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Abstract—Integrated circuit designs include in-house and third-party intellectual properties that could contain 

hardware Trojans. An independent, trusted, and complete IP model, suitable for automated formal comparison with 

the IP register-transfer level (RTL) code using commercially available tools, may be used to prove absence of functional 

Trojans. Such models are generally not available, except for certain critical IPs, as, for example, RISC-V processor 

cores. The development of these models may be costly and time-consuming. This paper proposes an IP trustworthiness 

assessment process that does not require a trusted model. The approach uses automated tools that scan the IP RTL 

code to detect suspicious or unusual code patterns and known Trojan signatures. This low-effort, objective assessment 

may detect Trojans and provide warnings that, depending on the specific project circumstances, may require additional 

investigation. The approach is demonstrated on numerous open-source and proprietary test designs containing 

hardware Trojans. 
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I.  INTRODUCTION 

All phases in the development, fabrication, and distribution of integrated circuits (ICs) are vulnerable to the 

actions of malicious actors. In-house and third-party semiconductor intellectual properties (IPs) used during IC 

development are no exception. They may contain hardware Trojans inserted in the register-transfer or gate-level 

models [1][8][10]. Pre-silicon functional verification at the system-on-chip (SoC) or IP level has little chance of 

detecting Trojans [4][11]. Traditional and advanced verification approaches mainly target intended use cases. These 

flows are not fit for the purpose of identifying deliberately hidden functionality. Post-silicon Trojan detection 

methods [9] are valuable. However, a robust and efficient hardware assurance process must be tightly integrated 

with the development flow, enabling detection of issues as soon as possible. Late detection can result in much 

higher costs and sets off alarm bells on the quality of previous assurance steps. 

A. Related Work 

Pre-silicon detection of hardware Trojans has attracted interest in academic circles for several years [4][5]. The 

semiconductor industry, on the other hand, is only recently becoming concerned about this type of attack. There is 

a lack of dedicated processes, expertise, and commercial, industrial-scale technology. Methods have been proposed 

that could allow engineers to prove absence of functional Trojans [3]. However, these methods rely on the 

availability of a suitable, independent model of the IP. Such a model is often not available and too costly to develop. 

The investment required may not be justified considering the risk level associated with the IP and the assurance 

level required by the end application. 

B. Contribution 

This paper introduces a pre-silicon trustworthiness assessment process for hardware assurance. Crucially, this 

process does not require an additional model of the IP. The approach uses electronic design automation (EDA) 

technology that is commercially available and that scales to large, complex designs. The approach can be integrated 

into existing ASIC and FPGA development flows and used by engineers with no specific Trojan detection expertise. 
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The rest of the paper is organized as follows. Section II discusses the application scope of the approach. Section 

III explains the key aspects of the approach and presents its capabilities and limitations. Section IV presents the 

results of the application of the approach to several open-source and proprietary designs containing hardware 

Trojans. Section V concludes the paper. 

II. TOWARD TROJAN-FREE ICS 

Code review is a common, valuable approach to assess the quality of an IP and complement other hardware 

assurance techniques. However, engineers integrating an IP into a SoC typically have little knowledge of its 

implementation details. Following the intricacies of highly-optimized, complex IPs with many configuration 

options is a daunting task. SoC integrators need a low-effort, automated process to gain confidence that the IPs they 

use do not contain hardware Trojans. Independent assurance engineers carrying out this process cannot be expected 

to have intimate knowledge of the IP or have extensive Trojan detection expertise. The results of the assessment 

process must be easy to understand and communicate to management. Ultimately, the assessment process might 

unequivocally detect the presence of a Trojan, or report potential issues, group them into categories, and enable a 

severity grading. Depending on the results and the specific circumstances of the project, it might be necessary to 

perform additional analysis. Some crucial considerations are: 

• Where has the IP been sourced from? An IP developed in house may be deemed less concerning than one 

obtained from “open source”, licensed by a third-party, or developed by a subcontractor. 

• What is the role of the IP in the system? An IP with critical control functions, for example, may require a 

higher level of trustworthiness. 

• Is the IP reused across multiple SoCs? A processor core integrated into multiple SoCs, for example, could 

be worth additional analysis. 

Considering the IP context, if the outcome of the assessment is not satisfactory, engineers must have the means 

to perform additional analysis and debug any issue reported. The goal of this follow-on analysis is to determine 

whether an issue flagged by the assessment process is associated with a Trojan, thus requiring further action, or if 

it can be deemed innocuous and waived. Because of the potential challenges in the follow-on analysis, the 

availability of pre-packaged trust assurance solutions for specific IPs should also be considered. A solution for trust 

assurance of RISC-V cores, for example, is presented in [3]. Unlike a generic trust assessment process, which can 

only provide confidence in Trojan absence, an IP-specific solution could achieve proof of Trojan absence. 

The next section presents an IP trustworthiness assessment solution that satisfies many of the requirements 

discussed in this section. 

III. AUTOMATED IP TRUSTWORTHINESS ASSESSMENT 

The trustworthiness assessment process presented in this section uses proprietary automated design analysis 

technology to examine the IP’s RTL code (see Figure 1). The process uses the RTL model in order to establish 

confidence early in the design cycle. This early design phase offers one of the easiest entry points for an adversary 

to infiltrate a design with malicious code. Addressing issues at the RTL prevents their propagating to other phases 

of the design cycle. The confidence achieved at the RTL design phase can be maintained in subsequent design 

implementation steps. Technologies such as formal logic equivalence checking provide check points and verify that 

the design maintains its integrity through transformations such as synthesis and place and route. 

Given the IP’s RTL model and a script with tool commands to compile the design and set up the process, a 

report is generated listing design information and a set of issues that could be caused by the presence of Trojans. 

Reliability issues, such as dead or redundant code, which could be exploited for malicious purposes in later design 

phases, are also reported. Additional information and capabilities enable a detailed analysis of each reported issue. 

Issues can be reviewed and prioritized according to an estimated severity level. Further investigation, should that 

be deemed necessary, may focus on high-severity issues. 
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A. Trigger and payload detection 

Design analysis focuses on detecting suspicious or unusual code structures or functions that could implement a 

Trojan trigger or payload [14]. Examples include a counter activating a function when reaching a defined value, a 

specific sequence of values in the data path influencing a control function, a finite state machine (FSM) that could 

enter a deadlock state, and redundant logic. 

B. Technology 

For effective automated trust assessment, it is necessary to use a variety of both new and established design 

analysis techniques. Advanced structural analysis can be used to partition the design and identify portions of logic 

that could be influenced by specific signals. Structural analysis is leveraged for both detecting suspicious logic and 

reducing the complexity of other analysis steps. Formal engines may be deployed to exhaustively exercise certain 

sequential behaviors of the design and identify or rule out corner cases. For example, automatic assertion generation 

and formal proofs used in advanced functional verification environments to detect deadlock conditions and other 

types of issues can also be applied for trust assurance. Finally, domain-specific data, based on known Trojan 

signatures, can also be leveraged in detection algorithms. 

C. Issues and limitations 

The initial approach uses a less aggressive strategy in reporting suspicious trigger structures in order to reduce 

the number of false alarms. Noise greatly reduces the effectiveness of the approach, as each flagged item in the 

design necessarily requires at least some additional analysis to confirm or refute the presence of nefarious logic. 

Conversely, a more aggressive strategy can be used when confidently identifying reliability issues. These potential 

vulnerabilities, when not addressed, offer the opportunity for an attacker to exploit a design without being detected. 

In the initial experiments, the number of these potential vulnerabilities may be excessive and create the need for 

filters or other automated process handling. A balance among these strategies will be essential for extracting the 

most utility out of the reporting capability. 

A limitation of this approach is that it does not provide proof of Trojan absence, which is a very demanding 

goal. When no issues are detected using this approach, the design may still contain Trojans. However, the process 

can ensure that designs are free from certain classes of Trojans characterized by the type of triggers and payloads 

that are scanned for, thus increasing the assurance level. 

Figure 1. IP trust assessment using automated design analysis technology that generates a 
report listing potential issues and debug information for additional analysis. 
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While the runtime is short for most of the designs analyzed, in some instances, design complexity issues have 

led to long runtimes or even inconclusive results. It is often possible to resolve complexity issues, but that requires 

additional engineering effort and expertise. 

IV. RESULTS 

The IP trustworthiness assessment process outlined in this paper has been applied to 90 RTL designs taken from 

various sources, including TrustHub [2], GitHub [12], OneSpin generated, and Aerospace provided. The designs 

cover a large variety of coding patterns and IPs, including processor cores and subsystems (e.g., a RISC-V 

Rocketcore with memory, SPI, and AXI4 interface IPs). Many designs have been modified to insert hardware 

Trojans. The approximate number of design state elements ranges from 100 to 100K flip-flops. 

The process has been executed by OneSpin Solutions [6] and The Aerospace Corporation [13] engineers, using 

EDA technology from OneSpin Solutions. 

As part of the Aerospace Corporation’s hardware assurance efforts, Aerospace performed an evaluation of 

OneSpin’s tool to determine its effectiveness in hardware Trojan detection. Three host designs, SpaceWire, RISC-

V Taiga, and LEON3, were chosen to represent real-world MIL/Aero IPs of varying size and complexity. Six 

hardware Trojan triggers and four payloads were developed (coded) based on Aerospace’s hardware Trojan catalog 

and taxonomy, as well as academic literature. Nine Trojans were created from the combinations of triggers and 

payloads described in Table 1 and inserted into the host designs. The three “golden” host designs (without Trojans) 

served as the baseline. The versions of the host designs with the Trojans inserted were used to evaluate the tool 

against the baseline. OneSpin provided a TCL setup script template, which required minimal modification to run 

the tool. The script follows OneSpin’s conventional flow, in which the user specifies the HDL design files and reset 

sequence, and then executes the elaborate and compile commands. The tool was executed on each of the designs, 

and a trustworthiness assessment report (see Figure 2) was generated. The report includes all the issues (potential 

Trojans) detected. For each issue, the tool also reports (with a link) the related location in the design and a short 

description, which supports further investigation to determine if the issue is a legitimate hardware Trojan. 

Table 1. Types and descriptions of triggers and payloads used in Aerospace's test articles 

Trigger Type Description 

Always On No hardware Trojan trigger 

Data Input Sequence 
Trojan is activated when a specified input sequence is observed by 

the design 

Time Based Counter Trojan is activated when a specified time is reached 

Event Counter Trojan is activated when an event occurs a specified number of times 

Pattern Match Trojan is activated when the specified input is observed by the design 

Partitioned 

Trigger is divided into sub-triggers that are ANDed with the output of 

the malicious function. Trojan is activated when all sub-triggers are 

satisfied at the same time 

Payload Type Description 

Data Corruption Data in design is modified to become unusable 

Denial of Service (DoS) Design functionality is disrupted temporarily or permanently 

Privilege Escalation/De-escalation Higher-level of permissions obtained by unauthorized user 

Protocol Violation Design behavior deviates from specified protocol described in the 

associated standards document 
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The tool runtime was recorded from the initial reading of the HDL design files to the generation of the report. 

The runtime increased in conjunction with the design size and complexity. The RISC-V Taiga design, consisting 

of 63K flops (with 58K of those flops related to RAM), had a 30-minute runtime, whereas the LEON3, composed 

of 80K flops used to implement several IP cores (e.g., Ethernet, SpaceWire, AHB Controller), had an approximate 

runtime of 3 hours. Aerospace collected the following data for each run: 

• Design type 

• Design complexity 

• Number of states (flip-flops) 

• Number of FSMs 

• Number of counters 

• Trojan type (trigger/payload) 

• Runtime 

• Number of issues (total/trigger/reliability) 

• Trojan detected (yes/no) 

• False positives 

 

The data collected by Aerospace was provided to OneSpin as part of an independent evaluation. A summary of 

the collected information is included in the collection of experimental results reported in Table 2. The evaluation 

results are being be used to inform further discussion between The Aerospace Corporation and OneSpin in order to 

enhance the Trojan detection capabilities of the tool. 

  

Figure 2. Screenshot of the trustworthiness assessment report generated by the OneSpin tool. For each issue, the report includes a unique 
identifier (first column) that can be clicked to visualize the associated IP source code, an attribute that classify issues in different categories, 

a description, and a default severity level. The user can modify the severity level and add comments and waivers while reviewing issues. 
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Table 2. Summary of automated trustworthiness assessment results 

Source Name Runtime Issues Reported Trojan Inserted Automatic Detection 

TrustHub* AES 11 hr 260 Yes Yes 

TrustHub PIC16 < 1 min 72 Yes Yes 

TrustHub RS232 < 1 min 3 Yes Yes 

TrustHub BasicRSA < 1 min 17 Yes Yes 

GitHub 
RISC-

Rocketcore 
28 min 12 No No 

OneSpin UART < 1 min 10 Yes Yes 

Aerospace** SpaceWire < 1 min 3 No/Yes No 

Aerospace 
RISC-V 

Taiga 
13 min 46 No/Yes No 

Aerospace LEON3 6 hr 423 No/Yes Yes*** 

*Averaged results of multiple test articles 

**Includes one golden design, and three derivative designs with Trojans 

***Includes three designs with Trojans, one of which is detected 

A. Report 

The trustworthiness assessment report presented to the IP auditing engineer is concise and easy to understand 

and review. The report provides a list of reliability issues and other issues that could be due to the presence of a 

Trojan. Each issue has a unique identifier (first column), a location in the RTL source code, a category, a 

description, and a default severity level that can be modified by the user, among other fields. Issues can be searched, 

filtered, and reordered. 

For designs in this project, the tool has reported reliability issues (up to 2500). Manual review and waiving large 

numbers of issues is a time-consuming task. However, reliability issues may be grouped into categories, speeding 

up the review process significantly. Reliability issues include warnings about dead or redundant RTL code that 

could be exploited in subsequent design implementation steps, such as synthesis, for Trojan insertion. It is worth 

noting that in safety-critical projects, all RTL code should be associated with functional requirements or otherwise 

justified or removed. Therefore, in order to perform a rigorous trustworthiness assessment, reliability issues must 

not be ignored. 

The tool also identified potential Trojan triggers (in a range of 0 to 15 per design). Crucially, the number of 

issues identified is low, and the number of false alarms is very low (less than 100 for the entire test suite). Even in 

the worst-case scenario, the additional effort required to analyze the reported issues is manageable. 

Table 2 reports results and information for a selection of 9 design groups. The designs have been chosen 

arbitrarily, but with the aim of representing the entire test suite and range of results obtained. Each entry in Table 2 

includes the design’s source, name, whether it contains an intentionally inserted Trojan, the tool runtime, the 

number of issues identified, and whether at least one identified issue detects the Trojan (when one is present). 

B. Debug 

When selecting an issue’s identifier, a new window displays a source code tracing tool highlighting the RTL 

statements causing it. It is also possible to automatically generate input stimuli and visualize signal waveforms for 

more in-depth analysis. For a trigger-type issue, the tool can generate multiple sets of input stimuli that cause the 

potential Trojan trigger to be activated. It is worth noting that achieving the same objective using the traditional 

approach of a simulation testbench would require significant effort and in-depth knowledge of the IP. 
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C. Detected Trojans 

As shown in Table 2, the tool detects Trojans in many different designs by identifying suspicious code with 

hidden trigger characteristics. In many cases, the triggers rely on deep counters or state machines with malicious 

logic that monitor specific input data sequences. For more information on the type of Trojans considered, please 

refer to [2]. A detailed analysis of the type of Trojans inserted by the authors is beyond the scope of the paper. 

D. Missed Trojans 

The tool failed to detect the Trojans present in 10 designs. A common thread among these designs is their use 

of Trojan triggers based on counters that count basic control events. The challenge in these specific cases is that the 

activation code follows a common coding pattern. Without any knowledge of the expected functional behavior of 

the design, it is difficult for algorithms to identify and detect this code as suspicious without generating many false 

alarms. However, when considering Trojans, it is also important to estimate how stealthy they are. A Trojan that is 

not very stealthy, for example, always triggering on a sequence of events, might be hard to detect automatically 

with our approach, but would likely be triggered on a basic system verification test, increasing the chances of it 

being discovered. Nevertheless, the missed detections demonstrate that Trojan detection algorithms need 

continuous improvement. 

E. False alarms 

The tool has reported a low number of false alarms, with respect to trigger detection. In a set of related designs, 

a class of code functions were marked as suspicious Trojan triggers, when in fact they were implementing legitimate 

functions. One of these cases is related to a test access port (TAP) controller using a specific sequence of data and 

address inputs to take control actions. In general, this is indeed an unusual, suspicious behavior that would meet 

our criteria for reporting as an issue. 

V. CONCLUSION 

The process presented in this paper allows ASIC, FPGA, and SoC developers and integrators to increase 

confidence that an IP design is trustworthy and free from hardware Trojans. The approach is highly automated and 

does not require additional models or in-depth knowledge of the IP. 

Results demonstrate that the design analysis step requires a one-time process of minutes to hours of 

computational runtime for industrial-scale IP designs. The process efficiently identifies different classes of trigger 

circuitry and reliability issues (or vulnerabilities/weaknesses), which could be leveraged to introduce Trojans in 

subsequent design implementation steps. The reported issues will focus on those functions in the RTL source code 

that require attention, while minimizing excess noise. 

Engineers can perform additional analysis of the issues identified to confirm the presence of a hardware Trojan 

and its location. The issues reported are linked to the RTL source code that has caused them in order to facilitate 

code inspection. The tool also automatically generates a signal waveform trace showing how a particular input 

stimulus triggers a potential Trojan. The visualization of a counterexample has proven to be quite valuable when 

debugging and fixing the identified issue. 

The trustworthiness assessment process represents a low-effort approach to gain confidence of Trojan's absence 

in IPs. However, it is not yet sufficient to rigorously prove Trojan absence. For an alternative process aiming at 

proving Trojan's absence, please refer to [3]. Moreover, the process does not yet provide an objective measure of 

trustworthiness. Trustworthiness metrics are the subject of future work that will leverage industry-wide initiatives. 

It is important to note that while the complete automation was unable detect all Trojans, this experiment 

demonstrated a process where the automation contributes valuable data and analysis. Similar to antivirus software 

programs, automated Trojan detection technology requires continuous improvements to minimize the risk of 

missing a Trojan, while also keeping noise levels and runtime acceptable. 
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