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Abstract— This paper describes a process developed to 

leverage VHDL functional coverage in a mixed cycle and event 

driven simulation flow. The VHDL functional coverage is defined 

using an extension to VHDL. During functional simulation, 

functional coverage statistics are collected and maintained. A 

script is used to convert the combined simulation functional 

coverage statistics into an XML format using a predefined XML 

schema. At a high level, the combined functional coverage is 

made to look like covergroups. Finally, an Accellera Unified 

Coverage Interoperability Standard (UCIS) conversion utility is 

used to convert the generated XML into a coverage database. 

This conversion allowed for the use of the coverage database in 

industry available coverage and Verification Planning and 

Management tools. This paper will address the challenges 

resolved in creating this flow including mapping the functional 

coverage generated to an industry standard data model. This 

paper will also present future challenges and opportunities. 
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Coverage Driven Verification; Metric Driven Verification; 

Verification Planning and Management; Unified Coverage 
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I. INTRODUCTION  

The micro-electronics industry’s continuous decrease in time-

to-market requirements and simultaneous increase in design 

complexity have necessitated enhancements to traditional 

functional verification methodologies. One such enhancement 

is the use of coverage driven verification (CDV). In recent 

years the use of functional coverage has become the dominant 

method for managing the verification process for Intellectual 

Property (IP) level to System on Chip (SoC) level 

development, using SystemVerilog-based methodologies such 

as the Universal Verification Methodology (UVM). In Verilog 

or VHDL however, direct language support for functional 

coverage does not exist. Specifically for VHDL, the addition 

of functional coverage is often not enough motivation to move 

to SystemVerilog as VHDL is a very rich and robust design 

and verification language. There are many industries 

(military), design types (Field Programmable Gate Array 

(FPGA)) and geographies (Europe) where the language of 

choice is VHDL. For those industries where custom 

methodologies or legacy processes already exist (such is the 

case with the verification methodologies used by IBM) the 

overheads and costs of conversion are prohibitive.  

 

IBM verification and design teams use custom tools and 

languages for functional coverage. This functional coverage is 

used increasingly as a metric to drive decision making and 

schedules, guide resource allocation, and achieve verification 

closure. With the increases in design complexity, Verification 

Planning and Management, and the tools and processes to 

enable it become increasingly important. However, the 

creation and maintenance of the tools and processes for 

Verification Planning and Management can consume large 

amounts of time. This time often comes from the project 

verification leads whose attention is diverted from more 

important verification tasks. The addition of various features, 

like the filtering of information to present the appropriate view 

of data to relevant stakeholders can be time and resource 

consuming. IBM developed a solution to this problem by 

leveraging Accellera’s Unified Coverage Interoperability 

Standard (UCIS) [1] to allow the use of commercial 

Verification Planning and Management (VPM) tools for 

internally generated functional coverage data. This paper 

describes how to implement VHDL functional coverage in a 

usable and efficient way without using SystemVerilog, with 

the simplicity and low overhead of simple assertions. This 

paper also describes the creation of a process to convert that 

functional coverage data so that it can be used in a 

commercially available Verification Planning and 

Management tool. This paper will be of interest to designers 

of large SoCs who believe in functional coverage and its 

benefits, but who do not currently have access to 

SystemVerilog and are not willing to change their VHDL code 

 

This paper is organized as follows. Section I introduces the 

topic, Section II provides background information, Section III 

presents an overview and the implementation details of the 

process, and finally, Section IV summarizes and concludes the 

paper. 

 



II. BACKGROUND/PRIOR WORK 

A. Functional Coverage 

―Are we done yet? No…….. Well, when will we be done 

then?‖ These two questions drive most functional verification 

schedules. Functional verification entails changing the state of 

a logic design and measuring that the response generated by 

the design is correct. Modern verification environments 

change the state of designs by driving constrained random 

inputs. The power of these constrained random inputs is that 

input vectors are automatically generated without having 

verification engineers spell out each set of input vectors 

manually. With this power also comes great responsibility. 

With the constrained random inputs come constrained random 

changes in state. In this environment it is imperative that the 

verification team be able to specify which states have been 

explored and that for those explored states, the correct 

response to input vectors has been observed. One of the first 

challenges in this approach, and in functional verification in 

general, is the size of the state space [2]. For a design with n 

state elements, the number of states to be explored is 2
n 

[3]. 

Even for a small design, the extent of this space can quickly 

become daunting. For instance, with a simple design 

consisting of a single 32-bit counter, the state space explodes 

to a whopping 2
32

 or 4294967296 states. Exploring the state 

space of today’s designs without some method of recording 

the states which have been explored is akin to travelling across 

the continental United States without signs or a map! The size 

of the state space also necessitates a prioritization of features 

and testing in order to complete verification in a reasonable 

amount of time. Functional coverage is defined for and 

captures scenarios that are important for the verification 

environment to observe and capture for later analysis [4]. As 

such, functional coverage serves as a guide in the process of 

determining the state of the verification effort and when that 

effort has been completed to satisfaction of the relevant 

stakeholders. 

B. Unified Coverage Interoperability Standard 

 

The Unified Coverage Interoperability Standard (UCIS) is 

an Accellera standard for defining and standardizing the 

interface to coverage data.  The purpose of UCIS is to have a 

common interface which users can incorporate into their host 

applications for collecting coverage across any UCIS 

compliant tool, whether that be simulation, acceleration, 

formal, system level tool, or other verification engines [UCIS 

reference?].  UCIS can also be used as a way to interface 

between vendors proprietary coverage data formats, however 

the level of interoperability and the feature set defined only 

partially address interoperability. Since UCIS can provide a 

unified view of coverage data and metrics, it allows users to 

generate a more complete view of their coverage data. This 

enhanced view of coverage provides an improved snapshot of 

the state of the verification effort and can help speed 

verification closure. 

 

 

The UCIS 1.0 specification has defined two types of 

formats for coverage data information exchange by users – an 

Application Programming Interface (API) data access 

mechanism, and a XML Interchange Format [UCIS 

reference]. Either of these formats can be used but each 

provides its own benefits and challenges. The API data access 

method serves as an abstraction layer to the physical database 

and allows users to build applications to access a UCIS 

database for analysis or reporting. The XML Interchange 

Format data access method involves writing out coverage data 

information into the XML-based Interchange Format. This 

XML file can then be accessed by any UCIS-compliant or 

other XML-based tool [5]. 

The UCIS 1.0 specification has defined a common data 

model for a consistent interpretation and utilization of the 

coverage data created by various coverage data producers by a 

variety of consumers. This model has been designed to be 

flexible and extensible while maintaining the requirements for 

universally recognizable information storage. The UCIS 1.0 

specification defines structures as part of the coverage data 

model. Some of the structures within this data model are as 

follows: 

 Scopes to create the hierarchical structure that 

describes the design. These scopes may or may not 

contain child scopes. These scopes are analogous to 

the design hierarchy while extended to include 

coverage constructs that may or may not exist in the 

HDL design [6]. 

 Attributes which serve as data decoration elements for 

scopes and coveritems [8]. This includes both static 

information such as the filename as well as dynamic 

information such as thresholds. 

 Coveritems to hold the counts of recorded events, 

which are used to compute coverage [7]. The 

coveritem is an integral count,  decorated with enough 

information to describe what was counted. 

To present a consistent interpretation of the information 

stored in each coveritem, the UCIS specification describes an 

abstract theory of coverage. For this abstract theory of 

coverage the collection of coverage data by the tool producing 

the data has the form: 

 

@event if(condition) event_counter++                           (1) 

 

Essentially, at an event of interest, event, if a particular 

condition of interest, condition, is satisfied, then a counter, 

event_counter, is incremented. Examples of the event of 

interest include a variable value change, a clock edge, or a 

finite state machine (FSM) transition. Examples of conditions 

that may be tested include sequences of variable values and 

start and destination FSM states. 

 



Bugspray FSM: fsm.fsm_state1, clk_event 

: (M1, unit, chip);  

  state_vector   := ( w_fsm_stm_q(10 

downto 0));  

  states         := ( s00, s01, s02, 

s03, s04, s05, s06, s07, s08, s09, s10, 

s11);  

  state_encoding := ( s00 := 

'00000000001',  

        s01 := '00000000010',  

        s02 := '00000000100',  

        s03 := '00000001000',  

        s04 := '00000010000',  

        s05 := '00000100000',  

        s06 := '00001000000',  

        s07 := '00010000000',  

        s08 := '00100000000',  

        s09 := '01000000000',  

        s10 := '10000000000',  

         s11 := '00000000000' );  

 

  arcs           := ( s00 => s00, s10 => 

s00,   s11 => s00, s00 => s01, s01 => 

s01, s01 => s02, s02 => s02, s10 => s02, 

s11 => s02, s02 => s03, s03 => s03,   

s01 => s04, s05 => s04, s11 => s04, s01 

=> s05, s05 => s05, s11 => s05, s05 => 

s06,  s01 => s07, s07 => s07, s08 => 

s07, s09 => s07, s11 => s07,  

     s07 => s08, s08 => s09, s09 => s09,  

     s09 => s10, s00 => s11, s01 => s11, 

s02 => s11, s03 => s11, s04 => s11, s05 

=> s11, s06 => s11, s07 => s11, s08 => 

s11, s09 => s11, s10 => s11, s11 => s11 

);  

end FSM;  
 

Figure 1. BugSpray coverage statement for a Finite State Machine 

 

C. Bugspray 

BugSpray is an IBM internally developed VHDL 

extension used for functional coverage and assertions. [9] 

BugSpray is used by both design and verification engineers to 

add coverage and assertion verification objects to the RTL. 

BugSpray allows these verification objects to be portable 

across verification engines (formal, simulation, acceleration) 

and enables hierarchical design reuse. BugSpray allows the 

designers to define interesting events and scenarios that, based 

on their knowledge of the design, need to be covered for 

verification completeness. As such, it serves as a metric for 

measuring the quality of the input vectors driven into the 

design. [10]. For instance this BugSpray statement 

 

[count; event.event_name_0  ; clk] : (M1,unit,chip) <= 

signal_name_d(0)  AND NOT signal_name_q(0) ; 

 

defines a BugSpray count event, event.event_name_0. This 

event is evaluated upon a change in signal clk. The count for 

this event is incremented when at a change in clk, 

signal_name_d(0) is asserted and signal_name_q(0) is 

deasserted.  The complexity of BugSpray statements can range 

from the simple combinatorial statement specified above to 

coverage of a complex FSM as illustrated in Fig 1 below.  Fig. 

1 describes a state machine with 12 states. In the BugSpray 

FSM coverage statement the state vector variable is defined 

and the states and their encoding are specified. Finally, the 

transition arcs are defined for coverage to be collected on the 

state transitions.  

 

D. Current Typical Analysis and Usage Flow 

Design engineers leverage their knowledge of both the 

functionality and implementation of the design to create 

BugSpray assertions and evaluate coverage metrics. These 

assertions and coverage metrics are used to grade the 

robustness of the verification stimulus and the progress 

towards verification completeness. Verification engineers can 

also add BugSpray coverage and assertions to augment the 

verification environment. Various types of BugSpray events 

can be defined, however, in simulation the most commonly 

used are events that provide counts of whatever particular 

logic has been exercised. These events typically follow two 

main categories: 

 Mainline logic count events: Counts which indicate 

various functional logic paths that have been exercised. 

 Error logic count events: Counts which indicate that 

logic has been exercised in the event of an error 

scenario (e.g. ECC, parity or some other error 

detection/correction algorithm )  

During simulation, the BugSpray assertions and coverage 

events are monitored to identify if the defined events or 

sequences occur. If so, the events are counted and logged. 

Event statistics from each simulation are maintained and sent  

 

to a central server at the end of simulation. These statistics are 

maintained across simulations and reports are made available 

upon request. Engineers can then review the reports to 

measure and track coverage. The BugSpray report provides a 

well defined text format for conveying the collected functional 

coverage information stored on the central server. Coverage 

information is presented based on both the design hierarchy 

and individual design unit types.  

E. Room for Growth 

As the team’s needs and desires change, it is important that 
the desired solution be flexible enough to change as well. The 
addition of other types of data, such as source and line 
information for improved assertion and coverage debug and 
analysis is an example of such a desire. In addition, while the 
current solution provides some automation, it is automation 
built and maintained by the verification leads. The maintenance 
of the existing automation and the addition of features has to be 
performed by the same verification lead and takes time away 
from more valuable verification tasks such as trend analysis or 



 
 

Figure 2 Simulation Functional Coverage Data to Coverage Database 

Conversion Flow 
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methodology definition and refinement. For this reason, among 
others, it is important to leverage existing industry available 
solutions wherever possible. Using these types of solutions not 
only alleviates the tools development and maintenance burden 
on the verification leads but enables the team to take advantage 
of industry advances as they arise in the future. 

F. Support the Existing Flow 

The requirements for any new approach are as follows. 
There is an ongoing need to support the continued use of 
legacy BugSpray assertions. New BugSpray assertion 
development also needs to be supported as BugSpray is an 
important part of the verification flow with multiple benefits. 
The use of both PSL and BugSpray in the same 
modules/entities also needs to be supported as design and 
verification teams need to have the flexibility to adopt either or 
both as their requirements change. Support for mixed cycle and 
event simulator environments is important as IBM continues to 
leverage its cycle simulator for its performance benefits. 

III. METHOD 

A. Process Overview 

The conversion involves obtaining the combined coverage 

statistics from the BugSpray server in the form of a BugSpray 

report. The report is then parsed and an UCIS compliant XML 

file is generated. Another utility is then used to generate a 

coverage database from the coverage data contained in the 

XML file. This coverage database is then loaded into Incisive 

vManager for review and analysis. The overall process is 

presented in Figure 2  

 

 

B. Selection of the Appropriate UCIS Interface 

While the UCIS 1.0 specification attempts to address 

coverage mechanics across heterogeneous tools [11], what has 

been defined thus far is insufficient for complete 

interoperability.  The two types of formats defined within the 

UCIS document – the API mechanism, as well as the simpler 

exchange mechanism using XML offer different restrictions 

and opportunities.  The API mechanism provides for the 

creation of user defined types and operations. The API also 

supports the use of limited random data access in the in-

memory or read-streaming access modes. However the 

functions contained in the API necessitate the provision and 

compilation of both source and destination vendor library 

files. The UCIS 1.0 specification provides a World Wide Web 

Consortium (W3C) XML compliant schema to represent the 

coverage data in XML format [12]. The XML approach makes 

it fairly easy to manipulate and translate formats, including 

importing and exporting information, which for our 

application is all that is needed.  

 

In this process the XML approach was used for ease of 

implementation and use. With the XML interface, we were 

able to easily prototype and test the flow without changes to 

any software library files. The XML file is also human  

 

readable and serves as an additional source of documentation. 

As stated above, the UCIS was developed to enable coverage 

metric exchange between a heterogeneous system of coverage 

producers and consumers. In this case the producer is the IBM 

proprietary cycle based simulation regression and the 

consumer is Incisive vManager.  

 

The UCIS XML exchange format provides a generic 

common coverage data model which supports access to the 

coverage data from the producer and the ability for the 

consumer to understand it within the context of the design. 

The XML exchange mechanism provides naming and 

mapping conventions to facilitate this consistent exchange and 

interpretation of coverage data between the simulation 

coverage statistics server and Incisive vManager.  

 



 

 
 

Figure 3 Representation of the UCIS Generic Data Model 

 

C. Conversion of Coverage Data to XML format 

Each BugSpray event line in the report is parsed and 

separated into its components. The Hierarchy section is split 

into its individual instance names. A hierarchy is built 

utilizing the instance names provided by the hierarchy section. 

The parsing solution script can support BugSpray properties 

specified in the report in a non hierarchical fashion.  For each 

terminating level of hierarchy, the design entity and variable 

class information is stored. Within each variable class, the 

tag(s), variable name, and counter value information is stored. 

In the case where multiple variable names exist for a given 

variable class for a given level of hierarchy, the variable 

names, tag(s) and counter value information are added to the 

existing variable class. In the case where multiple variable 

classes exist for a given level of hierarchy, the new variable 

class, with associated variable name(s) and counter value(s), is 

added to the existing level of hierarchy.  Once this tree 

structure is completely built, the XML file is generated.  

Figure [5] shows an example XML file with the associated 

hierarchies and coverage information. 

 

D. Data Mapping 

Initially, we decided to map the BugSpray assertions and 

coverage to PSL assertions and cover properties due to the 

absence of coverage crosses. In addition, the existence of PSL 

to BugSpray conversion tools like IBM’s Formal Checkers 

(FoCs) tool led to this thinking. [13] However, BugSpray 

allows for the definition of classes of event counter variables. 

These classes enable multiple event counter variables of the 

same name at the same level of hierarchy, as long as they are 

defined as part of different variable classes. BugSpray also 

allows for the definition of tags, which serve as comments. 

The existence of BugSpray variable classes and tags drove the 

mapping in another direction, to mapping to the UCIS 

covergroup construct. This data model was more consistent as 

this allowed us to take advantage of the covergroup 

construct’s names and comments in the mapping.  

 

E. The Data Model and Rationale for Data Mapping 

Decisions 

For the purposes of creating a common reference point for the 

multiple producers and consumers of coverage data, the UCIS 

defines a common information model which specifies that the 

data contained in a coverage database is a collection of counts 

that have meaning with respect to the design. A simple 

example of the coverage data model is illustrated in Figure 3. 

The basic concept is that these counts are integral numbers 

with enough associated information to make them 

understandable in the context of the design [1]. For practical 

purposes the implemented data model is not the information 

model but can (and does) represent a useful subset of it. There 

is an inherent difficulty in mapping real examples and data to 

the unifying principle of UCIS. While the informational model 

defines a set of generic counters with relevant design 

information, the semantics of the counters are not always the 

same. With this flow, we are able to maintain enough 

information in the coverage database that a designer with 

knowledge of the design RTL would be able to identify the 

meaning of the coverage data and perform useful post-

conversion analysis on it. However, the UCIS covergroup 

model defines a set of constructs that matches the information 

that we are trying to model. At some predefined event, if some 

predefined condition is true, increment a counter. This 

definition was also consistent with the BugSpray statement 

data that was being imported. Consider this view of the 

BugSpray assertions. At the event (statement test) if the 

predefined sequence of events was encountered, then the 

counter variable is incremented. Figure 4 illustrates the 

various constructs and properties that are utilized in our 

coverage mapping. To make mapping to a covergroup data 

model easier and to support the UCIS conversion utility 

requirements, we also defined a CVGBINSCOPE and 

CVGBIN for each COVERPOINT (BugSpray statement).  

  

Within the coverage model, multiple DU_MODULEs, which 

correspond to design units (Verilog modules or VHDL 

entities) , can be defined. In the case where a design unit is 

replicated within a larger design, multiple INSTANCEs of a 

DU_MODULE can be defined. Within either a 

DU_MODULE or an INSTANCE one or more 

COVERGROUPs can be defined. For each COVERGROUP 

multiple COVERPOINTs can be defined, these correspond to 

individual BugSpray event variables. 

 

The currently defined data model for the UCIS conversion 

utility allows for the use of many properties. Future plans may 

call for the addition and usage of additional properties to the 



 

 
 

Figure 4 Representation of Implemented Coverage Data Model 
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coverage data XML file. However, we defined these 

properties as the initial set for implementation in the XML 

file.  

 

The XML coverage properties which can be associated with a 

DU_MODULE or INSTANCE are 

 NAME* 

 LANGUAGE* 

 TYPE_NAME* (for INSTANCE for referring to 

the respective DU_MODULE name) 

The XML coverage properties which can be associated with a 

COVERGROUP or COVERINSTANCE are 

 NAME* 

The XML coverage properties that can be associated with a 

COVERPOINT are  

 NAME* 

The XML coverage properties that can be associated with a 

CVGBINSCOPE are  

 NAME* 

The XML coverage properties that can be associated with a 

CVGBIN are  

 NAME* 

 COUNT* 

* indicates mandatory properties. 
 

Each BugSpray variable class is mapped to a COVERGROUP 
name and the corresponding individual BugSpray event are 
mapped to COVERPOINTs within that COVERGROUP. The 
BugSpray variable counts for each event are mapped to the 
corresponding COVERPOINT’s COUNT property which is 
associated with its CVGBINSCOPE and CVGBIN properties. 
Another question was how to map the error scenario events. 
Should they be treated as a special type of coverage in the 
context of the covergroup? If so, what kind of data decoration 
should be used to denote this special case? In the context of the 
conversion algorithm, BugSpray fail events can be considered 
a special version of the count events since they are designed to 
track a error scenarios. Therefore they still match the  @event, 
if (condition) , counter++  data model  and this dictated that 
failure events are treated the same as count events within the 
XML and coverage database. The data decoration occurs in the 
comment field where the coverage is specified as being 
coverage of an error. Figure 5 shows an example of the 
coverage XML format.  

 

F. Conversion of XML to Coverage Database 

 The Unified Coverage Interoperability Standard (UCIS) 

conversion utility converts a well-formed valid XML instance 

of a coverage database XML schema into a coverage database. 

The overall process flow is shown in Fig. 6. If invalid XML is 

specified as input to the UCIS utility, error(s) are reported and 

the functional coverage database is not generated. When valid 

XML is provided, the UCIS utility generates a corresponding 

coverage database based solely on the coverage data specified 

in the XML. This XML coverage data is not manipulated in 

any way. For instance, if the input XML only contains 

instance based coverage data, then the UCIS utility does not 

merge instance based coverage data to create type based 

coverage data. A benefit of creating a tree structure in the 

initial coverage report to XML conversion was that even if the 

related coverage information in the report is not grouped 

hierarchically or even located in the same portion of the 

report, the coverage data XML file generated is. This structure 

also allowed the XML to be structured in such a way that if 

there is a Many to One relationship between several 

INSTANCEs and their respective DU_MODULE, the 

DU_MODULE can precede the INSTANCEs in the XML file. 

This arrangement allows the UCIS conversion utility to better 

manage memory and improve coverage database conversion 

performance.  

 

 

IV. RESULTS 

This new approach allows for the verification and design 

teams to combine coverage from event and cycle simulations. 

This combination allows for a more complete view of 

coverage and verification completeness. The use of the UCIS 

conversion utility allows for the use of industry standard 

functional coverage analysis and Verification Planning and 

Management tools like Incisive vManager while still 



 
<?xml version="1.0"?>  

<unicov:unicov 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"  

xsi:schemaLocation="http://www.cadence.com/unicov 

unicov.xsd"  

xmlns:unicov="http://www.cadence.com/unicov">  

<!—Design Unit definition -->  

<unicov:scope>  

<unicov:type>DU_MODULE</unicov:type>  

<unicov:name>top</unicov:name>  

<unicov:lang>SV</unicov:lang>  

<!—Covergroup definition -->  

<unicov:type>COVERGROUP</unicov:type>  

<unicov:name>cg</unicov:name>  

<!—Coverpoint definition -->  

<unicov:scope>  

<unicov:type>COVERPOINT</unicov:type>  

<unicov:name>A</unicov:name>  

<!-- Auto Bins -->  

<unicov:scope>  

<unicov:type>CVGBINSCOPE</unicov:type>  

<unicov:name>auto</unicov:name>  

<unicov:src uri=" file://test.sv" line="13"/>  

<unicov:bin>  

<unicov:type>CVGBIN</unicov:type>  

<unicov:name>auto[0]</unicov:name>  

<unicov:intProperty property="COUNT" value="0"/>  

</unicov:bin>  

<unicov:bin>  

 

</unicov:scope>  

 

</unicov:scope> 

 

</unicov:scope> 

 
Figure 5. XML File Example 

 

 

 

 
 

Figure 6. XML to Coverage Database Conversion Flow 

 

 

maintaining the current VHDL language and verification flow. 

With this approach the possibility of tying in other forms of 

coverage, like code coverage, is now available.  

 

The UCIS conversion utility offloads the need to build and 

maintain various functional coverage data tracking tools from 

the verification leads to an industry available tool. The only 

tool needed is a script to convert the coverage information to 

the UCIS conversion utility’s XML format. This can be used 

with a much smaller resource impact than trying to maintain a 

complete Verification Planning and Management toolset. The 

use of the UCIS conversion utility also enables the use of 

other tools which open the door to the possibility of more 

automation. As can be seen in Figure 7, the Incisive vManager 

GUI often makes it easier to analyze, traverse and understand 

the coverage data as opposed to the text reports. However, the 

text reports can still be generated from the tool if desired. The 

overhead for conversion is not excessive. A report with 

approximately 100000 coverage point entries takes 

approximately 46 seconds for the whole conversion process. 

A. Proposed Next Steps 

The next phase of this project will be to explore the 

enablement of some additional data transformation and 

storage in the UCIS XML and subsequently in the coverage 

database. For instance, at this point during coverage reviews, 

in some cases, the name of a property or coverage count is all 

that is accessible. Depending on the amount of detail included 

in the name, identifying the reason or meaning for the 

coverage statement can be difficult without help from the 

engineer who created the functional coverage. It is also 

difficult to determine what constraints might need to be 

applied to the verification environment to produce input 

vectors which could increase coverage for those properties. 

An easy way to correlate and view the properties which collect 

the coverage could be helpful in this kind of analysis. The 

collection of source code data from a combination of other 

sources may be possible. This source code data could then be 

stored in the coverage data XML file and coverage database. 

The UCIS conversion utility supports the addition of source 

code file and line information.  Armed with this information 

and the vManager C/S GUI which allows for the viewing of 

cover properties linked to the source code of functional 

coverage metrics, coverage analysis can be accomplished 

more easily without involving design resources.  

 



 

 
 

Figure 7. Example Coverage Hierarchy view 

 

 
 

 

Verification engineers can also review the effectiveness of 

their verification environments in impacting functional 

coverage closure more independently.  

 

As previously mentioned in this paper, the UCIS coverage 

conversion utility does not manipulate the coverage data in 

any way. Currently the XML coverage data generated is only 

instance based. Instance based functional coverage is 

functional coverage that is collected and tracked on for each 

instance of any particular design unit. This kind of coverage 

tracking is useful for when the particular instance on which a 

coverage event was observed is relevant to the coverage event. 

For instance, in the case of some distributed arbitration 

algorithm, where it is important to track that each instance of 

the arbitration unit received some information packet from a 

central unit. Type based functional coverage, however, is 

functional coverage that is collected and tracked across all 

instances of any particular design unit. There are situations 

where type based functional coverage data can be useful to the 

verification effort. For instance, consider the case where, you 

have several instances of some instruction execution unit. For 

the purposes of verifying successful execution of all possible 

instructions, the actual instance on which the instruction was 

executed on may be irrelevant. In that case, the functional 

coverage data on instructions executed across the multiple 

instances of the instruction unit would be collected and 

aggregated for tracking and measurement purposes. Enabling 

the use of type based coverage data is also a possibility. 

Currently, two approaches are being considered. Either having 

the UCIS XML conversion utility automatically calculate the 

type based coverage based on the instances contained in the 

coverage data XML file or calculating the type based coverage 

based on the instances and type specified in the BugSpray 

coverage report or writing the type based coverage directly to 

the coverage data XML file. The latter approach has the 

attractive quality of being consistent with the current UCIS 

conversion utility generating coverage based solely on the data 

contained in the coverage data XML file. 

 

Other UCIS conversion utility supported properties 

consistent with Coverage Driven Verification may also be 

explored to determine their suitability for inclusion in the 

coverage data XML file.   

B. Conclusion 

This paper describes a method that we developed to easily 

convert VHDL functional coverage data generated from cycle 

simulations into a form that could be consumed by an industry 

available Verification Planning and Management tool, 

Cadence’s vManager C/S. This process leverages the 

Accellera Unified Coverage Interoperability Standard (UCIS) 

to create a generic common coverage data model for the 

exchange and transformation of the functional coverage data.   
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