

An Assertion Based Approach to Implement VHDL Functional Coverage

Michael Wazlowski, Susan Eickhoff, Michael Debole – IBM Corp. Tagbo Ekwueme-Okoli – Cadence Design Systems

Agenda

- Introduction
- Background
- Method
- Results
- Q & A

Introduction

- Methodologies like SV/UVM have become the de facto standard for Coverage Driven Verification
- In a VHDL mixed cycle and event simulation environment the costs of conversion are prohibitive
- This presentation describes a process which leverages UCIS to manage functional coverage in this environment

Introduction

- Chips have become more complex
- With the increases in complexity, enhancements to functional verification methodologies have become necessary
- Coverage Driven Verification and Verification Planning and Management are two of these enhancements

Introduction

 Teams are often forced to use ad-hoc methods to manage increasing amounts of data

nified Coverage Interoperability Standard (UCIS)

- Ultimate goal: Universally recognizable and accessible coverage data
 - Several benefits flow from this goal
 - Two transfer methods

Coverage consumers

Coverage producers

BugSpray

- IBM Created VHDL coverage extension
- Designers define interesting events to track

[count; event.event_name_0 ; clk] : (comment) <= signal_a AND NOT signal_b ;</pre>

Method

Report parsed and XML file generated

XML read and coverage DB generated

Method

XML vs API

- XML
 - Primarily for data transformation
- API
 - Primarily for coverage database access

Coverage consumers

Coverage producers

XML

- Not performance optimized
 - But impact can be managed
- Meaning of coverage data can be inferred
 Simulati

Coverage consumers

API

- Performance optimized
- Meaning of coverage data must be defined
- Requires changes to source code

Coverage producers

Coverage consumers

XML vs API

- The XML-based interchange format was used
 - Ease of implementation/use
 - Ease of Interpretation
 - Portability

UCIS Coverage Data Working Model

• Highly generalized model of coverage may be stated as @event if (condition) counter++

- Variable value change
- Statement execution
- Covergroup sample

- Sample value
- Sequence of signals

- SV bins
- Assertion status
- Any count!

Mapping Coverage Data

- Initially mapped BugSpray coverage to assertions
 - Existence of PSL to BugSpray conversion tool
 - No concept of crosses
- Final decision was to map to the UCIS covergroup construct
 - Allowed the mapping of comments and variable classes

Mapping Coverage Data

For explanation let's use the SV covergroup

- Its constructs closely match the UCIS general model

Results

 Team can now leverage automation to free up verification resources vPlan Manage Reports **Event** sim regressions vManager TA TA Conversion **H** Formal? Design Cycle sim **Teams** regressions

Special Thanks

- IBM Jeff Plate
- Cadence Guarav Singh, John Brennan

Q&A

• Any Questions?