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Abstract— This paper discusses a methodology in which the 

compile time of a complex verification environment is brought 

down from 12-20 minutes to 2 minutes achieving 6X reduction in 

the compile time. By adopting partition compile methodology 

and good coding practices, an overall gain of 6X is achieved in 

the compilation process, thus increasing the productivity of the 

whole team. This paper describes the basic requirements for the 

partition compile methodology, motivation, our solution, and 

challenges faced while upgrading a complex verification 

environment. The good coding practices in SystemVerilog 

necessary to meet the partition compile requirements are 

presented with examples in this paper. The above flow is tested 

on DesignWare IP core verification at Synopsys including the 

DesignWare USB3.0 component. The simulator used is VCS® 

simulator version vcsmx-2011.12.  
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INTRODUCTION 

 

The conventional verification techniques of SOCs and IP 

blocks are becoming extremely challenging due to the 

increasing complexities of the designs. When the time-to-

market pressure of these SOCs and IP blocks are high, it 

becomes critical to have efficient and faster verification 

techniques to meet this demand. In standard verification 

methodologies, utmost care should be taken to achieve the 

shortest compile and simulation time to shorten the overall 

verification cycle and increase productivity. 

The DesignWare USB3.0 IP verification environment consists 

of 5 major components namely AHB, AXI VIP (Verification 

IP), USB3.0 VIP, USB Physical Layer IP, and the USB3.0 

Core. The USB3.0 Core is a complex IP supporting multiple 

modes (like Device, Host, Hub, OTG, and DRD), multiple 

interfaces, and all USB speeds. The legacy RAL based VMM 

constrained random verification environment does not have 

incremental compile support.  This results in compiling all the 

components every time, taking about 12-20 minutes of 

compile time.  A complex environment of about 2500 files for 

parsing and widely used by over 60 engineers causes a 

significant decrease in productivity. This paper presents our 

effort to find an efficient solution to this problem, provides 

implementation details and highlights the results achieved. 

I. LEGACY USB3.0 TEST ENVIRONMENT 

ARCHITECTURE 

 

The USB3.0 verification environment is shown in Figure 

1.The legacy compile flow uses the VCS
®
 single compile flow 

where all files of the verification environment are input to the 

simulator. This environment consists of two top-level entities. 

 A Verilog Subsystem instantiates the USB3.0 DUT and 

the USB3.0 Physical layer (PHY) IP.  

 A program block which is the Test Environment (TE) top 

and instantiates all the TE components. 

  

$unit scope

AHB/AXI Classes

USB3.0 VIP Classes

USB3.0 Test Env Classes

Interfaces

PROGRAM

<test section>

Verilog Subsystem

USB3.0 Core(DUT)

USB3.0 PHY

INTF

Cross Partition References Cross-module references

           Test Environment           Test Environment

 

Figure 1: USB3.0 Verification Environment 

The TE components AHB, AXI VIP, USB3.0 VIP, and 

numerous TE common classes reside in the compilation-unit 

scope in the single compile flow. In this flow, all the modules, 

classes, and program blocks are in a single compilation-unit. 

The interaction between the Verilog subsystem and the TE 

happens through multiple virtual interfaces. The functional 

verification of the design requires multiple Cross Module 

Reference(s) (XMR) to get access to Verilog subsystem 

signals in the TE domain. The flow supports the use of XMRs 

and forward reference of classes. For example, a reference 

from the USB3 VIP class to the test environment class (in 

Figure 1 above) is depicted as a cross partition reference. 

VCS
®
 parses all the files of the environment, compiles, and 

simulates. In the legacy verification flow we parse around 

2500 files for a single simulation and it takes about 12-20 

minutes for the compilation (analysis + elaboration). For a 
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change in any of the test-bench files, we need a fresh 

simulation to verify the change, and hence the engineer needs 

to wait for the same amount of compile time for each 

simulation. And, because this legacy setup is widely used by 

many engineers, it has a significant negative impact on 

productivity. This is a typical example of huge compile time 

dependency in the design verification cycle for any large 

SystemVerilog based verification setup. Huge compile time 

can shift the project delivery schedule and increase the overall 

product development time and finally can contribute 

significantly to the “time-to-market” of the product. This is 

the precise reason we started to look for better compilation 

flows to reduce the compile time.  

 

After looking at VCS
®
 separate and partition compile flows, 

we selected VCS
®
 partition compile flow. The verification 

environment with well-defined partitions like AHB, AXI VIP 

(Verification IP), USB3.0 VIP, USB3.0 Physical Layer IP, 

USB3.0 DUT, and the SystemVerilog test-bench fitted 

perfectly into the flow. 

 

II. SYSTEMVERILOG CONCEPTS USED IN 

PARTITION COMPILE 

 

System Verilog is rich in constructs and operators. Knowledge 

of SV packages, SV virtual interfaces, cross module 

references (XMRs), and $unit scope are necessary to adopt 

partition compile methodology. This section describes these 

concepts with examples. 

 

SystemVerilog packages provide an additional mechanism for 

sharing parameters, data, type, task, function, sequence and 

property declarations.  Packages can be imported or 

referenced in the SystemVerilog module, interface, and 

program blocks. Types, task, functions, sequences, and 

properties may be declared within a package. These 

declarations may be referenced within the module, interfaces, 

programs and other packages by either import or fully 

resolved name.  In the Figure 2, package “TransactorPkg” is 

declared and is imported in the program “p” in Figure 3.  

 

package TransactorPkg; 

import TransactorPkg::*; 

 

Cross-module reference (XMR) means accessing signals of 

other modules or accessing signals of other partitions with 

respect to partition compile. These XMRs are extensively 

used to check the status or value of the DUT or test-bench 

signals. One way of avoiding cross module references is by 

using virtual interfaces. In Figure 3, program “p” shows 

DutBus.req and DutBus.grant signals being accessed through 

XMRs.  

 

 wait(tb.DUT.DutBus.req == 1); 

interface SBus;                                                module dut(SBus DutBus);        
  logic  req,grant;                                                initial begin

  logic  [7:0] addr,data;                                        wait(DutBus.req == 1);

endinterface                                                          DutBus.grant =1;

                                                                              DutBus.addr =0;

       DutBus.data = 15;

package TransactorPkg;                                   end

 class SBusTransctor;                                     endmodule

   virtual SBus bus;

   function new( virtual SBus s );                      module tb;  

     bus = s;                                                           Sbus DutBus();

   endfunction                                                        dut DUT(DutBus);

                                                                          endmodule

   task request();

    bus.req <= 1;

   endtask

   task wait_for_bus();

    @(posedge bus.grant);

   endtask

 endclass

endpackage

// Code in $unit scope

covergroup cov;

   option.per_instance =1;

   cp1: coverpoint tb.DutBus.req ;

   cp2: coverpoint tb.DutBus.grant;

   cp3: coverpoint tb.DutBus.addr;

   cp4: coverpoint tb.DutBus.data;

endgroup

cov cov1 = new();

 

 Figure 2: $unit Scope, Package, and Interface Declaration 

 

 

program p;

  virtual SBus VirDutBus = tb.DutBus;

  import TransactorPkg::*;

  SBusTransctor xactor = new(VirDutBus);

  initial begin 

    fork

      begin 

        xactor.request();

        xactor.wait_for_bus();

      end

      begin

        wait(tb.DUT.DutBus.req == 1); //XMR 

        //wait(VirDutBus.req == 1);      // XMR replaced by Virtual Interface

        wait(tb.DUT.DutBus.grant == 1);

        //wait(VirDutBus.grant == 1);
      end

    join

    $unit::cov1.sample();

  end

endprogram

 
Figure 3: Program Block, Virtual Interface, and XMR 

 

Virtual interfaces provide a mechanism for separating abstract 

models and test programs from the actual signals that make up 
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the design. A virtual interface allows the same subprogram to 

operate on different portions of a design and to dynamically 

control the set of signals associated with the subprogram. 

Instead of referring to the actual set of signals directly, users 

are able to manipulate a set of virtual signals. Changes to the 

underlying design do not require the code using interface to be 

rewritten. By abstracting the connectivity and functionality of 

a set of blocks, virtual interface promote code-reuse.   

Physical interfaces are not allowed in object oriented 

programming, as a physical interface is allocated at 

compilation time itself. Virtual interfaces which are set at run 

time allow object oriented programming with signals rather 

than with only variables. Virtual interface object can be 

passed as arguments to task, function, class, and program. A 

virtual interface must be initialized before it can be used. By 

default it points to NULL. In Figure 3 virtual interface of type 

“SBus” is declared and connected to physical interface in 

program block “p”.  

 

virtual SBus VirDutBus = tb.DutBus 

 

$unit is the name of the scope that encompasses a compilation 

unit. Compilation unit refers to module, interface, package, 

and program blocks. Its purpose is to allow the unambiguous 

reference to declarations at the outermost level of a 

compilation unit (that is, those in the compilation-unit scope). 

This is done through the same scope resolution operator used 

to access package items. The compilation-unit scope allows 

users to easily share declarations (for example, types) across 

the unit of compilation, but without having to declare a 

package from which the declarations are subsequently 

imported. Thus, the compilation-unit scope is similar to an 

implicitly defined anonymous package. Because it has no 

name, the compilation-unit scope cannot be used with an 

import statement, and the identifiers declared within the scope 

are not accessible through hierarchical references. Within a 

particular compilation unit, however, the special name $unit 

can be used to explicitly access the declarations of its 

compilation-unit scope. In Figure 2, the covergroup cov is 

declared and the object is created in $unit scope.  The same 

object is called in program block “p” in Figure 3 by referring 

to $unit scope. 

 

Definition in $unit scope: 

 

covergroup cov; 

cov cov1 = new(); 

 

Reference in program block: 

 

 $unit::cov1.sample(); 

 

III. ADOPTING PARTITION COMPILE  

A. Requirements 

Partition Compile follows the use model of “Unified Use 

Model” (UUM) of VCS
®
 compilation. The technology is more 

robust in quality and performance. Partition Compile can be 

used across a wider variety of design flows. Following are the 

requirements of Partition Compile flow to achieve best 

turnaround time. 

 Wrap test-bench code in SystemVerilog packages. 

 Partitions need to be made as 

packages/modules/programs. 

 Avoid code in $unit (code-changes in $unit scope trigger 

recompilation of the entire design). 

 Where possible, avoid XMRs in test-bench code. XMRs 

prevent putting code in packages (LRM restriction). Use 

SystemVerilog virtual interfaces instead of XMRs. 

 Do not combine source code from multiple partitions in 

the same file. 

 

To adopt Partition Compile flow, the first step is to identify 

the partitions in the entire test environment. During 

development and debug of test-bench and DUT, a separate 

partition should be created for each module that is being 

changed. This way, other parts of the design which do not 

change often will not be recompiled. Hence external IP/VIP 

modules can be made separate partitions as these don’t need to 

be recompiled for change in other components in the test-

bench.  

As recompile time of large partitions is higher than that of 

smaller partitions, the partitions created need to be balanced in 

terms of compile time. The recommendation is to create 

reasonable number of partitions such that the recompile time 

is within acceptable limits. Also it can be noted that if there 

are multiple parallel tops in the hierarchy, separate partitions 

can be created for each such top. A separate partition for test 

(program) can be created so that only the test partition gets 

recompiled when there is change in the test and in no other 

test-bench components.  

Taking all these into consideration, we have come up with the 

following partitions for our USB3.0 test-bench:  

 RTL and PHY (USB3_RTL) 

 AHB/AXI VIP (AHB_AXI_VIP_PKG) 

 USB3.0 VIP (USB3_VIP_PKG) 

 TE common class partition (USB3_TE_COM_PKG) 

 Test partition (PROG_BLK) 

 

Partition compile flow requires a top-level configuration file. 

This file describes the intended partition structure. The top-

level configuration file for the USB3.0 environment is shown 

in Figure 4.  Here, “tb” is the top module name of the Verilog 

Subsystem and “prog” is the program block name which is the 

top of the entire TE. The “work_dir” is the logical name of the 

compiled lib directory. Module based partitioning is used for 

USB3_RTL and PROG_BLK and no packages are created for 

these modules. The configuration name “topcfg” is passed to 
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VCS
®
 command line options while compiling each of the 

partitions. 

 
config topcfg;
    design tb work_dir.prog;
        partition package AHB_AXI_VIP_PKG;
        partition package USB3_VIP_PKG;
        partition package USB3_TE_COM_PKG;
        partition cell USB3_RTL;
        partition cell PROG_BLK;
    default liblist DEFAULT work_dir;
endconfig

 

Figure 4: Top-Level Configuration File  

 

B. SystemVerilog code modification 

The existing USB3.0 verification environment is modified to 

fit into the Partition Compile flow. The main modification is 

to create the partitions needed for the flow. Following changes 

are done to create the partitions. 

 

 AHB, AXI VIP (AHB_AXI_VIP_PKG) – This legacy 

VIP is available as SV Package. 

 Existing USB3.0 VIP (vmm_subenv) is moved to a 

package (USB3_VIP_PKG) for making this a partition. 

 All TE common classes are moved to a package 

(USB3_TE_COM_PKG) for making this a partition. 

 RTL and PHY (USB3_RTL) – this code resides within 

module and hence qualifies for being a partition. 

 Test partition (PROG_BLK) – this code resides within 

program block and qualifies for being a partition. 

 

The legacy test-bench architecture of having parallel tops is 

continued for Partition Compile by having the Verilog 

Subsystem and TE program block as the two parallel top 

entities. The program block now imports other TE 

components within this block -- AHB/AXI VIP, USB3.0 VIP 

and TE common class packages. Refer to Figure 6 for USB3.0 

verification environment for the partition compile flow.  

 

The next challenge we faced were the large number of Cross-

module references and cross partition references used in the 

environment. Partition compile supports XMRs but there will 

be degradation in simulation time. To avoid this degradation 

we decided to remove the XMRs.  

 

The following procedure was done to remove the XMRs: 

 

  New virtual interfaces with the required signals were 

defined. 

 Object of the virtual interface is created and connected to 

physical interface in program block. Object can be 

created anywhere in the test-bench but connection should 

be done in the beginning of the program block.  

The term cross partition reference used in this paper refers to a 

forward reference created by using typedef of the class where 

the class is defined in different compilation-unit scope. 

 

The example in Figure 5 shows how a cross partition 

reference gets created and provides one of the methods to 

remove this cross partition reference. In single compile flow, 

the declaration “typedef class operator_class” is needed since 

update_vecs_class uses the object of operator_class.If the 

operator_class is moved inside a package, the above typedef 

becomes a cross partition reference, since the class definition 

is present in different compilation-unit scope. For partition 

compile flow, to remove this cross partition reference, we 

have to update the code as shown on the right hand side in 

Figure 5. The “typedef class operator_class” is removed and 

the package p1 is imported before the update_vecs_class. 

 

//-------Single compile flow                                         --------Partition Compile flow

typedef class operator_class;                                    package p1;

typedef bit[3:0] TYPE;                                                typedef bit[3:0] TYPE;

class update_vecs_class;                                            class operator_class;

  TYPE n1;                                                                       TYPE x1;

  TYPE n2[4:0];                                                           function TYPE invert(TYPE in);

  TYPE n3[3:0][3:0];                                                         x1 =  ~in;

  TYPE n4;                                                                          invert = x1;

  operator_class op;                                                     endfunction

                                                                                    endclass

  task put(TYPE in[3:0]);                                          endpackage

     op = new;

     n1 = in[0];                                                            import p1::*;

     n2[3:0] = in;                                                         class update_vecs_class ;

     n3 =  '{4{in[3:0]}} ;

     n4 = op.invert(n1);                                                   TYPE n1;

  endtask;                                                                        TYPE n2[4:0];

                                                                                         TYPE n3[3:0][3:0];

  function TYPE get(int j);                                           TYPE n4;

     return n2[j];                                                            operator_class op;

  endfunction

endclass                                                                      task put(TYPE in[3:0]);

                                                                                         op = new;

                                                                                         n1 = in[0];

class operator_class;                                                       n2[3:0] = in;

                                                                                         n3 =  '{4{in[3:0]}} ;

  TYPE x1;                                                                      n4 = op.invert(n1);

                                                                                     endtask;

  function TYPE invert(TYPE in);

    x1 =  ~in;                                                               function TYPE get(int j);

    invert = x1;                                                                return n2[j];

  endfunction                                                              endfunction

endclass                                                                   endclass

// Common Program in both modes

program p;

 update_vecs_class T1 = new;

 initial begin

    TYPE in[3:0],in0,in1, in2, in3;

    in[0] = 10;

    T1.put(in);

    in0 = T1.get(2);

   $display( "in data = %d get data = %d shift_data = %d\n", in[0], in0, T1.n4);

 end

endprogram

 
 

Figure 5: Cross Partition Reference Example 
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Both the below methods were used to remove the cross 

partition references. 

 

 Imported the relevant packages in the current 

package/partition. 

 Moved the definition of the class and the usage to the 

relevant package. 

 

AHB, AXI Package

USB3.0 VIP Package

USB3.0 Test Env Package

Interfaces

Verilog Subsystem

USB3.0 Core(DUT)

USB3.0 PHY

INTF1

Typedefs are removed by 
importing the Packages in order

XMRs are replaced by 
Virtual Interfaces

`include “interfaces.sv”

PROGRAM {
 import AHB/AXI::*
 import USB3VIP::*
import USB3TE::*

<test section>
}

INTF2

    
       Test Environment 

    
       Test Environment 

 

Figure 6: USB3.0 Verification Environment for Partition Compile 

C. Updates in scripts 

The legacy verification environment’s single compile flow is a 

two-step flow where all the files are compiled and then 

simulated. We adopted the UUM three-step partition compile 

flow which consists of analyze, elaborate and simulate steps. 

The compilation consists of analyze and elaborate steps.  

 

The in-house Makefile infrastructure was updated to use 

UUM flow to incorporate incremental compilation for the 

separate partitions identified. We have created separate targets 

to help compilation of each partition. 

 

---------Partition compile flow steps----------

1. vlogan   AHB_AXI_VIP_PKG   INTF   

2. vlogan   USB3_VIP_PKG

3. vlogan   USB3_RTL

4. vlogan   USB3_TE_COM_PKG

5. vlogan   PROG_BLK

6. vlogan   topcfg

7. vcs  topcfg -partcomp

1 to 6 is analysis and 7 is elaboration.  Analysis and elaboration together is 

compilation. 

1, 2, 3, 4 and 5 are analysis of different partitions.

6 is analysis of the configuration file.

7 is elaboration which generates simv (executable to run the simulation).

 For compilation from scratch, run 1 to 7.

 Change in AHB or AXI pkg  - run 1 and 7.

 Change in USB3 VIP pkg – run 2 and 7.

 Change in DUT – run 3 and 7.

 Change in common file of program block  - run 4, 5 and 7. 

 Change in program block – run 5 and 7.  

 

Figure 7: Steps Involved in the Partition Compile Flow 

For compilation of different partitions, a “VCS_PC = 

<option>”  gmake command-line option is provided. The 

available options are listed below: 

 

 ALL  => Compile all partitions and simulate 

 

 VIP   =>  Compile USB3_VIP_PKG and simulate 

 

 COM => Compile USB3_TE_COM_PKG partition and 

simulate 

 

 TST   => Compile USB3 PROG_BLK  and simulate 

  

 RTL   => Compile Verilog Subsystem and simulate 

 

 RSIM => Run simulation only with different run time 

options 

 

In RSIM case, none of the partitions are analyzed or 

compiled; only simulation is intended to be run with different 

run time options. So ideally this option takes 0-1 minute 

compile time. 

IV. CODING GUIDELINES PROPOSAL 

 

During the process of migration to partition compile, we 

encountered several challenges that were a result of coding 

style. Based on that experience we recommend the following 

coding practices as a must to adopt the partition compile flow. 

We also believe that these are best practices for any 

SystemVerilog verification environment. 

 

 Avoid code in $unit scope - code changes in $unit scope 

trigger recompilation of the entire design. 

 Do not use forward references (cross partition references) 

by creating typedef of a class where the class is defined in 

other compilation-unit scope. 

 
Single Compile:

votg_xactor.sv

typedef class otg_xfer_wts_c;
typedef class com_ec_utility_tasks_c;

class votg_xactor_c ….
endclass

Partition  Compile:

votg_xactor.sv
// The typedefs are removed and the required functionality
// moved to the otg_xfer_wts_c and com_ec_utility_tasks_c
class votg_xactor_c ….
endclass

 

Figure 8: Code Example for Avoiding Cross Partition Reference 

In the legacy test-bench shown in Figure 8, we used typedef 

construct for otg_xfer_wts_c and com_ec_utility_tasks_c 
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classes, because compiler encounters these classes (used in 

votg_xactor_c class) even before they are declared. But since 

these classes reside in a different partition, to comply with 

partition compile flow, typedef declarations are now removed 

and the original functionality is moved to the partition that 

required the typedef construct. 

 Direct access of DUT signals (XMRs) from the program 

block and test environment needs to be avoided.  

These types of accesses can be done by defining new 

virtual interfaces in the program domain and connecting 

the virtual interface to the physical interface during the 

initialization process in the program scope.  

Single compile:

tp1926.sv
begin
wait ( tb.U_DWC_usb3_subsys.ulpi_tx_data[7:0] == 8'h00);
end

Partition  Compile:

DWC_usb3_if.sv
 interface DWC_usb3_tb_signals_if ();
  logic [7:0] ulpi_tx_data;
endinterface //tb_signals_if

ec_hst.sv
 gbl.tb_signals_if= `TB_INST_NAME.tb_signals_if;
 gbl.clk_rst_if = `TB_INST_NAME.clk_rst_if;
 gbl.misc_if = `TB_INST_NAME.misc_if;

tp1926.sv
 begin
wait ( gbl.tb_signals_if.ulpi_tx_data[7:0] == 8'h00);
end

 

Figure 9: Code Example-1 for XMR Replacement 

 

The code example in Figure 9 shows how the XMR used in 

test tp1926.sv is removed in partition compile flow.  A new 

interface DWC_usb3_tb_signals_if with signal ulpi_tx_data is 

created and this signal is used in the test. The connection of 

virtual interface to the physical interface takes place in 

program block (ec_hst.sv file).  

 

 XMRs which are not easy or possible to convert to virtual 

interface signals need to be handled differently. Here, the 

code segment may be moved to the partition where it is 

needed and virtual interface signals can be used to control 

the behavior of the logic. 

Code in Program block:
`ifdef DWC_USB3_DPRAM_PORT_EN
  `PRINT_NORMAL($psprintf("%0s: Re-init DPRAM0 with X ",prefix));
  `ifdef DWC_USB3_RAM0_PORT1_EN
    gbl.misc_if.dpram_initx[0] = 1'b1;
    wait(gbl.misc_if.dpram_initx_done[0] == 1'b1);
    gbl.misc_if.dpram_initx[0] = 1'b0;
    `PRINT_NORMAL($psprintf("%0s: Done Re-init of DPRAM0 with X ",prefix));
`endif

Code in Verilog Subsystem:
`ifdef DWC_USB3_DPRAM_PORT_EN
  `ifdef DWC_USB3_RAM0_PORT1_EN
    always
    begin
      @(posedge misc_if.dpram_initx[0]);
      for (int i = 0; i < U_RAM0_dpram.DEPTH; i= i+1) begin
        $display("DWC_usb3_xmrs:Done Re-init of DPRAM0 i=%d",i);
        U_RAM0_dpram.mem_array[i] = {U_RAM0_dpram.DATA_WIDTH{1'bx}};
      end
      misc_if.dpram_initx_done[0] = 1'b1;
    end
`endif

 

Figure 10: Code Example -2 for XMR Removal  

In our legacy verification setup, dpram residing in Verilog 

subsystem is being accessed and updated in TE domain using 

XMRs.  It is difficult to create virtual interface signals to 

access and update dpram. Hence in Partition Compile flow, 

the code which updates the dpram is moved to Verilog 

Subsystem and the control signals for this purpose are 

generated from TE domain using newly created virtual 

interface signals. In essence, the XMR issue is resolved while 

the functionality remains the same. 

In the Figure 10 code example-2, the program block code sets 

interface signal gbl.misc_if.dpram_initx and the code in the 

Verilog Subsystem does the dpram initialization. 

 It is not recommended to use force and release constructs 

in partition compile flow. 

Single compile:

if (gbl.te_test_mode == `TE_SOC_LOOPBACK_TEST_MODE) begin
   force tb.U_DWC_usb3_subsys.U_DWC_usb3.pipe3_PhyStatus_async = 1'b0;

end

Partition Compile:

if (gbl.te_test_mode == `TE_SOC_LOOPBACK_TEST_MODE) begin
   gbl.rtl_internal_signals_if.rtl_pipe3_PhyStatus_async = 1'b0;
end

 

Figure 11: Code Example for Replacing Force and Release 

Constructs 

The force constructs are replaced with simple assignments 

since the XMRs are now converted to virtual interface signals. 

As far as possible, avoid dependencies on the parameters of 

other packages. This prevents the unnecessary compilation of 

this package when the parameters of the other packages 

change.  



Page 7 of 7 

 

V. SUMMARY OF RESULTS 

 

The above flow was tested on DesignWare IP core 

verification in Synopsys including the DesignWare 

component USB3.0. In the beginning of the project, single 

compilation flow was adopted in the verification environment. 

By adopting partition compile flow to our verification 

environment we achieved   significant improvement in 

compile time. Any change in the test now takes up-to 2 

minutes to compile. Time taken to recompile any of the 

partitions is about five minutes. This achieved a gain of 6X in 

compile time and enhanced the productivity significantly. The 

total effort for the migration took about five man-months. The 

effort provided us with good coding practices which are useful 

for any verification project. 

Figure 12 is a graphical representation of compilation times 

with different modes. 

 

 The legacy single compile flow takes about 12 minutes of 

compile time each time. 

 The first compile with partition compile takes about 12 

minutes. We use –fastpartcomp switch to compile 

partitions in parallel, which takes advantage of multi-core 

machines. We achieved 12 minutes using 8-core 

machines. 

 The typical usage is change in the test (PROG_BLK), 

which takes about 2 minutes to be compiled.  

 When the simulation run-time options change (RSIM), 

there is no compile to be done and we see maximum 

improvement. 

 Compilation of individual partitions takes approximately 

4 to 6 minutes. 

 

 

Figure 12:  Summary of Results  

 

 

 

VI. CONCLUSIONS 

This flow can be used as a reference flow for our future 

SystemVerilog verification projects. 

 

 Adopting partition compile flow for a new project will be 

easy once the user adheres to the above guidelines.  

 Migration of the existing complex environment becomes 

challenging if it is not well organized into partitions and 

is constantly getting updated with new changes.  

 It is necessary to maintain the compatibility to the older 

flow in the process of migration.  

 The coding guidelines are useful for any SystemVerilog 

verification project. 

 

We would like to take up the following tasks in future based 

on the work already done for this project. 

 

 Update the existing DesignWare USB 3.0 Core regression 

environment to use the partition compile flow. 

 Use the partition compile flow for upcoming projects. 
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