. Which means a lot of 

effort to write the detailed test specifications, and after that a similar effort to “translate” the detailed 

specifications into tests and a lot of effort to keep both consistent. 

• Choices regarding the preferred verification approach (directed test, constrained random or scenario-

driven) can be best made in the verification environment. Working out these details in the specification 

environment is a bit artificial, since in the requirements phase the focus should be on the ‘what’ and not on 

the ‘how’.  

• Limited reuse between IP verification and top-level verification; it’s not a matter of copying test 

specifications and implementations. 

Quality issues: 

• Because of the high specification effort, often test specification is not complete, and full test-item coverage 

remains a problem. 

• Complete test specification not available early; it should guide the implementation, not describe what has 

been done. 

• Long and detailed specification lists weaken the overview. Designers mechanically implementing the test 

items and stop thinking about the completeness of this overview.  

In the following section a verification flow proposal is presented to address the limitations and issues mentioned 

above. 

V. IMPROVED VERIFICATION FLOW PROPOSAL 

In this paper, we propose improvement in two areas. The first improvement is strongly related to better connect 

the Specification with the Verification environment. The second improvement is discussing how scenario modeling 

can improve the top-level verification. 

A. Improving smooth connection from spec to metric implementation  

As described in the problem statement, we experienced work is done twice in two environments. We’ve been 

rethinking the traceability relations; what should be specified where. The divide and conquer strategy requires to 

be refined further. 
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1) Specification environment 

Automotive requirements and test specification can be created and maintained in DOORS. Here full linking and 

traceability is in place from requirements to test items.  

When the requirements are more abstract in terms of features, the test specification can already detail out what 

needs to be tested to prove the feature. To guide the test specification creation, test items are organized around 

standardized interfaces (e.g. UART). This will ease UVC and driver reuse in the Verification environment. 

The Specification environment is an easy accessible environment for a broader/multi-disciplinary audience. For 

that reason, no specific support for functional verification is available, the test items are abstracted from MDV 

specific specifications. The relative abstract test specifications improve the overview (to answer the question: “did 

we cover all?”), and eases the required early availability. It also improves reviewing by a broader audience.  

2) Verification environment 

In order to increase efficiency, it is desired that the test specification is detailed with metric goals, which are 

required for metric implementation. This will decrease rework, interpretation errors and porting effort. In order to 

get an automated link to the specification environment, these test items are imported from the Specification 

Environment and become a section headers in what is called the Executable Test Specification (ETS). In Figure 3 

the test items are simplified by only TS1, TS2. In practice the test item spec contains multiple attributes describing 

what should be tested. The term ETS does not mean that the specification itself is executable, but the specification 

is directly usable for design automation. 

Within the Verification Environment there is awareness of functional verification concepts. In the ETS the test 

items are further refined with specific details on how they should be covered. The test stimuli associated with these 

ETS items are generated according to the three earlier mentioned stimuli approaches (directed test, constrained 

random or scenario-driven). The goals for each ETS item are being set that should be met by the MDV monitors. 

Each test item only passes when all goals inside are met. In case a UVC has been reused with many cover points, 

the goal heavily depends on the monitor implementations. Reuse of UVC being matured in IP-verification, brings 

a lot of knowledge and will enrich the ETS refinements. 

Refinements of such test item specifications are directly useable for design engineers; specification has become 

very close to test implementation.  

As described in [7], a structured synchronization mechanism and change impact management is required to 

bridge the Specification and Verification environments. Therefore, this step in the verification flow is a natural 

location to introduce an abstraction level in the test specification.  

 

Figure 3 Traceability relations from requirements to test results 

Figure 3 shows the different traceability relations: 

• Tests: Test items in the test specifications cover the requirements. 

• Refines: The ETS refines the test items with functional verification specifics. 

• Implements: Checkers, assertions and cover points implement the refined ETS items. 
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The Verification environment should be able to manage changes from the specification environment (change 

impact management). Updates in the test items should be clearly flagged. The Verification environment should also 

ease linking of the refined specifications to the actual monitor implementations. This link causes that simulation 

results coming from the monitors are directly linked to the refined specifications. Only if all the results are meeting 

the goals the corresponding test item get the pass result. 

B. Scenario modeling improving coverage 

In the previous section the focus was on measurement and analysis of the results to see whether the verification 

goals are met. To trigger the coverage points a set of test cases need to be implemented. A scenario presents all 

paths on how functional end-points can be reached. This end-point can be linked to a specific verification goal 

described in a test-item. These scenarios can be defined with an endpoint in mind.  

A scenario can be abstract and is created by the system architect early in the design phase. An example of such 

scenario is given in Figure 4. A test case is a path walking through the graph, as depicted in Figure 5. Arrows 

starting from an ellipse node should be all followed (“&”) in each test case. The diamond node is a choice (“or”), 

causing multiple test cases. Constrains influence the choices being made during test case generation. At top-level 

we typically have a hierarchy of graphs, which can cause a huge amount of possible test cases. This graph is the 

‘blue print’ for the verification engineers and indicates what verification IP or drivers/sequencers need to be created 

to execute the required path. In an abstract view, it makes explicit the relevant choices (configurations) in a scenario. 

 

Figure 4 Scenario model from system architect 

As the scenario end-points can be linked to the abstract test-items in the test specification, an early indication 

of the number of paths, and test cases, that need to be implemented is available. One path that defines a test case is 

shown in Figure 5 below. Automation can be applied in the creation of the test cases. The scenario tool can either 

create the minimum number of paths to reach the end-points. Next to that with constrains also the path followed 

can be controlled, resulting in constrained random path creation. Constraints can be used to force certain paths to 

be followed, resulting in additional test cases reaching the same end-point. 

 

Figure 5 Refined Scenario model from verification lead 
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E.g. in figure 5, a combination of Osc and Pll clock is used. If the system is required to start with only Osc 

clock, then a constraint can be added (IpClk=Osc && SysClk=Pll), resulting in different path to same endpoint. 

This analysis can be done before any of the detailed test case code is implemented. 

 Once the paths are determined, the nodes can be refined with code to be executed during the simulations. The 

code can be e.g. C-code to be executed on an embedded processor, or code for a UVM test (or even both). When 

the implemented test cases are executed, metrics monitored by the UVC’s, give a view on the quality of coverage. 

 When the coverage in the ETS shows that not all detailed goals are met, the graphs from the scenarios can be 

reviewed to see if it is complete or if the graph is corrupted by another unexpected defect. Or additional constraints 

can be set for the generation of different or additional paths. This coverage feedback closes the loop of test case 

generation to covering goals.  The generation of additional paths is low effort as the scenario in it completeness 

was already implemented.  

In our demonstrator, we have implement change impact management and traceability linking from the test item 

specifications into the scenario sources, using technology discussed in [7]. Changes in the test specifications will 

have impact on the scenario model, causing changes or refinements in the scenario model. 

VI. DEMONSTRATOR RESULTS 

In the demonstrator, a UART has been used as the IP, for this a Test Specification and Executable TS has been 

generated. A reused UVC and its vplan has been integrated. In the ETS specific goals are set to what extend each 

item must be covered. These goals are merged to get an overall result per test item depending on different coverage 

types: 

• Directed tests are covered by using an assertion for a specific end-state. 

• Randomization is introduced to collect how many options of a setting are used. 

• Scenarios are used to constrain the number of test cases that are required to cover the specified test 

items. 

The results of a regression are shown in the Figure 6. Here the constrained scenario ends up in the execution of 

three test cases. A test case is the implementation of one or more test items. The coverage of these test cases is well 

visualized in the vManger/vPlan environment. 

 

Figure 6 Results of one scenario and corresponding UART coverage results 
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VII. CONCLUSIONS 

For Automotive application, requirements and test specifications are created as the starting of verification 

process (RBV). Traceability links are maintained from requirements to the test specifications. Furthermore, a 

structured abstraction hierarchy is essential, to keep the specification effort reasonable for coming designs. 

Different verification approaches, such as directed test, constrained random or scenario-driven, are used as part 

of the test implementation. However, application of these different concepts is often not well connected to the test 

specification phase. Therefore, the ETS (Executable Test Specification) proposed in this paper is introduced to 

refine test specifications for the verification environment. This approach improves specifications to be early 

available in the proper format for the verification engineers. 

In addition, scenario modeling is introduced to increase the coverage and confidence of test completion. For 

top-level verification, these scenario models act as ‘blue print’ for test case creation, and smoothen the handover 

from architect to verification engineers. 

Reuse from IP verification to Top-level verification can be best achieved by passive UVC. Structuring test 

specifications around (standard) encourages the reuse. 

The proposed methodology has been applied successfully on a UART subsystem, and showed that a smart 

combination of directed testing, constrained randomization and scenario-driven verification concepts improves the 

verification efficiency and strengthening the overall test coverage.  
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