
An Easy VE/DUV Integration
Approach

Uwe Simm – Cadence Design
Systems, Inc.

Is There a Problem?

Nov 2015© Accellera Systems Initiative 2

DUV

Verification Environment

TB Vertical Reuse

Nov 2015© Accellera Systems Initiative 3

DUV

DUV

DUV

VE1DUV*

VE2

VE

Common Methods

• Methods to distribute interface from TB into VE

– Custom function distributing interfaces such as
assign_vi()

– Vif as configurations struct member

• Methods to access interface in DUV

– “wire“ (TB) interface to primary DUV port

– Create interface in TB and assign elements by OOMR

– If interface already exists access via OOMR

4© Accellera Systems Initiative Nov 2015

Common Issues

• DUV code modifications for verification

• Simple adjustments might lead to extensive source
changes (OOMRs are not reusable)

• Knowledge and code in various places

– Which interfaces exist?

– Which component accesses which interface?

– How is the interface retrieved and checked?

Can we do better?

5© Accellera Systems Initiative Nov 2015

What if?

• Not adding verification infrastructure to DUV

– Not “wiring“ interface through DUV ports to top

– Make interface instance(s) in the DUV on demand without
touching the code

• Make all interfaces available in a central place via a
key

• Query interfaces from test bench as needed

6© Accellera Systems Initiative Nov 2015

3 Piece Solution

• SystemVerilog bind construct

• Interface self registration

• Central database

7© Accellera Systems Initiative Nov 2015

SystemVerilog “bind“

• bind can make an instance in a module

– In all instances of a type

– Or in a particular instance only

• No code change required in target module

8

// -*- binds an instance of the “clk_intf” into “sub_block“

with instance

// name “clk_intf_i” signal names are bound by name

bind sub_block clk_intf clk_intf_i(.*);

// by instance

bind top_block.sub_block_i2 clk_intf clk_intf_i(.*);

© Accellera Systems Initiative Nov 2015

Interface Self Registration

• Interface instance actively registers itself

– In central database

– Every interface instance can do it automatically (no code
required outside of interface)

– Key = Verilog instance path of interface instance

– Value = reference to current interface

• Registration is automatic during startup

9© Accellera Systems Initiative Nov 2015

Interface Self Registration

10

interface clk_intf(output bit clk);

// interface wires,regs,tasks,functions …

// -*- mandatory code for self registration

function automatic void register();

virtual clk_intf vif;

`ifdef INCA // wrt mantis4300

vif = clk_intf;

`endif

cdns_vif_db#(virtual clk_intf)::register_vif(

vif, $sformatf("%m"));

endfunction

initial register();

// -*- mandatory code ends

endinterface

© Accellera Systems Initiative Nov 2015

Self Reference to Interface

Nov 2015© Accellera Systems Initiative 11

• Like `this` for class instances

• Not covered by current LRM

• http://www.eda.org/mantis/view.php?id=4300

• Major vendors support it

– unfortunately with a different syntax

• Only a single line difference

– contained change

http://www.eda.org/mantis/view.php?id=4300

Interface Registry

Nov 2015© Accellera Systems Initiative 12

• Any typed key-value store will do

• Package uses uvm_config_db as database

– Provides overrides, trace, dump, storage, types

– UVM users know uvm_config_db

• Database can be extended to offer addon services

(debug, reporting)

class cdns_vif_db#(type T=int) extends uvm_config_db#(T);

static function void register_vif(T vif, string vifName);

static function void retrieve_vif(ref T vif,input

uvm_component cntxt,string path, bit validate=1);

endclass

Approach provided so far

Nov 2015© Accellera Systems Initiative 13

• Interface instances can be made

– Without code change in DUV

– At any DUV level

• All interface instances available in DB

• Database can provide addon services

– Statistics

– Logging

– Common checking and retrieval code

– Debugging aid

Verification Env Use Model

• Rule: #1 make IF instance; #2 retrieve IF

• Retrieve interface instance simply via the key

14

class testbench extends uvm_env;

// -*- this is a container private virtual interface

virtual clk_intf vif;

function void build();

super.build();

cdns_vif_db#(virtual

clk_intf)::retrieve_vif(vif,this,"clk_intf_i");

endfunction

© Accellera Systems Initiative Nov 2015

Module-to-System Use Model

• VE topology usually matches DUV topology
– so every TB component has an associated DUV instance

– Package assumes that for every VE component an
“HDLContext“ can be constructed

• Full “HDLContext“ for a TB component matches
Verilog instance path of associated DUV hierarchy
– Path fragments stored as property in uvm_config_db

• Key for lookup is
– HDLContext for context component

– Plus name during request_vif()

15© Accellera Systems Initiative Nov 2015

Example

16

// assumption: tb1,tb2 are children of top

uvm_config_db#(string)::set(top,"","HDLContext",“top");

uvm_config_db#(string)::set(tb2,"","HDLContext","sub_block_i2");

uvm_config_db#(string)::set(tb1,"","HDLContext","sub_block_i1");

// the query for clk_intf_i via

cdns_vif_db#(virtual

clk_intf)::retrieve_vif(vif,this,"clk_intf_i");

// would return the interface for this=tb2

“top.sub_block_i2.clk_int_f”

// and for this=tb1

“top.sub_block_i1.clk_int_f”

© Accellera Systems Initiative Nov 2015

Summary

• Presented an easy path to integrate DUV/TB

• Path provides

– no DUV changes or special structure for verification
required

– All IF instances available in central place

– Each TB component can query IF

– Support for horizontal/vertical reuse

• Code for “interface registry package“ can be
downloaded from http://forums.accellera.org/files/

17© Accellera Systems Initiative Nov 2015

http://forums.accellera.org/files/

Thank you

Nov 2015© Accellera Systems Initiative 18

Questions

