
An Assertion Based Approach to Implement
VHDL Functional Coverage

Michael Wazlowski, Susan Eickhoff, Michael Debole – IBM Corp.
Tagbo Ekwueme-Okoli – Cadence Design Systems

Agenda

• Introduction
• Background
• Method
• Results
• Q & A

Introduction

• Methodologies like SV/UVM have become the
de facto standard for Coverage Driven
Verification

• In a VHDL mixed cycle and event simulation
environment the costs of conversion are
prohibitive

• This presentation describes a process which
leverages UCIS to manage functional coverage
in this environment

Introduction

APB Bus #1

GPIO*

Multi-Layer AHB Matrix

PCM Timer

WDTALUT SPI WB BridgeBridge

UART1 ENETENET
ENET

ENET*

OR1K RISC
Processor*

Power Shut-Off Control

UVM Reference Design

APB Bus #2

UART 1,2*

SRAM SMCDMA

• Chips have become more
complex

• With the increases in
complexity, enhancements
to functional verification
methodologies have
become necessary

• Coverage Driven Verification
and Verification Planning
and Management are two
of these enhancements

Introduction

• Teams are often forced to use ad-hoc methods
to manage increasing amounts of data

Event sim
regressions

Cycle sim
regressions

Design
Teams

Manage
Reports

?!#?!#

Unified Coverage Interoperability
Standard (UCIS)

XML Interchange
Unified Coverage
Database

UCIS API

UCIS API

Simulation Static Checks Formal
Verification

Emulation

Report generation RTL Annotation Test plan update

Coverage producers

Coverage consumers

• Ultimate goal:
Universally
recognizable and
accessible coverage
data

• Several benefits flow
from this goal

• Two transfer methods

BugSpray

• IBM Created VHDL coverage extension
• Designers define interesting events to track

[count; event.event_name_0 ; clk] : (comment)
<= signal_a AND NOT signal_b ;

Method

Report parsed and XML
file generated

XML read and
coverage DB
generated

Method

Hierarchy built

• Each report line -> One coverage point
• Hierarchy built from information

Coverage
information

extracted

• Variable classes identified and stored
• Variable counts identified and stored

XML file written

• Hierarchy tree completed

Method

XML file read

•XML checked for validity
vs schema

Coverage DB
generated

•Coverage model built
•Coverage data generated

XML vs API

XML Interchange
Unified Coverage
Database

UCIS API

UCIS API

Simulation Static Checks Formal
Verification

Emulation

Report generation RTL Annotation Test plan update

Coverage producers

Coverage consumers

• XML
• Primarily for data

transformation
• API

• Primarily for
coverage
database access

XML

XML Interchange
Unified Coverage
Database

UCIS API

UCIS API

Simulati
on

Static
Checks

Formal
Verificatio

n

Emulati
on

Report
generation

RTL
Annotation

Test plan
update

Coverage producers

Coverage consumers

• Not performance optimized
• But impact can be managed

• Meaning of coverage data can be
inferred

API

XML Interchange
Unified Coverage
Database

UCIS API

UCIS API

Simulatio
n

Static
Checks Formal

Verification

Emulatio
n

Report
generation

RTL Annotation Test plan
update

Coverage producers

Coverage consumers

• Performance optimized
• Meaning of coverage data must be defined
• Requires changes to source code

XML vs API
• The XML-based interchange format was used

– Ease of implementation/use
– Ease of Interpretation
– Portability

UCIS Coverage Data Working
Model

• Highly generalized model of coverage may be stated as
@event if (condition) counter++

 Variable value change

 Statement execution

 Covergroup sample
 Sample value

 Sequence of signals

 SV bins

 Assertion status

 Any count!

UCIS Technical Committee

Mapping Coverage Data

• Initially mapped BugSpray coverage to
assertions
– Existence of PSL to BugSpray conversion tool
– No concept of crosses

• Final decision was to map to the UCIS
covergroup construct
– Allowed the mapping of comments and variable

classes

Mapping Coverage Data
• For explanation let’s use the SV covergroup

– Its constructs closely match the UCIS general model
bit [9:0] v_a;
covergroup cg @(posedge clk);

coverpoint v_a;
endgroup

Event
definition

Conditional
counter

UCIS Technical Committee

[count; event.event_name_0 ; clk] : (comment) <= signal_a AND NOT signal_b ;

• Team can now leverage automation to free up
verification resources

Results

Event sim
regressions

Cycle sim
regressions

vManager

Manage
Reports

Design
Teams

Conversion

Formal?

?

Special Thanks

• IBM – Jeff Plate
• Cadence – Guarav Singh, John Brennan

Q&A

• Any Questions?

	Slide Number 1
	Agenda
	Introduction
	Introduction��
	Introduction
	Unified Coverage Interoperability Standard (UCIS)
	BugSpray
	Method
	Method
	Method
	XML vs API
	XML
	API
	XML vs API
	UCIS Coverage Data Working Model
	Mapping Coverage Data
	Mapping Coverage Data
	Results
	Special Thanks
	Q&A

