
Page 1 of 7

An Approach for Faster Compilation of Complex

Verification Environment:

The USB3.0 Experience
Mahesha Shankarathota (maheshas@synopsys.com)

 Vybhava S (vybhava@synopsys.com)

 Indrajit Dutta (indrajit@synopsys.com)

 Synopsys India Pvt Ltd. Bangalore-India

Abstract— This paper discusses a methodology in which the

compile time of a complex verification environment is brought

down from 12-20 minutes to 2 minutes achieving 6X reduction in

the compile time. By adopting partition compile methodology

and good coding practices, an overall gain of 6X is achieved in

the compilation process, thus increasing the productivity of the

whole team. This paper describes the basic requirements for the

partition compile methodology, motivation, our solution, and

challenges faced while upgrading a complex verification

environment. The good coding practices in SystemVerilog

necessary to meet the partition compile requirements are

presented with examples in this paper. The above flow is tested

on DesignWare IP core verification at Synopsys including the

DesignWare USB3.0 component. The simulator used is VCS®

simulator version vcsmx-2011.12.

Keywords— Partition, Compilation, System Verilog, USB,

Intellectual Property, Verification, DesignWare

INTRODUCTION

The conventional verification techniques of SOCs and IP

blocks are becoming extremely challenging due to the

increasing complexities of the designs. When the time-to-

market pressure of these SOCs and IP blocks are high, it

becomes critical to have efficient and faster verification

techniques to meet this demand. In standard verification

methodologies, utmost care should be taken to achieve the

shortest compile and simulation time to shorten the overall

verification cycle and increase productivity.

The DesignWare USB3.0 IP verification environment consists

of 5 major components namely AHB, AXI VIP (Verification

IP), USB3.0 VIP, USB Physical Layer IP, and the USB3.0

Core. The USB3.0 Core is a complex IP supporting multiple

modes (like Device, Host, Hub, OTG, and DRD), multiple

interfaces, and all USB speeds. The legacy RAL based VMM

constrained random verification environment does not have

incremental compile support. This results in compiling all the

components every time, taking about 12-20 minutes of

compile time. A complex environment of about 2500 files for

parsing and widely used by over 60 engineers causes a

significant decrease in productivity. This paper presents our

effort to find an efficient solution to this problem, provides

implementation details and highlights the results achieved.

I. LEGACY USB3.0 TEST ENVIRONMENT

ARCHITECTURE

The USB3.0 verification environment is shown in Figure

1.The legacy compile flow uses the VCS
®
 single compile flow

where all files of the verification environment are input to the

simulator. This environment consists of two top-level entities.

 A Verilog Subsystem instantiates the USB3.0 DUT and

the USB3.0 Physical layer (PHY) IP.

 A program block which is the Test Environment (TE) top

and instantiates all the TE components.

$unit scope

AHB/AXI Classes

USB3.0 VIP Classes

USB3.0 Test Env Classes

Interfaces

PROGRAM

<test section>

Verilog Subsystem

USB3.0 Core(DUT)

USB3.0 PHY

INTF

Cross Partition References Cross-module references

 Test Environment Test Environment

Figure 1: USB3.0 Verification Environment

The TE components AHB, AXI VIP, USB3.0 VIP, and

numerous TE common classes reside in the compilation-unit

scope in the single compile flow. In this flow, all the modules,

classes, and program blocks are in a single compilation-unit.

The interaction between the Verilog subsystem and the TE

happens through multiple virtual interfaces. The functional

verification of the design requires multiple Cross Module

Reference(s) (XMR) to get access to Verilog subsystem

signals in the TE domain. The flow supports the use of XMRs

and forward reference of classes. For example, a reference

from the USB3 VIP class to the test environment class (in

Figure 1 above) is depicted as a cross partition reference.

VCS
®
 parses all the files of the environment, compiles, and

simulates. In the legacy verification flow we parse around

2500 files for a single simulation and it takes about 12-20

minutes for the compilation (analysis + elaboration). For a

mailto:maheshas@synopsys.com
mailto:vybhava@synopsys.com
mailto:indrajit@synopsys.com

Page 2 of 7

change in any of the test-bench files, we need a fresh

simulation to verify the change, and hence the engineer needs

to wait for the same amount of compile time for each

simulation. And, because this legacy setup is widely used by

many engineers, it has a significant negative impact on

productivity. This is a typical example of huge compile time

dependency in the design verification cycle for any large

SystemVerilog based verification setup. Huge compile time

can shift the project delivery schedule and increase the overall

product development time and finally can contribute

significantly to the “time-to-market” of the product. This is

the precise reason we started to look for better compilation

flows to reduce the compile time.

After looking at VCS
®
 separate and partition compile flows,

we selected VCS
®
 partition compile flow. The verification

environment with well-defined partitions like AHB, AXI VIP

(Verification IP), USB3.0 VIP, USB3.0 Physical Layer IP,

USB3.0 DUT, and the SystemVerilog test-bench fitted

perfectly into the flow.

II. SYSTEMVERILOG CONCEPTS USED IN

PARTITION COMPILE

System Verilog is rich in constructs and operators. Knowledge

of SV packages, SV virtual interfaces, cross module

references (XMRs), and $unit scope are necessary to adopt

partition compile methodology. This section describes these

concepts with examples.

SystemVerilog packages provide an additional mechanism for

sharing parameters, data, type, task, function, sequence and

property declarations. Packages can be imported or

referenced in the SystemVerilog module, interface, and

program blocks. Types, task, functions, sequences, and

properties may be declared within a package. These

declarations may be referenced within the module, interfaces,

programs and other packages by either import or fully

resolved name. In the Figure 2, package “TransactorPkg” is

declared and is imported in the program “p” in Figure 3.

package TransactorPkg;

import TransactorPkg::*;

Cross-module reference (XMR) means accessing signals of

other modules or accessing signals of other partitions with

respect to partition compile. These XMRs are extensively

used to check the status or value of the DUT or test-bench

signals. One way of avoiding cross module references is by

using virtual interfaces. In Figure 3, program “p” shows

DutBus.req and DutBus.grant signals being accessed through

XMRs.

 wait(tb.DUT.DutBus.req == 1);

interface SBus; module dut(SBus DutBus);
 logic req,grant; initial begin

 logic [7:0] addr,data; wait(DutBus.req == 1);

endinterface DutBus.grant =1;

 DutBus.addr =0;

 DutBus.data = 15;

package TransactorPkg; end

 class SBusTransctor; endmodule

 virtual SBus bus;

 function new(virtual SBus s); module tb;

 bus = s; Sbus DutBus();

 endfunction dut DUT(DutBus);

 endmodule

 task request();

 bus.req <= 1;

 endtask

 task wait_for_bus();

 @(posedge bus.grant);

 endtask

 endclass

endpackage

// Code in $unit scope

covergroup cov;

 option.per_instance =1;

 cp1: coverpoint tb.DutBus.req ;

 cp2: coverpoint tb.DutBus.grant;

 cp3: coverpoint tb.DutBus.addr;

 cp4: coverpoint tb.DutBus.data;

endgroup

cov cov1 = new();

 Figure 2: $unit Scope, Package, and Interface Declaration

program p;

 virtual SBus VirDutBus = tb.DutBus;

 import TransactorPkg::*;

 SBusTransctor xactor = new(VirDutBus);

 initial begin

 fork

 begin

 xactor.request();

 xactor.wait_for_bus();

 end

 begin

 wait(tb.DUT.DutBus.req == 1); //XMR

 //wait(VirDutBus.req == 1); // XMR replaced by Virtual Interface

 wait(tb.DUT.DutBus.grant == 1);

 //wait(VirDutBus.grant == 1);
 end

 join

 $unit::cov1.sample();

 end

endprogram

Figure 3: Program Block, Virtual Interface, and XMR

Virtual interfaces provide a mechanism for separating abstract

models and test programs from the actual signals that make up

Page 3 of 7

the design. A virtual interface allows the same subprogram to

operate on different portions of a design and to dynamically

control the set of signals associated with the subprogram.

Instead of referring to the actual set of signals directly, users

are able to manipulate a set of virtual signals. Changes to the

underlying design do not require the code using interface to be

rewritten. By abstracting the connectivity and functionality of

a set of blocks, virtual interface promote code-reuse.

Physical interfaces are not allowed in object oriented

programming, as a physical interface is allocated at

compilation time itself. Virtual interfaces which are set at run

time allow object oriented programming with signals rather

than with only variables. Virtual interface object can be

passed as arguments to task, function, class, and program. A

virtual interface must be initialized before it can be used. By

default it points to NULL. In Figure 3 virtual interface of type

“SBus” is declared and connected to physical interface in

program block “p”.

virtual SBus VirDutBus = tb.DutBus

$unit is the name of the scope that encompasses a compilation

unit. Compilation unit refers to module, interface, package,

and program blocks. Its purpose is to allow the unambiguous

reference to declarations at the outermost level of a

compilation unit (that is, those in the compilation-unit scope).

This is done through the same scope resolution operator used

to access package items. The compilation-unit scope allows

users to easily share declarations (for example, types) across

the unit of compilation, but without having to declare a

package from which the declarations are subsequently

imported. Thus, the compilation-unit scope is similar to an

implicitly defined anonymous package. Because it has no

name, the compilation-unit scope cannot be used with an

import statement, and the identifiers declared within the scope

are not accessible through hierarchical references. Within a

particular compilation unit, however, the special name $unit

can be used to explicitly access the declarations of its

compilation-unit scope. In Figure 2, the covergroup cov is

declared and the object is created in $unit scope. The same

object is called in program block “p” in Figure 3 by referring

to $unit scope.

Definition in $unit scope:

covergroup cov;

cov cov1 = new();

Reference in program block:

 $unit::cov1.sample();

III. ADOPTING PARTITION COMPILE

A. Requirements

Partition Compile follows the use model of “Unified Use

Model” (UUM) of VCS
®
 compilation. The technology is more

robust in quality and performance. Partition Compile can be

used across a wider variety of design flows. Following are the

requirements of Partition Compile flow to achieve best

turnaround time.

 Wrap test-bench code in SystemVerilog packages.

 Partitions need to be made as

packages/modules/programs.

 Avoid code in $unit (code-changes in $unit scope trigger

recompilation of the entire design).

 Where possible, avoid XMRs in test-bench code. XMRs

prevent putting code in packages (LRM restriction). Use

SystemVerilog virtual interfaces instead of XMRs.

 Do not combine source code from multiple partitions in

the same file.

To adopt Partition Compile flow, the first step is to identify

the partitions in the entire test environment. During

development and debug of test-bench and DUT, a separate

partition should be created for each module that is being

changed. This way, other parts of the design which do not

change often will not be recompiled. Hence external IP/VIP

modules can be made separate partitions as these don’t need to

be recompiled for change in other components in the test-

bench.

As recompile time of large partitions is higher than that of

smaller partitions, the partitions created need to be balanced in

terms of compile time. The recommendation is to create

reasonable number of partitions such that the recompile time

is within acceptable limits. Also it can be noted that if there

are multiple parallel tops in the hierarchy, separate partitions

can be created for each such top. A separate partition for test

(program) can be created so that only the test partition gets

recompiled when there is change in the test and in no other

test-bench components.

Taking all these into consideration, we have come up with the

following partitions for our USB3.0 test-bench:

 RTL and PHY (USB3_RTL)

 AHB/AXI VIP (AHB_AXI_VIP_PKG)

 USB3.0 VIP (USB3_VIP_PKG)

 TE common class partition (USB3_TE_COM_PKG)

 Test partition (PROG_BLK)

Partition compile flow requires a top-level configuration file.

This file describes the intended partition structure. The top-

level configuration file for the USB3.0 environment is shown

in Figure 4. Here, “tb” is the top module name of the Verilog

Subsystem and “prog” is the program block name which is the

top of the entire TE. The “work_dir” is the logical name of the

compiled lib directory. Module based partitioning is used for

USB3_RTL and PROG_BLK and no packages are created for

these modules. The configuration name “topcfg” is passed to

Page 4 of 7

VCS
®
 command line options while compiling each of the

partitions.

config topcfg;
 design tb work_dir.prog;
 partition package AHB_AXI_VIP_PKG;
 partition package USB3_VIP_PKG;
 partition package USB3_TE_COM_PKG;
 partition cell USB3_RTL;
 partition cell PROG_BLK;
 default liblist DEFAULT work_dir;
endconfig

Figure 4: Top-Level Configuration File

B. SystemVerilog code modification

The existing USB3.0 verification environment is modified to

fit into the Partition Compile flow. The main modification is

to create the partitions needed for the flow. Following changes

are done to create the partitions.

 AHB, AXI VIP (AHB_AXI_VIP_PKG) – This legacy

VIP is available as SV Package.

 Existing USB3.0 VIP (vmm_subenv) is moved to a

package (USB3_VIP_PKG) for making this a partition.

 All TE common classes are moved to a package

(USB3_TE_COM_PKG) for making this a partition.

 RTL and PHY (USB3_RTL) – this code resides within

module and hence qualifies for being a partition.

 Test partition (PROG_BLK) – this code resides within

program block and qualifies for being a partition.

The legacy test-bench architecture of having parallel tops is

continued for Partition Compile by having the Verilog

Subsystem and TE program block as the two parallel top

entities. The program block now imports other TE

components within this block -- AHB/AXI VIP, USB3.0 VIP

and TE common class packages. Refer to Figure 6 for USB3.0

verification environment for the partition compile flow.

The next challenge we faced were the large number of Cross-

module references and cross partition references used in the

environment. Partition compile supports XMRs but there will

be degradation in simulation time. To avoid this degradation

we decided to remove the XMRs.

The following procedure was done to remove the XMRs:

 New virtual interfaces with the required signals were

defined.

 Object of the virtual interface is created and connected to

physical interface in program block. Object can be

created anywhere in the test-bench but connection should

be done in the beginning of the program block.

The term cross partition reference used in this paper refers to a

forward reference created by using typedef of the class where

the class is defined in different compilation-unit scope.

The example in Figure 5 shows how a cross partition

reference gets created and provides one of the methods to

remove this cross partition reference. In single compile flow,

the declaration “typedef class operator_class” is needed since

update_vecs_class uses the object of operator_class.If the

operator_class is moved inside a package, the above typedef

becomes a cross partition reference, since the class definition

is present in different compilation-unit scope. For partition

compile flow, to remove this cross partition reference, we

have to update the code as shown on the right hand side in

Figure 5. The “typedef class operator_class” is removed and

the package p1 is imported before the update_vecs_class.

//-------Single compile flow --------Partition Compile flow

typedef class operator_class; package p1;

typedef bit[3:0] TYPE; typedef bit[3:0] TYPE;

class update_vecs_class; class operator_class;

 TYPE n1; TYPE x1;

 TYPE n2[4:0]; function TYPE invert(TYPE in);

 TYPE n3[3:0][3:0]; x1 = ~in;

 TYPE n4; invert = x1;

 operator_class op; endfunction

 endclass

 task put(TYPE in[3:0]); endpackage

 op = new;

 n1 = in[0]; import p1::*;

 n2[3:0] = in; class update_vecs_class ;

 n3 = '{4{in[3:0]}} ;

 n4 = op.invert(n1); TYPE n1;

 endtask; TYPE n2[4:0];

 TYPE n3[3:0][3:0];

 function TYPE get(int j); TYPE n4;

 return n2[j]; operator_class op;

 endfunction

endclass task put(TYPE in[3:0]);

 op = new;

 n1 = in[0];

class operator_class; n2[3:0] = in;

 n3 = '{4{in[3:0]}} ;

 TYPE x1; n4 = op.invert(n1);

 endtask;

 function TYPE invert(TYPE in);

 x1 = ~in; function TYPE get(int j);

 invert = x1; return n2[j];

 endfunction endfunction

endclass endclass

// Common Program in both modes

program p;

 update_vecs_class T1 = new;

 initial begin

 TYPE in[3:0],in0,in1, in2, in3;

 in[0] = 10;

 T1.put(in);

 in0 = T1.get(2);

 $display("in data = %d get data = %d shift_data = %d\n", in[0], in0, T1.n4);

 end

endprogram

Figure 5: Cross Partition Reference Example

Page 5 of 7

Both the below methods were used to remove the cross

partition references.

 Imported the relevant packages in the current

package/partition.

 Moved the definition of the class and the usage to the

relevant package.

AHB, AXI Package

USB3.0 VIP Package

USB3.0 Test Env Package

Interfaces

Verilog Subsystem

USB3.0 Core(DUT)

USB3.0 PHY

INTF1

Typedefs are removed by
importing the Packages in order

XMRs are replaced by
Virtual Interfaces

`include “interfaces.sv”

PROGRAM {
 import AHB/AXI::*
 import USB3VIP::*
import USB3TE::*

<test section>
}

INTF2

 Test Environment

 Test Environment

Figure 6: USB3.0 Verification Environment for Partition Compile

C. Updates in scripts

The legacy verification environment’s single compile flow is a

two-step flow where all the files are compiled and then

simulated. We adopted the UUM three-step partition compile

flow which consists of analyze, elaborate and simulate steps.

The compilation consists of analyze and elaborate steps.

The in-house Makefile infrastructure was updated to use

UUM flow to incorporate incremental compilation for the

separate partitions identified. We have created separate targets

to help compilation of each partition.

---------Partition compile flow steps----------

1. vlogan AHB_AXI_VIP_PKG INTF

2. vlogan USB3_VIP_PKG

3. vlogan USB3_RTL

4. vlogan USB3_TE_COM_PKG

5. vlogan PROG_BLK

6. vlogan topcfg

7. vcs topcfg -partcomp

1 to 6 is analysis and 7 is elaboration. Analysis and elaboration together is

compilation.

1, 2, 3, 4 and 5 are analysis of different partitions.

6 is analysis of the configuration file.

7 is elaboration which generates simv (executable to run the simulation).

 For compilation from scratch, run 1 to 7.

 Change in AHB or AXI pkg - run 1 and 7.

 Change in USB3 VIP pkg – run 2 and 7.

 Change in DUT – run 3 and 7.

 Change in common file of program block - run 4, 5 and 7.

 Change in program block – run 5 and 7.

Figure 7: Steps Involved in the Partition Compile Flow

For compilation of different partitions, a “VCS_PC =

<option>” gmake command-line option is provided. The

available options are listed below:

 ALL => Compile all partitions and simulate

 VIP => Compile USB3_VIP_PKG and simulate

 COM => Compile USB3_TE_COM_PKG partition and

simulate

 TST => Compile USB3 PROG_BLK and simulate

 RTL => Compile Verilog Subsystem and simulate

 RSIM => Run simulation only with different run time

options

In RSIM case, none of the partitions are analyzed or

compiled; only simulation is intended to be run with different

run time options. So ideally this option takes 0-1 minute

compile time.

IV. CODING GUIDELINES PROPOSAL

During the process of migration to partition compile, we

encountered several challenges that were a result of coding

style. Based on that experience we recommend the following

coding practices as a must to adopt the partition compile flow.

We also believe that these are best practices for any

SystemVerilog verification environment.

 Avoid code in $unit scope - code changes in $unit scope

trigger recompilation of the entire design.

 Do not use forward references (cross partition references)

by creating typedef of a class where the class is defined in

other compilation-unit scope.

Single Compile:

votg_xactor.sv

typedef class otg_xfer_wts_c;
typedef class com_ec_utility_tasks_c;

class votg_xactor_c ….
endclass

Partition Compile:

votg_xactor.sv
// The typedefs are removed and the required functionality
// moved to the otg_xfer_wts_c and com_ec_utility_tasks_c
class votg_xactor_c ….
endclass

Figure 8: Code Example for Avoiding Cross Partition Reference

In the legacy test-bench shown in Figure 8, we used typedef

construct for otg_xfer_wts_c and com_ec_utility_tasks_c

Page 6 of 7

classes, because compiler encounters these classes (used in

votg_xactor_c class) even before they are declared. But since

these classes reside in a different partition, to comply with

partition compile flow, typedef declarations are now removed

and the original functionality is moved to the partition that

required the typedef construct.

 Direct access of DUT signals (XMRs) from the program

block and test environment needs to be avoided.

These types of accesses can be done by defining new

virtual interfaces in the program domain and connecting

the virtual interface to the physical interface during the

initialization process in the program scope.

Single compile:

tp1926.sv
begin
wait (tb.U_DWC_usb3_subsys.ulpi_tx_data[7:0] == 8'h00);
end

Partition Compile:

DWC_usb3_if.sv
 interface DWC_usb3_tb_signals_if ();
 logic [7:0] ulpi_tx_data;
endinterface //tb_signals_if

ec_hst.sv
 gbl.tb_signals_if= `TB_INST_NAME.tb_signals_if;
 gbl.clk_rst_if = `TB_INST_NAME.clk_rst_if;
 gbl.misc_if = `TB_INST_NAME.misc_if;

tp1926.sv
 begin
wait (gbl.tb_signals_if.ulpi_tx_data[7:0] == 8'h00);
end

Figure 9: Code Example-1 for XMR Replacement

The code example in Figure 9 shows how the XMR used in

test tp1926.sv is removed in partition compile flow. A new

interface DWC_usb3_tb_signals_if with signal ulpi_tx_data is

created and this signal is used in the test. The connection of

virtual interface to the physical interface takes place in

program block (ec_hst.sv file).

 XMRs which are not easy or possible to convert to virtual

interface signals need to be handled differently. Here, the

code segment may be moved to the partition where it is

needed and virtual interface signals can be used to control

the behavior of the logic.

Code in Program block:
`ifdef DWC_USB3_DPRAM_PORT_EN
 `PRINT_NORMAL($psprintf("%0s: Re-init DPRAM0 with X ",prefix));
 `ifdef DWC_USB3_RAM0_PORT1_EN
 gbl.misc_if.dpram_initx[0] = 1'b1;
 wait(gbl.misc_if.dpram_initx_done[0] == 1'b1);
 gbl.misc_if.dpram_initx[0] = 1'b0;
 `PRINT_NORMAL($psprintf("%0s: Done Re-init of DPRAM0 with X ",prefix));
`endif

Code in Verilog Subsystem:
`ifdef DWC_USB3_DPRAM_PORT_EN
 `ifdef DWC_USB3_RAM0_PORT1_EN
 always
 begin
 @(posedge misc_if.dpram_initx[0]);
 for (int i = 0; i < U_RAM0_dpram.DEPTH; i= i+1) begin
 $display("DWC_usb3_xmrs:Done Re-init of DPRAM0 i=%d",i);
 U_RAM0_dpram.mem_array[i] = {U_RAM0_dpram.DATA_WIDTH{1'bx}};
 end
 misc_if.dpram_initx_done[0] = 1'b1;
 end
`endif

Figure 10: Code Example -2 for XMR Removal

In our legacy verification setup, dpram residing in Verilog

subsystem is being accessed and updated in TE domain using

XMRs. It is difficult to create virtual interface signals to

access and update dpram. Hence in Partition Compile flow,

the code which updates the dpram is moved to Verilog

Subsystem and the control signals for this purpose are

generated from TE domain using newly created virtual

interface signals. In essence, the XMR issue is resolved while

the functionality remains the same.

In the Figure 10 code example-2, the program block code sets

interface signal gbl.misc_if.dpram_initx and the code in the

Verilog Subsystem does the dpram initialization.

 It is not recommended to use force and release constructs

in partition compile flow.

Single compile:

if (gbl.te_test_mode == `TE_SOC_LOOPBACK_TEST_MODE) begin
 force tb.U_DWC_usb3_subsys.U_DWC_usb3.pipe3_PhyStatus_async = 1'b0;

end

Partition Compile:

if (gbl.te_test_mode == `TE_SOC_LOOPBACK_TEST_MODE) begin
 gbl.rtl_internal_signals_if.rtl_pipe3_PhyStatus_async = 1'b0;
end

Figure 11: Code Example for Replacing Force and Release

Constructs

The force constructs are replaced with simple assignments

since the XMRs are now converted to virtual interface signals.

As far as possible, avoid dependencies on the parameters of

other packages. This prevents the unnecessary compilation of

this package when the parameters of the other packages

change.

Page 7 of 7

V. SUMMARY OF RESULTS

The above flow was tested on DesignWare IP core

verification in Synopsys including the DesignWare

component USB3.0. In the beginning of the project, single

compilation flow was adopted in the verification environment.

By adopting partition compile flow to our verification

environment we achieved significant improvement in

compile time. Any change in the test now takes up-to 2

minutes to compile. Time taken to recompile any of the

partitions is about five minutes. This achieved a gain of 6X in

compile time and enhanced the productivity significantly. The

total effort for the migration took about five man-months. The

effort provided us with good coding practices which are useful

for any verification project.

Figure 12 is a graphical representation of compilation times

with different modes.

 The legacy single compile flow takes about 12 minutes of

compile time each time.

 The first compile with partition compile takes about 12

minutes. We use –fastpartcomp switch to compile

partitions in parallel, which takes advantage of multi-core

machines. We achieved 12 minutes using 8-core

machines.

 The typical usage is change in the test (PROG_BLK),

which takes about 2 minutes to be compiled.

 When the simulation run-time options change (RSIM),

there is no compile to be done and we see maximum

improvement.

 Compilation of individual partitions takes approximately

4 to 6 minutes.

Figure 12: Summary of Results

VI. CONCLUSIONS

This flow can be used as a reference flow for our future

SystemVerilog verification projects.

 Adopting partition compile flow for a new project will be

easy once the user adheres to the above guidelines.

 Migration of the existing complex environment becomes

challenging if it is not well organized into partitions and

is constantly getting updated with new changes.

 It is necessary to maintain the compatibility to the older

flow in the process of migration.

 The coding guidelines are useful for any SystemVerilog

verification project.

We would like to take up the following tasks in future based

on the work already done for this project.

 Update the existing DesignWare USB 3.0 Core regression

environment to use the partition compile flow.

 Use the partition compile flow for upcoming projects.

REFERENCES

[I].SystemVerilog 3.1a Language Reference Manual from Accellera

[II].Partition Compile Guidelines and Recommendations – VCS® Partition
compile Documents

