
An Assertion Based Approach to Implement VHDL

Functional Coverage

Susan Eickhoff, Michael DeBole,

Michael Wazlowski

IBM Corporation

Systems and Technology Group

Poughkeepsie, NY 12601, USA

{srubow, mvdebole, mew}@us.ibm.com

Tagbo Ekwueme-Okoli

Cadence Design Systems

Systems and Verification Group

Cary, NC 27518, USA

tokoli@cadence.com

Abstract— This paper describes a process developed to

leverage VHDL functional coverage in a mixed cycle and event

driven simulation flow. The VHDL functional coverage is defined

using an extension to VHDL. During functional simulation,

functional coverage statistics are collected and maintained. A

script is used to convert the combined simulation functional

coverage statistics into an XML format using a predefined XML

schema. At a high level, the combined functional coverage is

made to look like covergroups. Finally, an Accellera Unified

Coverage Interoperability Standard (UCIS) conversion utility is

used to convert the generated XML into a coverage database.

This conversion allowed for the use of the coverage database in

industry available coverage and Verification Planning and

Management tools. This paper will address the challenges

resolved in creating this flow including mapping the functional

coverage generated to an industry standard data model. This

paper will also present future challenges and opportunities.

Keywords—functional verification; functional coverage;

Coverage Driven Verification; Metric Driven Verification;

Verification Planning and Management; Unified Coverage

Interoperability Standard; UCIS; VHDL;

I. INTRODUCTION

The micro-electronics industry’s continuous decrease in time-

to-market requirements and simultaneous increase in design

complexity have necessitated enhancements to traditional

functional verification methodologies. One such enhancement

is the use of coverage driven verification (CDV). In recent

years the use of functional coverage has become the dominant

method for managing the verification process for Intellectual

Property (IP) level to System on Chip (SoC) level

development, using SystemVerilog-based methodologies such

as the Universal Verification Methodology (UVM). In Verilog

or VHDL however, direct language support for functional

coverage does not exist. Specifically for VHDL, the addition

of functional coverage is often not enough motivation to move

to SystemVerilog as VHDL is a very rich and robust design

and verification language. There are many industries

(military), design types (Field Programmable Gate Array

(FPGA)) and geographies (Europe) where the language of

choice is VHDL. For those industries where custom

methodologies or legacy processes already exist (such is the

case with the verification methodologies used by IBM) the

overheads and costs of conversion are prohibitive.

IBM verification and design teams use custom tools and

languages for functional coverage. This functional coverage is

used increasingly as a metric to drive decision making and

schedules, guide resource allocation, and achieve verification

closure. With the increases in design complexity, Verification

Planning and Management, and the tools and processes to

enable it become increasingly important. However, the

creation and maintenance of the tools and processes for

Verification Planning and Management can consume large

amounts of time. This time often comes from the project

verification leads whose attention is diverted from more

important verification tasks. The addition of various features,

like the filtering of information to present the appropriate view

of data to relevant stakeholders can be time and resource

consuming. IBM developed a solution to this problem by

leveraging Accellera’s Unified Coverage Interoperability

Standard (UCIS) [1] to allow the use of commercial

Verification Planning and Management (VPM) tools for

internally generated functional coverage data. This paper

describes how to implement VHDL functional coverage in a

usable and efficient way without using SystemVerilog, with

the simplicity and low overhead of simple assertions. This

paper also describes the creation of a process to convert that

functional coverage data so that it can be used in a

commercially available Verification Planning and

Management tool. This paper will be of interest to designers

of large SoCs who believe in functional coverage and its

benefits, but who do not currently have access to

SystemVerilog and are not willing to change their VHDL code

This paper is organized as follows. Section I introduces the

topic, Section II provides background information, Section III

presents an overview and the implementation details of the

process, and finally, Section IV summarizes and concludes the

paper.

II. BACKGROUND/PRIOR WORK

A. Functional Coverage

―Are we done yet? No…….. Well, when will we be done

then?‖ These two questions drive most functional verification

schedules. Functional verification entails changing the state of

a logic design and measuring that the response generated by

the design is correct. Modern verification environments

change the state of designs by driving constrained random

inputs. The power of these constrained random inputs is that

input vectors are automatically generated without having

verification engineers spell out each set of input vectors

manually. With this power also comes great responsibility.

With the constrained random inputs come constrained random

changes in state. In this environment it is imperative that the

verification team be able to specify which states have been

explored and that for those explored states, the correct

response to input vectors has been observed. One of the first

challenges in this approach, and in functional verification in

general, is the size of the state space [2]. For a design with n

state elements, the number of states to be explored is 2
n

[3].

Even for a small design, the extent of this space can quickly

become daunting. For instance, with a simple design

consisting of a single 32-bit counter, the state space explodes

to a whopping 2
32

 or 4294967296 states. Exploring the state

space of today’s designs without some method of recording

the states which have been explored is akin to travelling across

the continental United States without signs or a map! The size

of the state space also necessitates a prioritization of features

and testing in order to complete verification in a reasonable

amount of time. Functional coverage is defined for and

captures scenarios that are important for the verification

environment to observe and capture for later analysis [4]. As

such, functional coverage serves as a guide in the process of

determining the state of the verification effort and when that

effort has been completed to satisfaction of the relevant

stakeholders.

B. Unified Coverage Interoperability Standard

The Unified Coverage Interoperability Standard (UCIS) is

an Accellera standard for defining and standardizing the

interface to coverage data. The purpose of UCIS is to have a

common interface which users can incorporate into their host

applications for collecting coverage across any UCIS

compliant tool, whether that be simulation, acceleration,

formal, system level tool, or other verification engines [UCIS

reference?]. UCIS can also be used as a way to interface

between vendors proprietary coverage data formats, however

the level of interoperability and the feature set defined only

partially address interoperability. Since UCIS can provide a

unified view of coverage data and metrics, it allows users to

generate a more complete view of their coverage data. This

enhanced view of coverage provides an improved snapshot of

the state of the verification effort and can help speed

verification closure.

The UCIS 1.0 specification has defined two types of

formats for coverage data information exchange by users – an

Application Programming Interface (API) data access

mechanism, and a XML Interchange Format [UCIS

reference]. Either of these formats can be used but each

provides its own benefits and challenges. The API data access

method serves as an abstraction layer to the physical database

and allows users to build applications to access a UCIS

database for analysis or reporting. The XML Interchange

Format data access method involves writing out coverage data

information into the XML-based Interchange Format. This

XML file can then be accessed by any UCIS-compliant or

other XML-based tool [5].

The UCIS 1.0 specification has defined a common data

model for a consistent interpretation and utilization of the

coverage data created by various coverage data producers by a

variety of consumers. This model has been designed to be

flexible and extensible while maintaining the requirements for

universally recognizable information storage. The UCIS 1.0

specification defines structures as part of the coverage data

model. Some of the structures within this data model are as

follows:

 Scopes to create the hierarchical structure that

describes the design. These scopes may or may not

contain child scopes. These scopes are analogous to

the design hierarchy while extended to include

coverage constructs that may or may not exist in the

HDL design [6].

 Attributes which serve as data decoration elements for

scopes and coveritems [8]. This includes both static

information such as the filename as well as dynamic

information such as thresholds.

 Coveritems to hold the counts of recorded events,

which are used to compute coverage [7]. The

coveritem is an integral count, decorated with enough

information to describe what was counted.

To present a consistent interpretation of the information

stored in each coveritem, the UCIS specification describes an

abstract theory of coverage. For this abstract theory of

coverage the collection of coverage data by the tool producing

the data has the form:

@event if(condition) event_counter++ (1)

Essentially, at an event of interest, event, if a particular

condition of interest, condition, is satisfied, then a counter,

event_counter, is incremented. Examples of the event of

interest include a variable value change, a clock edge, or a

finite state machine (FSM) transition. Examples of conditions

that may be tested include sequences of variable values and

start and destination FSM states.

Bugspray FSM: fsm.fsm_state1, clk_event

: (M1, unit, chip);

 state_vector := (w_fsm_stm_q(10

downto 0));

 states := (s00, s01, s02,

s03, s04, s05, s06, s07, s08, s09, s10,

s11);

 state_encoding := (s00 :=

'00000000001',

 s01 := '00000000010',

 s02 := '00000000100',

 s03 := '00000001000',

 s04 := '00000010000',

 s05 := '00000100000',

 s06 := '00001000000',

 s07 := '00010000000',

 s08 := '00100000000',

 s09 := '01000000000',

 s10 := '10000000000',

 s11 := '00000000000');

 arcs := (s00 => s00, s10 =>

s00, s11 => s00, s00 => s01, s01 =>

s01, s01 => s02, s02 => s02, s10 => s02,

s11 => s02, s02 => s03, s03 => s03,

s01 => s04, s05 => s04, s11 => s04, s01

=> s05, s05 => s05, s11 => s05, s05 =>

s06, s01 => s07, s07 => s07, s08 =>

s07, s09 => s07, s11 => s07,

 s07 => s08, s08 => s09, s09 => s09,

 s09 => s10, s00 => s11, s01 => s11,

s02 => s11, s03 => s11, s04 => s11, s05

=> s11, s06 => s11, s07 => s11, s08 =>

s11, s09 => s11, s10 => s11, s11 => s11

);

end FSM;

Figure 1. BugSpray coverage statement for a Finite State Machine

C. Bugspray

BugSpray is an IBM internally developed VHDL

extension used for functional coverage and assertions. [9]

BugSpray is used by both design and verification engineers to

add coverage and assertion verification objects to the RTL.

BugSpray allows these verification objects to be portable

across verification engines (formal, simulation, acceleration)

and enables hierarchical design reuse. BugSpray allows the

designers to define interesting events and scenarios that, based

on their knowledge of the design, need to be covered for

verification completeness. As such, it serves as a metric for

measuring the quality of the input vectors driven into the

design. [10]. For instance this BugSpray statement

[count; event.event_name_0 ; clk] : (M1,unit,chip) <=

signal_name_d(0) AND NOT signal_name_q(0) ;

defines a BugSpray count event, event.event_name_0. This

event is evaluated upon a change in signal clk. The count for

this event is incremented when at a change in clk,

signal_name_d(0) is asserted and signal_name_q(0) is

deasserted. The complexity of BugSpray statements can range

from the simple combinatorial statement specified above to

coverage of a complex FSM as illustrated in Fig 1 below. Fig.

1 describes a state machine with 12 states. In the BugSpray

FSM coverage statement the state vector variable is defined

and the states and their encoding are specified. Finally, the

transition arcs are defined for coverage to be collected on the

state transitions.

D. Current Typical Analysis and Usage Flow

Design engineers leverage their knowledge of both the

functionality and implementation of the design to create

BugSpray assertions and evaluate coverage metrics. These

assertions and coverage metrics are used to grade the

robustness of the verification stimulus and the progress

towards verification completeness. Verification engineers can

also add BugSpray coverage and assertions to augment the

verification environment. Various types of BugSpray events

can be defined, however, in simulation the most commonly

used are events that provide counts of whatever particular

logic has been exercised. These events typically follow two

main categories:

 Mainline logic count events: Counts which indicate

various functional logic paths that have been exercised.

 Error logic count events: Counts which indicate that

logic has been exercised in the event of an error

scenario (e.g. ECC, parity or some other error

detection/correction algorithm)

During simulation, the BugSpray assertions and coverage

events are monitored to identify if the defined events or

sequences occur. If so, the events are counted and logged.

Event statistics from each simulation are maintained and sent

to a central server at the end of simulation. These statistics are

maintained across simulations and reports are made available

upon request. Engineers can then review the reports to

measure and track coverage. The BugSpray report provides a

well defined text format for conveying the collected functional

coverage information stored on the central server. Coverage

information is presented based on both the design hierarchy

and individual design unit types.

E. Room for Growth

As the team’s needs and desires change, it is important that
the desired solution be flexible enough to change as well. The
addition of other types of data, such as source and line
information for improved assertion and coverage debug and
analysis is an example of such a desire. In addition, while the
current solution provides some automation, it is automation
built and maintained by the verification leads. The maintenance
of the existing automation and the addition of features has to be
performed by the same verification lead and takes time away
from more valuable verification tasks such as trend analysis or

Figure 2 Simulation Functional Coverage Data to Coverage Database

Conversion Flow

Simulation

Coverage

Statistics

UCIS

Conversion

Coverage

Database

Coverage Report

Verification Planning and

Management Tool

Coverage Statistics

Server

methodology definition and refinement. For this reason, among
others, it is important to leverage existing industry available
solutions wherever possible. Using these types of solutions not
only alleviates the tools development and maintenance burden
on the verification leads but enables the team to take advantage
of industry advances as they arise in the future.

F. Support the Existing Flow

The requirements for any new approach are as follows.
There is an ongoing need to support the continued use of
legacy BugSpray assertions. New BugSpray assertion
development also needs to be supported as BugSpray is an
important part of the verification flow with multiple benefits.
The use of both PSL and BugSpray in the same
modules/entities also needs to be supported as design and
verification teams need to have the flexibility to adopt either or
both as their requirements change. Support for mixed cycle and
event simulator environments is important as IBM continues to
leverage its cycle simulator for its performance benefits.

III. METHOD

A. Process Overview

The conversion involves obtaining the combined coverage

statistics from the BugSpray server in the form of a BugSpray

report. The report is then parsed and an UCIS compliant XML

file is generated. Another utility is then used to generate a

coverage database from the coverage data contained in the

XML file. This coverage database is then loaded into Incisive

vManager for review and analysis. The overall process is

presented in Figure 2

B. Selection of the Appropriate UCIS Interface

While the UCIS 1.0 specification attempts to address

coverage mechanics across heterogeneous tools [11], what has

been defined thus far is insufficient for complete

interoperability. The two types of formats defined within the

UCIS document – the API mechanism, as well as the simpler

exchange mechanism using XML offer different restrictions

and opportunities. The API mechanism provides for the

creation of user defined types and operations. The API also

supports the use of limited random data access in the in-

memory or read-streaming access modes. However the

functions contained in the API necessitate the provision and

compilation of both source and destination vendor library

files. The UCIS 1.0 specification provides a World Wide Web

Consortium (W3C) XML compliant schema to represent the

coverage data in XML format [12]. The XML approach makes

it fairly easy to manipulate and translate formats, including

importing and exporting information, which for our

application is all that is needed.

In this process the XML approach was used for ease of

implementation and use. With the XML interface, we were

able to easily prototype and test the flow without changes to

any software library files. The XML file is also human

readable and serves as an additional source of documentation.

As stated above, the UCIS was developed to enable coverage

metric exchange between a heterogeneous system of coverage

producers and consumers. In this case the producer is the IBM

proprietary cycle based simulation regression and the

consumer is Incisive vManager.

The UCIS XML exchange format provides a generic

common coverage data model which supports access to the

coverage data from the producer and the ability for the

consumer to understand it within the context of the design.

The XML exchange mechanism provides naming and

mapping conventions to facilitate this consistent exchange and

interpretation of coverage data between the simulation

coverage statistics server and Incisive vManager.

Figure 3 Representation of the UCIS Generic Data Model

C. Conversion of Coverage Data to XML format

Each BugSpray event line in the report is parsed and

separated into its components. The Hierarchy section is split

into its individual instance names. A hierarchy is built

utilizing the instance names provided by the hierarchy section.

The parsing solution script can support BugSpray properties

specified in the report in a non hierarchical fashion. For each

terminating level of hierarchy, the design entity and variable

class information is stored. Within each variable class, the

tag(s), variable name, and counter value information is stored.

In the case where multiple variable names exist for a given

variable class for a given level of hierarchy, the variable

names, tag(s) and counter value information are added to the

existing variable class. In the case where multiple variable

classes exist for a given level of hierarchy, the new variable

class, with associated variable name(s) and counter value(s), is

added to the existing level of hierarchy. Once this tree

structure is completely built, the XML file is generated.

Figure [5] shows an example XML file with the associated

hierarchies and coverage information.

D. Data Mapping

Initially, we decided to map the BugSpray assertions and

coverage to PSL assertions and cover properties due to the

absence of coverage crosses. In addition, the existence of PSL

to BugSpray conversion tools like IBM’s Formal Checkers

(FoCs) tool led to this thinking. [13] However, BugSpray

allows for the definition of classes of event counter variables.

These classes enable multiple event counter variables of the

same name at the same level of hierarchy, as long as they are

defined as part of different variable classes. BugSpray also

allows for the definition of tags, which serve as comments.

The existence of BugSpray variable classes and tags drove the

mapping in another direction, to mapping to the UCIS

covergroup construct. This data model was more consistent as

this allowed us to take advantage of the covergroup

construct’s names and comments in the mapping.

E. The Data Model and Rationale for Data Mapping

Decisions

For the purposes of creating a common reference point for the

multiple producers and consumers of coverage data, the UCIS

defines a common information model which specifies that the

data contained in a coverage database is a collection of counts

that have meaning with respect to the design. A simple

example of the coverage data model is illustrated in Figure 3.

The basic concept is that these counts are integral numbers

with enough associated information to make them

understandable in the context of the design [1]. For practical

purposes the implemented data model is not the information

model but can (and does) represent a useful subset of it. There

is an inherent difficulty in mapping real examples and data to

the unifying principle of UCIS. While the informational model

defines a set of generic counters with relevant design

information, the semantics of the counters are not always the

same. With this flow, we are able to maintain enough

information in the coverage database that a designer with

knowledge of the design RTL would be able to identify the

meaning of the coverage data and perform useful post-

conversion analysis on it. However, the UCIS covergroup

model defines a set of constructs that matches the information

that we are trying to model. At some predefined event, if some

predefined condition is true, increment a counter. This

definition was also consistent with the BugSpray statement

data that was being imported. Consider this view of the

BugSpray assertions. At the event (statement test) if the

predefined sequence of events was encountered, then the

counter variable is incremented. Figure 4 illustrates the

various constructs and properties that are utilized in our

coverage mapping. To make mapping to a covergroup data

model easier and to support the UCIS conversion utility

requirements, we also defined a CVGBINSCOPE and

CVGBIN for each COVERPOINT (BugSpray statement).

Within the coverage model, multiple DU_MODULEs, which

correspond to design units (Verilog modules or VHDL

entities) , can be defined. In the case where a design unit is

replicated within a larger design, multiple INSTANCEs of a

DU_MODULE can be defined. Within either a

DU_MODULE or an INSTANCE one or more

COVERGROUPs can be defined. For each COVERGROUP

multiple COVERPOINTs can be defined, these correspond to

individual BugSpray event variables.

The currently defined data model for the UCIS conversion

utility allows for the use of many properties. Future plans may

call for the addition and usage of additional properties to the

Figure 4 Representation of Implemented Coverage Data Model

COVERGROUP COVERINSTANCE

COVERPOINT

CVGBINSCOPE (auto)

auto[0]

DU_MODULE INSTANCE

Coverage Model Top

One to Many Relationships

Many to One Relationship

DU_MODULE INSTANCE

Coverage Model Top

COVERGROUP COVERINSTANCE

COVERPOINT

CVGBINSCOPE (auto)

DU_MODULE INSTANCE

Coverage Model Top

coverage data XML file. However, we defined these

properties as the initial set for implementation in the XML

file.

The XML coverage properties which can be associated with a

DU_MODULE or INSTANCE are

 NAME*

 LANGUAGE*

 TYPE_NAME* (for INSTANCE for referring to

the respective DU_MODULE name)

The XML coverage properties which can be associated with a

COVERGROUP or COVERINSTANCE are

 NAME*

The XML coverage properties that can be associated with a

COVERPOINT are

 NAME*

The XML coverage properties that can be associated with a

CVGBINSCOPE are

 NAME*

The XML coverage properties that can be associated with a

CVGBIN are

 NAME*

 COUNT*

* indicates mandatory properties.

Each BugSpray variable class is mapped to a COVERGROUP
name and the corresponding individual BugSpray event are
mapped to COVERPOINTs within that COVERGROUP. The
BugSpray variable counts for each event are mapped to the
corresponding COVERPOINT’s COUNT property which is
associated with its CVGBINSCOPE and CVGBIN properties.
Another question was how to map the error scenario events.
Should they be treated as a special type of coverage in the
context of the covergroup? If so, what kind of data decoration
should be used to denote this special case? In the context of the
conversion algorithm, BugSpray fail events can be considered
a special version of the count events since they are designed to
track a error scenarios. Therefore they still match the @event,
if (condition) , counter++ data model and this dictated that
failure events are treated the same as count events within the
XML and coverage database. The data decoration occurs in the
comment field where the coverage is specified as being
coverage of an error. Figure 5 shows an example of the
coverage XML format.

F. Conversion of XML to Coverage Database

 The Unified Coverage Interoperability Standard (UCIS)

conversion utility converts a well-formed valid XML instance

of a coverage database XML schema into a coverage database.

The overall process flow is shown in Fig. 6. If invalid XML is

specified as input to the UCIS utility, error(s) are reported and

the functional coverage database is not generated. When valid

XML is provided, the UCIS utility generates a corresponding

coverage database based solely on the coverage data specified

in the XML. This XML coverage data is not manipulated in

any way. For instance, if the input XML only contains

instance based coverage data, then the UCIS utility does not

merge instance based coverage data to create type based

coverage data. A benefit of creating a tree structure in the

initial coverage report to XML conversion was that even if the

related coverage information in the report is not grouped

hierarchically or even located in the same portion of the

report, the coverage data XML file generated is. This structure

also allowed the XML to be structured in such a way that if

there is a Many to One relationship between several

INSTANCEs and their respective DU_MODULE, the

DU_MODULE can precede the INSTANCEs in the XML file.

This arrangement allows the UCIS conversion utility to better

manage memory and improve coverage database conversion

performance.

IV. RESULTS

This new approach allows for the verification and design

teams to combine coverage from event and cycle simulations.

This combination allows for a more complete view of

coverage and verification completeness. The use of the UCIS

conversion utility allows for the use of industry standard

functional coverage analysis and Verification Planning and

Management tools like Incisive vManager while still

<?xml version="1.0"?>

<unicov:unicov

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://www.cadence.com/unicov

unicov.xsd"

xmlns:unicov="http://www.cadence.com/unicov">

<!—Design Unit definition -->

<unicov:scope>

<unicov:type>DU_MODULE</unicov:type>

<unicov:name>top</unicov:name>

<unicov:lang>SV</unicov:lang>

<!—Covergroup definition -->

<unicov:type>COVERGROUP</unicov:type>

<unicov:name>cg</unicov:name>

<!—Coverpoint definition -->

<unicov:scope>

<unicov:type>COVERPOINT</unicov:type>

<unicov:name>A</unicov:name>

<!-- Auto Bins -->

<unicov:scope>

<unicov:type>CVGBINSCOPE</unicov:type>

<unicov:name>auto</unicov:name>

<unicov:src uri=" file://test.sv" line="13"/>

<unicov:bin>

<unicov:type>CVGBIN</unicov:type>

<unicov:name>auto[0]</unicov:name>

<unicov:intProperty property="COUNT" value="0"/>

</unicov:bin>

<unicov:bin>

</unicov:scope>

</unicov:scope>

</unicov:scope>

Figure 5. XML File Example

Figure 6. XML to Coverage Database Conversion Flow

maintaining the current VHDL language and verification flow.

With this approach the possibility of tying in other forms of

coverage, like code coverage, is now available.

The UCIS conversion utility offloads the need to build and

maintain various functional coverage data tracking tools from

the verification leads to an industry available tool. The only

tool needed is a script to convert the coverage information to

the UCIS conversion utility’s XML format. This can be used

with a much smaller resource impact than trying to maintain a

complete Verification Planning and Management toolset. The

use of the UCIS conversion utility also enables the use of

other tools which open the door to the possibility of more

automation. As can be seen in Figure 7, the Incisive vManager

GUI often makes it easier to analyze, traverse and understand

the coverage data as opposed to the text reports. However, the

text reports can still be generated from the tool if desired. The

overhead for conversion is not excessive. A report with

approximately 100000 coverage point entries takes

approximately 46 seconds for the whole conversion process.

A. Proposed Next Steps

The next phase of this project will be to explore the

enablement of some additional data transformation and

storage in the UCIS XML and subsequently in the coverage

database. For instance, at this point during coverage reviews,

in some cases, the name of a property or coverage count is all

that is accessible. Depending on the amount of detail included

in the name, identifying the reason or meaning for the

coverage statement can be difficult without help from the

engineer who created the functional coverage. It is also

difficult to determine what constraints might need to be

applied to the verification environment to produce input

vectors which could increase coverage for those properties.

An easy way to correlate and view the properties which collect

the coverage could be helpful in this kind of analysis. The

collection of source code data from a combination of other

sources may be possible. This source code data could then be

stored in the coverage data XML file and coverage database.

The UCIS conversion utility supports the addition of source

code file and line information. Armed with this information

and the vManager C/S GUI which allows for the viewing of

cover properties linked to the source code of functional

coverage metrics, coverage analysis can be accomplished

more easily without involving design resources.

Figure 7. Example Coverage Hierarchy view

Verification engineers can also review the effectiveness of

their verification environments in impacting functional

coverage closure more independently.

As previously mentioned in this paper, the UCIS coverage

conversion utility does not manipulate the coverage data in

any way. Currently the XML coverage data generated is only

instance based. Instance based functional coverage is

functional coverage that is collected and tracked on for each

instance of any particular design unit. This kind of coverage

tracking is useful for when the particular instance on which a

coverage event was observed is relevant to the coverage event.

For instance, in the case of some distributed arbitration

algorithm, where it is important to track that each instance of

the arbitration unit received some information packet from a

central unit. Type based functional coverage, however, is

functional coverage that is collected and tracked across all

instances of any particular design unit. There are situations

where type based functional coverage data can be useful to the

verification effort. For instance, consider the case where, you

have several instances of some instruction execution unit. For

the purposes of verifying successful execution of all possible

instructions, the actual instance on which the instruction was

executed on may be irrelevant. In that case, the functional

coverage data on instructions executed across the multiple

instances of the instruction unit would be collected and

aggregated for tracking and measurement purposes. Enabling

the use of type based coverage data is also a possibility.

Currently, two approaches are being considered. Either having

the UCIS XML conversion utility automatically calculate the

type based coverage based on the instances contained in the

coverage data XML file or calculating the type based coverage

based on the instances and type specified in the BugSpray

coverage report or writing the type based coverage directly to

the coverage data XML file. The latter approach has the

attractive quality of being consistent with the current UCIS

conversion utility generating coverage based solely on the data

contained in the coverage data XML file.

Other UCIS conversion utility supported properties

consistent with Coverage Driven Verification may also be

explored to determine their suitability for inclusion in the

coverage data XML file.

B. Conclusion

This paper describes a method that we developed to easily

convert VHDL functional coverage data generated from cycle

simulations into a form that could be consumed by an industry

available Verification Planning and Management tool,

Cadence’s vManager C/S. This process leverages the

Accellera Unified Coverage Interoperability Standard (UCIS)

to create a generic common coverage data model for the

exchange and transformation of the functional coverage data.

REFERENCES

[1] Accellera Organization, Inc. (2012, June), Unified Coverage
Interoperability Standard (UCIS). Accellera Organization, Inc. [Online]
Available: http://www.accellera.org/downloads/standards/ucis

[2] Bruce Wile, John C. Goss, Wolfgang Roessner. Comprehensive
Functional Verification: The Complete Industry Cycle, pp 9.

[3] Bruce Wile, John C. Goss, Wolfgang Roessner. Comprehensive
Functional Verification: The Complete Industry Cycle, pp 10

[4] Bruce Wile, John C. Goss, Wolfgang Roessner. Comprehensive
Functional Verification: The Complete Industry Cycle, pp 251

[5] Accellera Organization, Inc. (2012, June), Unified Coverage
Interoperability Standard (UCIS). Accellera Organization, Inc. [Online]
Available: http://www.accellera.org/downloads/standards/ucis pp 14

[6] Accellera Organization, Inc. (2012, June), Unified Coverage
Interoperability Standard (UCIS). Accellera Organization, Inc. [Online]
Available: http://www.accellera.org/downloads/standards/ucis pp 18

http://www.accellera.org/downloads/standards/ucis
http://www.accellera.org/downloads/standards/ucis
http://www.accellera.org/downloads/standards/ucis

[7] Accellera Organization, Inc. (2012, June), Unified Coverage
Interoperability Standard (UCIS). Accellera Organization, Inc. [Online]
Available: http://www.accellera.org/downloads/standards/ucis pp 18

[8] Accellera Organization, Inc. (2012, June), Unified Coverage
Interoperability Standard (UCIS). Accellera Organization, Inc. [Online]
Available: http://www.accellera.org/downloads/standards/ucis pp 18

[9] Amir Hekmatpour, James Coulter, Azadeh Salehi. FoCus: A Dynamic
Regression Suite Generation Platform for Processor Functional
Verification. [Online]
Available:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.
3577&rep=rep1&type=pdf pp 2

[10] Viresh Paruthi . Large-scale Application of Formal Verification: From
Fiction to Fact [Online]

Available:http://fmcad10.iaik.tugraz.at/Papers/papers/09Session8/024Pa
ruthi.pdf

[11] Accellera Organization, Inc. (2012, June), Unified Coverage
Interoperability Standard (UCIS). Accellera Organization, Inc. [Online]
Available: http://www.accellera.org/downloads/standards/ucis

[12] Accellera Organization, Inc. (2012, June), Unified Coverage
Interoperability Standard (UCIS). Accellera Organization, Inc. [Online]
Available: http://www.accellera.org/downloads/standards/ucis pp 181

[13] IBM, Corporation. (2003, Februrary), Formal Checkers (FoCs) User
Guide. IBM Corporation. [Online] .
Available:https://www.research.ibm.com/haifa/projects/verification/focs
/focs2.pdf

http://www.accellera.org/downloads/standards/ucis
http://www.accellera.org/downloads/standards/ucis
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.3577&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.3577&rep=rep1&type=pdf
http://fmcad10.iaik.tugraz.at/Papers/papers/09Session8/024Paruthi.pdf
http://fmcad10.iaik.tugraz.at/Papers/papers/09Session8/024Paruthi.pdf
http://www.accellera.org/downloads/standards/ucis
http://www.accellera.org/downloads/standards/ucis
https://www.research.ibm.com/haifa/projects/verification/focs/focs2.pdf
https://www.research.ibm.com/haifa/projects/verification/focs/focs2.pdf

