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Introduction

• Methodologies like SV/UVM have become the 
de facto standard for Coverage Driven 
Verification

• In a VHDL mixed cycle and event simulation 
environment the costs of conversion are 
prohibitive

• This presentation describes a process which 
leverages UCIS to manage functional coverage 
in this environment
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• Chips have become more 
complex

• With the increases in 
complexity, enhancements 
to functional verification 
methodologies have 
become necessary

• Coverage Driven Verification 
and Verification Planning 
and Management are two 
of these enhancements
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• Teams are often forced to use ad-hoc methods 
to manage increasing amounts of data
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• Ultimate goal: 
Universally
recognizable and 
accessible coverage 
data

• Several benefits flow 
from this goal

• Two transfer methods



BugSpray

• IBM Created VHDL coverage extension
• Designers define interesting events to track

[count; event.event_name_0 ; clk] : (comment) 
<= signal_a AND NOT signal_b ;



Method
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Method

Hierarchy built

• Each report line -> One coverage point
• Hierarchy built from information

Coverage 
information 

extracted

• Variable classes identified and stored
• Variable counts identified and stored

XML file written

• Hierarchy tree completed



Method

XML file read

•XML checked for validity 
vs schema

Coverage DB 
generated

•Coverage model built
•Coverage data generated



XML vs API
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• XML
• Primarily for data 

transformation
• API

• Primarily for 
coverage 
database access 



XML 
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• Not performance optimized
• But impact can be managed

• Meaning of coverage data can be 
inferred



API
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• Performance optimized
• Meaning of coverage data must be defined
• Requires changes to source code



XML vs API
• The XML-based interchange format was used

– Ease of implementation/use
– Ease of Interpretation
– Portability



UCIS Coverage Data Working 
Model

• Highly generalized model of coverage may be stated as
@event if (condition) counter++

 Variable value change

 Statement execution

 Covergroup sample
 Sample value

 Sequence of signals

 SV bins

 Assertion status

 Any count!

UCIS Technical Committee 



Mapping Coverage Data

• Initially mapped BugSpray coverage to 
assertions
– Existence of PSL to BugSpray conversion tool
– No concept of crosses

• Final decision was to map to the UCIS 
covergroup construct
– Allowed the mapping of comments and variable 

classes



Mapping Coverage Data
• For explanation let’s use the SV covergroup

– Its constructs closely match the UCIS general model
bit [9:0] v_a;
covergroup cg @(posedge clk);

coverpoint v_a;
endgroup

Event
definition

Conditional
counter

UCIS Technical Committee 

[count; event.event_name_0 ;    clk ] : (comment) <= signal_a AND NOT signal_b ;



• Team can now leverage automation to free up 
verification resources

Results
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Special Thanks

• IBM – Jeff Plate
• Cadence – Guarav Singh, John Brennan



Q&A

• Any Questions?
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