
Advancing the SystemC EcosystemPhilipp A Hartmann – Intel Corp.Jerome Cornet – ST MicroelectronicsMartin Schnieringer – Robert Bosch GmbHFrederic Doucet – Qualcomm, Inc
© Accellera Systems Initiative 1

Agenda1. Accellera Update: What's New and Cooking in SystemC Standardization
– Philipp A Hartmann - Intel Corp.2. TLM-Serial: Easy and Intuitive Controller Area Network (CAN) Modeling
– Jerome Cornet - ST Microelectronics
– Martin Schnieringer - Robert Bosch GmbH3. SystemC for HLS: What Works well for Deployment and Challenges
– Frederic Doucet - Qualcomm, Inc.

© Accellera Systems Initiative 2

Accellera Update: What's New andCooking in SystemC StandardizationPhilipp A Hartmann, Intel Corp.
© Accellera Systems Initiative 1

SystemC Overview
© Accellera Systems Initiative Slide 2

• C++-based language,widely used for
– system-level modeling,design and verification
– architectural exploration,performance modeling
– analog/mixed signal modeling
– software development
– high-level synthesis

• Defined by Accellera WGs,
ratified as IEEE Std. 1ϲϲϲ™-2011

SystemC Language Working Group
• Charter: Responsible for the definition and development of the SystemC core language, the foundation on which all other SystemC libraries and functionality are built.
• Current status

– SystemC/TLM 2.3.2 release at DVCon Europe
– Currently collecting, addressing, refining proposals and errata towards IEEE std. update
– Adding extensions to the core language (e.g. as needed by other SystemC-related WGs)

• Plans for 2017+
– ReĐoŶǀeŶe IEEE P1ϲϲϲ WG for update of IEEE Std. 1ϲϲϲ™
– Improvements to SystemC Datatypes as needed for HLS and beyond(dedicated sub-WG has been formed, contributors needed!)

© Accellera Systems Initiative Slide 3

SystemC 2.3.2 release
• SystemC 2.3.2 release available now!

– Maintenance release with some new features
– Licensed under Apache 2.0 License
– http://accellera.org/downloads/standards/systemc

• Updated compiler and platform support
– Support for latest compiler versions (GCC 7.0, Clang 5.0, MSVC 2017)
– Support for AArch64 platform
– Windows DLL support
– Experimental CMake build system

• Tons of bug fixes and cleanups
© Accellera Systems Initiative 4

http://accellera.org/downloads/standards/systemc

SystemC 2.3.2 – release highlights
• Foundation for C++11/14/17 enablement

– Based on DVCon Europe 2016 proposal - Moving SystemC to a New C++ Standard
– Removes embedded Boost dependency on modern platforms
– Override default selection by defining SC_CPLUSPLUS during library/model build(needs to be consistent – see documentation)

• Centralized global name registry to enable CCI naming requirements
– bool sc_register_hierarchical_name(const char* hierarchical_name);
– const char* sc_get_hierarchical_name(const char* hierarchical_name);(persistent name pointer)

• Improved sc_time conversions from/to strings
© Accellera Systems Initiative 5

SystemC 2.3.2 – release highlights (cont.d)
• Querying active event notifications

– New triggered() function returns true, if an event has been notifiedduring the previous delta (or immediately in the current evaluation phase)
wait(event0 | event1);if(event0.triggered()) /* event0 actions */;if(event1.triggered()) /* could also be true! */;

• VCD tracing enhancements
– Tracing of sc_time, sc_event
– Accuracy fixes for delta cycle tracing
– Support for VCD hierarchical scopes

© Accellera Systems Initiative 6

SystemC TLM Working Group
© Accellera Systems Initiative Slide 7

• Charter: The Transaction-level Modeling Working Group (TLMWG) is responsible for the definition and development of methodology and add-on libraries for transaction-level modeling in SystemC.
• Current status

– Accellera TLM-2.0 is part of IEEE 1666-2011
– PoC implementation 2.0.4 bundled with SystemC 2.3.2

• Plans for 2017+
– Work on TLM interfaces, extensions, and guidelines to improvemodeling of protocols beyond memory-mapped I/O
– „TLM sigŶals“; serial, ďi-directional communication, ...

SystemC TLM 2.0.4 changes
• Add new socket base class tlm_socket_base_if,enabling non-templated access to

– protocol types (RTTI)
– base (ex)ports
– socket category (TLM_INITIATOR_SOCKET, TLM_TARGET_SOCKET, …Ϳ
– bus width

• Improved error handling in convenience sockets
– Errors now consistently include their origin (affected socket name/kind)

• Move parts of TLM-2.0 library into prebuilt SystemC (shared) library
© Accellera Systems Initiative 8

SystemC Synthesis WG
• Charter: To define the SystemC synthesis subset to allow synthesis of digital hardware from high-level specifications.
• Current status

– Working on second version of the SystemC Synthesis Subset standard
• Plans for 2017+

– Update and finalize support C++ 2011/2014 and advanced datatypes support
– Gather and evaluate additional requirements(for example unions, std::array, attributes etc.)

© Accellera Systems Initiative Slide 9

Configuration, Control & Inspection WG
Initial

Focus

WG is

defining

these

Goal: Standardizing interfaces between models and tools

© Accellera Systems Initiative Slide 10

CCI WG status
• Configuration draft standard is ready for public review

– Tutorial
• Previewed at DVCoŶ EU ;OĐt ͚1ϲͿ, DVCoŶ US ;Feď ͚1ϳͿ, DVCoŶ IŶdia ;Sep ͚1ϳͿ

– Language Reference Manual
– Proof-of-concept implementation
– 20+ examples

• Public review period will be 90 days
• Community feedback is highly valued

© Accellera Systems Initiative Slide 11

SystemC Analog/Mixed-Signal WG
• Charter: The SystemC AMSWG is responsible for the standardization of the SystemC AMS extensions, defining and developing the language, methodology and class libraries for analog, mixed-signal and RF modeling in SystemC.
• Current status

– Feature development for SystemC AMS 2.1
– Proposal for generalized small-signal analysis (AC) under discussion

• Plans for 2017+
– Reǀieǁ aŶd Update of SysteŵC AMS User s͛ Guide

© Accellera Systems Initiative Slide 12

SystemC Verification WG
© Accellera Systems Initiative Slide 13

• Charter: The VWG is responsible for defining verification extensions to the SystemC language standard, and to enrich the SystemC reference implementation by offering an add-on libraries to ease the deployment of a verification methodology based on SystemC.
• Current Status

– Register API (backdoor) added
– UVM 1.2 reporting API added
– SystemC 2.3.2 compatibility
– Stability review

• Plans for 2017+
– Release shortly after DVCon Europe 2017
– Smart Pointer implementation
– IEEE 1800.2-2017 compatibility
– Register API (frontdoor/backdoor) completed

Multi-Language Verification WG
© Accellera Systems Initiative Slide 14

• Charter: The mission of the MLVWG is to create a standard and functional reference for interoperability of multi-language verification environments and components.
• Current Status

– MLV requirements and use cases have been identified and documented
– MLV API definition ongoing for communication (TLM), phasing and configuration
– Development of a demonstrator based on contributions (UVM-ML, UVM-SystemC)

• Plans for 2017+
– Finalize first demonstrator as starting point for PoC development
– Alignment with SystemC standard to differentiate design (model) elaboration from test bench elaboration
– Stabilize MLV API for documentation and LRM development

• Your participation is highly appreciated!

Seamless SystemC model reuse in verification
© Accellera Systems Initiative Slide 15

Virtual prototype /
SystemC (reference) modelSBVC VC SBVC VCSystem and IP

verification

environment(s)

Reuse SystemC model

in scoreboard (predictor)

Reuse SystemC model

as stimuli or monitor in a

verification component

Existing

foundation standards (SC, SV, …)

Multi-Language Verification Architecture
Application (user) code

MLV adapter(s)

MLV API

MLV
implementation

(Multi-language) verification

environment developed by end-user

Multi-language framework adapters

developed by EDA and/or Framework

provider(s)

Standardized abstract interface

definitions (“Accellera standard”)

Implementation offering functionality
like backplane, phasing,

communication, etc.

Existing

verification

framework(s)

(e.g. UVM-SV,

UVM-SystemC,

…)

MLV Proof-of-concept

© Accellera Systems Initiative Slide 16

Advancing Standards Together
• Share your experiences

– Visit www.accellera.org and join community forums at forums.accellera.org
• Show your support

– Record your adoption of standards
• Become an Accellera member

– Join working groups
• SystemC Evolution Day on Wednesday

– 08:30 – 17:30, TU Munich (Arcisstraße 21)
– CurreŶt aŶd future Ŷeeds for SysteŵC/TLM/HLS, … and your favorite topics!
– http://accellera.org/news/events/systemc-evolution-day-2017
– For last-minute registration, please contact me (Philipp Hartmann, Intel)

© Accellera Systems Initiative Slide 17

http://www.accellera.org/
http://forums.accellera.org/
http://accellera.org/news/events/systemc-evolution-day-2017

Questions?
© Accellera Systems Initiative 18

SystemC Evolution Day on WednesdayOctober 18th, 08:30-17:00, TU Munichhttp://accellera.org/news/events/systemc-evolution-day-2017

http://accellera.org/news/events/systemc-evolution-day-2017

TLM-Serial: Easy and intuitive Controller Area Network (CAN) modelingJerome Cornet - STMartin Schnieringer – Robert Bosch GmbH
© Accellera Systems Initiative 1

Agenda
• Introduction
• What is CAN?
• Modeling a Controller Area Network (CAN)

– What is modeled at all?
– CAN payloads & sockets
– Creating a CAN node
– Connecting the CAN nodes using a „bus“
– Status

• Summary and outlook
© Accellera Systems Initiative 2

IntroductionMotivation:
– Early & efficient SW development on Virtual Prototypes of Electronic Control Units (ECU)
– ECU (network) is assembled from IP of different vendors communicating via serial protocols e.g. CAN-FDAvoid effort when connecting simulation modelsGoal:
– Establish SystemC TLM modeling standard for serial protocols, initial focus on CAN

© Accellera Systems Initiative 3

What is CAN?
• Serial, frame based field bus, half duplex
• Multi-master with broadcasting
• Message based, receiver filters CAN frames
• Arbitrating

© Accellera Systems Initiative 4

N0
RX

TX

N1
RX

TX

Nn
RX

TX

Source: wikipedia.org

What is modeled at all?
• Controller Area Network with Flexible Data-Rate (CAN-FD) according toISO11898-1 second edition 2015-12-15
• CAN(-FD) protocol on Transaction Level (TL), timing accurate on CAN frame boundaries

– Timing based on worst case bit stuffing
– RTL co-simulation support

• Full arbitration
• Error injection e.g. CRC, BIT
• CAN „bus“ that connects the nodes

© Accellera Systems Initiative 5

CAN payloads
• Three types of CAN payloads: For data, error and overload frames
• All payloads inherit from can_payload_base

– Holds nominal bit time with accessors, common to all frames
can_payload: Used for (extended) CAN/CAN-FD data, remote frames
can_error_payload: Used to broad-cast errors to nodes
can_overload_payload: Used to prolong bus busy time

© Accellera Systems Initiative 6

can_payload
• Stores CAN data, modes and phases, offers API to all membersbool m_remote; /// True when the frame is a remote framebool m_extended; /// True when the identifier is extended bool m_fd_format; /// True if the frame is CAN-FDuint32_t m_identifier; /// The CAN ID phase_t m_phase; /// Phase of the frame sc_time m_data_bit_time; ///< Data Bit Time of a CAN-FD frame.bool m_ack;bool m_brs; /// Bit Rate Switch for CAN-FDbool m_error_passive; //Used to indicate whether node is error passive or active.

© Accellera Systems Initiative 7

The CAN socket
• can_socket has RX/TX path
• Offers non-blocking and blocking transmit API
• Is responsible for arbitration and forwarding interface calls to the CAN node when applicable
• Implements bindingcan_tx_status_t transmit_b(can_payload & payload); can_tx_status_t transmit_nb(can_payload & payload); void transmit_error(can_error_payload & error_payload);void transmit_overload(can_overload_payload & overload_payload);void cancel(can_payload & payload);bool can_bus_available() const;void set_socket_id(int socket_id);int get_socket_id();

© Accellera Systems Initiative 8

Creating a CAN node
• Node inherits from tlm_serial_if

• Implements the interface functionsvoid can_node_simple::transmit_core(tlm_serial::can_payload & payload, int socket_index) { if(payload.get_phase() == tlm_serial::CAN_SOF_AND_ARBITRATION) {:} else if(payload.get_phase() == tlm_serial::CAN_ACK) {//Pick-up data here :}void can_node_simple::transmit_error_core(tlm_serial::can_error_payload & error_payload, int socket_index) {return;}void can_node_simple::cancel(tlm_serial::can_payload & payload, int socket_index) {SC_LOG(name(), "cancel" << ": Ignore latest received payload.");return;}
© Accellera Systems Initiative 9

Creating a CAN node
• Example using the blocking transmit call//Populate CAN payload upfronttlm_serial::can_tx_status_t l_tx_status = can_socket.transmit_b(m_tx_payload);switch(l_tx_status) {case tlm_serial::TX_OK:SC_LOG(name(), "thrd_main_action" << ": Won CAN bus arbitration, CAN frame sent :)");break;case tlm_serial::TX_ERROR:SC_LOG(name(), "thrd_main_action" << ": An ACK, BIT, CRC, FORM or STUFF error occured.");break;case tlm_serial::TX_ARBITRATION_LOST:SC_LOG(name(), "thrd_main_action" << ": Lost CAN bus arbitration, will retry ...");break;case tlm_serial::TX_CANCELLED:SC_LOG(name(), "thrd_main_action" << ": CAN frame got cancelled e.g. via reset."); break;

© Accellera Systems Initiative 10

Connecting the CAN nodes using a „bus“
• The can_bus binds all sockets accross the hierarchy levels
• One „bus“ instance is used per hierarchyµC-leveltlm_serial::can_bus BUS_µC0;N1.can_socket(BUS_µC0);N2.can_socket(BUS_µC0);BUS_µC0(can_socket);Top-leveltlm_serial::can_bus BUS_TL;ECU0.can_socket(BUS_TL);NODE0.can_socket(BUS_TL);ECU1.can_socket(BUS_TL);

© Accellera Systems Initiative 11

Top-level ECU1uC1N2N3
N0

ECU0µC0N1

N2

Timing points (phases)
© Accellera Systems Initiative 12

node0 socket0 socket1SOFARBCONTROL EOFInitiate TXN, SOF communicated to all sockets (payload of first transmit_b() is used for SOF)End of arbitration field, losing node returns, broadcast of winning node to all sockets -> re-calculates EOF time in all sockets. ACK is communicated to node at the end of the ACK slot (first bit of the ACK field). At this point all data is available e.g. data could be late due to sending RTL node. Winning node returns from blocking call and socket notifies bus idle event. node1

transmit_b()

transmit_core(CAN_SOF)

transmit_core(CAN_SOF)transmit_core(CAN_SOF)

transmit_core(CAN_OK)return TX_LOST CRCDATAACKtransmit_core(CAN_ACK)transmit_core(CAN_ACK) transmit_core(CAN_ACK)

transmit_b()

return TX_OKInter-missionbus idle event fires after interframe space bits have been sent

Status
• Work in progress, limited documentation and rules
• All defined CAN scenarios as uploaded to accellera are supported
• Code and examples on private github repository

– Tested with SystemC 2.3.1 using gcc and MSVC12
– Simple batch runs for regression tests
– Release to Accellera after legal clearance

© Accellera Systems Initiative 13

Summary and outlookSummary
• First version of CAN(-FD) SystemC TLM implementation available
• Simple and easy to use due to CAN socket convenience layer
• Powerful and flexible. Covers all relevant scenarios, imposes no modeling limitations

– RTL co-simulation supportOutlook
• Address further serial protocols e.g. SPI, I2C
• More testing on

– RTL co-sim e.g. with SystemC RTL node
– Non-blocking CAN socket API

© Accellera Systems Initiative 14

Questions
© Accellera Systems Initiative 15

References
• ISO11898-1 second edition 2015-12-15 - CAN with Flexible Data-Rate (CAN-FD) https://www.iso.org/standard/63648.html
• Serial TLM requirements and scenarios (from Bosch, Infineon, ST etc.) https://workspace.accellera.org/apps/org/workgroup/tlmwg/download.php/14231/SerialTLM_requirements_and_scenarios.doc

© Accellera Systems Initiative 16

https://www.iso.org/standard/63648.html
https://workspace.accellera.org/apps/org/workgroup/tlmwg/download.php/14231/SerialTLM_requirements_and_scenarios.doc

SystemC for High-level Synthesis: what works well for deployment and challengesFrederic DoucetQualcomm Technologies Inc.San Jose, CA, USA© Accellera Systems Initiative 1

Outline
• Introduction to High-level synthesis
• Synthesizing SystemC: how it works
• What is abstracted out in SystemC and refined by HLS
• The pitfalls of informal abstraction
• Examples of experienced hardware designers falling in the pitfalls
• Going forward with HLS© Accellera Systems Initiative 2

What is High-level SynthesisHLS tool transforms synthesizable SystemC code into RTL Verilog The HLS engine
… precisely characterizes delay / area of all operations in a design
… schedules all the operation over the available clock cycles
… can optionally increase latency

– to get positive slack and
– to share resources and reduce area

… generates RTL that is equivalent to input SystemC
– Pipe depths / latencies decided by HLS tool scheduler© Accellera Systems Initiative 3High-level synthesisRTL VerilogSystemCdesign Synthesis directives Tech. nodespec

Overview of HLS Usage in IndustryWhat gets designed:
– Large datapaths, control mixed with datapath, etc., .. thousands of tapeouts!!Benefits: 1. Fast design turnaround:
– Quickly implement large (or micro-architecture) changes and regenerate RTL
– Allows for fast micro-architecture exploration and design optimizations2. High-level verification : huge productivity benefits at SystemC level
– Bit ŵatĐh datapath ͞Đoŵpute;Ϳ͟ fuŶĐtioŶs,
– GeŶerate aŶd aŶalǇze Đode Đoǀerage oŶ ͞higher aďstraĐtioŶ͟ SǇsteŵC Đode
– Bugs are mostly in integration with other non-HLS RTL blocks© Accellera Systems Initiative 4

Overview of HLS Usage in Industry
• HLS used on variety of designs, from very small to very large!
• Example of sizes of synthesized SC_CTHREAD

– Small ~1k - 10k instances
– Large ~100k instances
– Very large ~500k instances

• It is very important to find proper abstraction for very large blocks
– Good hardware designer knows what RTL structure to expect How to capture in SystemC and have HLS generate the desired result
– Fast HLS run-time usually correlates with good Quality-of-Results (QOR)
– Timing characterization is also very important, it has significant impact on instance counts and area (pipeline depths, upsized operators etc)© Accellera Systems Initiative 5

15 SC_MODULE(DUT)16 {17 sc_in <bool> clk;18 sc_in <bool> nrst;19 sc_in <int> a;20 sc_in <int> b;21 sc_in <int> c;22 sc_in <int> d;23 sc_out<int> z;24 25 SC_CTOR(DUT) {26 SC_THREAD(proc);27 sensitive << clk.pos();28 reset_signal_is(nrst, false);29 }30 31 void proc() {32 z = 0;33 RESET:34 wait();35 MAIN_LOOP:36 while (true) {37 int v1 = a * b;38 int v2 = c * d;39 int v3 = v1 + v2;40 COMPUTE_LATENCY:41 wait();42 z = v3;43 }44 }45 };
Hardware Design with SystemC and HLS

• SystemC: syntax for hardware modeling framework in C++
– Modules
– Ports
– Connections
– Processes

• Inside a process is C++ code describing the functionality
– DSP processing
– Control logic
– Etc. © Accellera Systems Initiative 6 DUTDUTabcd znrstclk

Behavior of Synthesizable SystemC Process
© Accellera Systems Initiative clka_ib_ic_id_iz_o a0b0c0d0 a1b1c1d1 a2b2c2d2z0 z1 z2a3b3c3d3

15 SC_MODULE(DUT)16 {17 sc_in <bool> clk;18 sc_in <bool> nrst;19 sc_in <int> a;20 sc_in <int> b;21 sc_in <int> c;22 sc_in <int> d;23 sc_out<int> z;24 25 SC_CTOR(DUT) {26 SC_THREAD(proc);27 sensitive << clk.pos();28 reset_signal_is(nrst, false);29 }30 31 void proc() {32 z = 0;33 RESET:34 wait();35 MAIN_LOOP:36 while (true) {37 int v1 = a * b;38 int v2 = c * d;39 int v3 = v1 + v2;40 COMPUTE_LATENCY:41 wait();42 z = v3;43 }44 }45 }; RESETMAIN_LOOPCOMPUTE_LATENCY0zv3z *a b c dv3+*

RESETMAIN_LOOPCOMPUTE_LATENCY0zv3z *a b c dv3+*Simple HLS : Cycle-accurate design
© Accellera Systems Initiative 8To get positiǀe slaĐk, the ͚+͛ operation is moved across the COMPUTE_LATENCY wait()Clock period: 5nsop delays for technode:

• mul: 4ns
• add: 2nsSynthesis directive: Cycle accurate design RESETMAIN_LOOPCOMPUTE_LATENCY0z z *a b c dv3+*v1 v2v1 v2

What the HLS tool do1. Allocate arithmetic/logic resources 2. Map operations to resources3. Allocate registers to store data in-flight 4. Connect datapath I/O and components5. For all states, allocate the control registers 6. Generate current / next state logic and 7. Connect control signals to datapath register / mux enables© Accellera Systems Initiative 9 +** v1_regv2_reg z_regRESET_reg COMPUTE_LATENCY_reg

HLS Directive: minimize resources
© Accellera Systems Initiative 10Latency is increase to use only one multiplier for two multiplicationsClock period: 5nsop delays for technode:

• mul: 4ns
• add: 2nsSynthesis directive: Minimize resourcesRESETMAIN_LOOPCOMPUTE_LATENCY0zv3z *a b c dv3+* RESETMAIN_LOOPCOMPUTE_LATENCY0zz a b c dv3+ *v1v1 v2 *v2COMPUTE_LATENCY0

+* z_reg zabcd COMPUTE_LATENCY0_regCOMPUTE_LATENCY_regstore_cstore_d_or_v2 store_v1Very different micro-architecture..
• One multiplier now shared for two multiplications
• Sharing muxes and registers have been added around the multiplier
• FSM changed driving new enables for sharing muxes and registersSharing mux What is abstracted out in SystemC? (and refined by the HLS tool?)Shared resourceShared register© Accellera Systems Initiative 11

Abstract in SystemC, Refined by HLS1. Operations to resource bindings and sharing muxs
– Resource sharing depends on the synthesis directives (performance or area?)2. Internal registers
– Values in flight need to be registered
– Depends on how operation are mapped to resources, which depends on the synth directives3. FSM states and transitions:
– wait() statements are converted to FSM states (in code, and added by tool)
– transitions between waits are FSM transitions
– current / next state logic generated by the tool© Accellera Systems Initiative 12

Abstraction for Hardware Designer
• Hardware designers usually1. clearly understands the resource sharing, register and FSM abstractions

• explicitly written in RTL designs, making it tedious and error, not easily changeable2. think structurally
• ͞ĐaŶ Ǉou draǁ the ďloĐk diagraŵ oŶ the ďoard͟
• ͞ǁhat do Ǉou eǆpeĐt to see iŶ the RTL?͟3. are not C++ experts
• Keep the iŶtro eǆaŵple siŵple, aŶd relate theŵ to their RTL eǆperieŶĐe…4. have low expectations on EDA tool

• HLS is usuallǇ aŶ easǇ sell … uŶless…© Accellera Systems Initiative 13

SelliŶg IŶforŵal ͞High-AďstraĐtioŶ͟
• For some algorithm person:

– ͞I like to ǁrite high-leǀel algorithŵ Đode iŶ C++ ͞
– ͞Verilog has ǁay too ŵuĐh details!͟

• For some management / DV :
– Less lines of code! Easier to understand and debug!
– Faster simulation speed!

• For some software person:
– TLM channels instead of signal/toggling! Encapsulation!
– Vectors and iterators, templates and other advanced C++!© Accellera Systems Initiative 14

Proďleŵs ǁith IŶforŵal ͞High-AďstraĐtioŶ͞
• It can create unreasonable expectations of what the HLS tool will do

– ͞Tool ǁill uŶderstaŶd ŵy ĐodiŶg style, it is so ĐleaŶ, it is oďǀious!"

• The consequence is designs with poor QOR
– area too large, too much congestion, etc.

• Designer will spend significant time to re-coding to hit the QOR targets
– This makes design management very nervous about HLS

• Such experience in design groups foster negative sentiment for further HLS
– AŶd these are hard to reǀerse…
– ͞HLS? You like ďloated desigŶs? No HLS oŶ ŵy projeĐts!͟© Accellera Systems Initiative 15Even if abstraction well understood, first HLS project is rarely smooth: need new flow, training, understand the tools, hands-on support, etc.Even if abstraction well understood, first HLS project is rarely smooth: need new flow, training, understand the tools, hands-on support, etc.

Experienced Designers Stumbling with Muxes (1/2)
• Code to serialize (and later deserialize) a data matrix
• An N * M array element gets copied to a bit vector if the enable is true
• The index for the bit vector is in the

eŶaďle ĐoŶditioŶ…
– Creates a chain of full size replace muxes(on out_t) selected with adders outputs© Accellera Systems Initiative 16

SC_MODULE(DUT) { typedef sc_uint<NROWS*NCOLS> en_t;typedef sc_biguint<NROWS*NCOLS*NBITS> out_t;...sc_in <sc_uint<NBITS> > v_i [NROWS][NCOLS];sc_in <en_t> en_i; // one bit per elementsc_out<out_t> v_o;...void proc() {...int idx = 0;out_t v = 0;en_t en = en_i.read();for (int row=0; row<NROWS; row++) { // unrollfor (int col=0; col<NCOLS; col++) { // unrollif (en[row*NCOLS+col]) { const int lb = idx*NBITS;v.range(lb+NBITS-1,lb) = v_i[row][col];idx++;}}} v_o = v;...}}; 0 en_i[0]V[0][0] idx en_i[1]replace+1V[0][1]01 0 en_i[2]replace+1V[1][0]0 en_i[3]replace v_oV[1][1]

Experienced Designers Stumbling with Muxes (2/2)
• Move the indexing outside the if condition

– Index values now constants after loop unrolling
– No more replace operations
– No more indexing logic

• Design issue not flagged by HLS tool
– would not happen in RTL due to careful coding of mux/demux logic
– designer thinks software code, causing issues? © Accellera Systems Initiative 17

SC_MODULE(DUT) {typedef sc_uint<NROWS*NCOLS> en_t;typedef sc_biguint<NROWS*NCOLS*NBITS> out_t;...sc_in <sc_uint<NBITS> > v_i [NROWS][NCOLS];sc_in <en_t > en_i;sc_out<out_t> v_o;...void proc() {...int idx = 0;out_t v = 0;en_t en = en_i.read();for (int row=0; row<NROWS; row++) { // unrollfor (int col=0; col<NCOLS; col++) { // unrollif (en[row*NCOLS+col]) { const int lb = idx*NBITS;v.range(lb+NBITS-1,lb) = v_i[row][col];idx++;}idx++;}} v_o = v;...}}; v_oV[0][0]0en_i[0] V[0][1]0en_i[1] V[1][0]0en_i[2] V[1][1]0en_i[3] concat

Experienced Designers Stumbling with Sharing
• In a process, a function is called 3 times with different arguments

– Inside an if-then-else branches
– Mutually exclusive calls

• Problem: graph inside HLS tool is 3 times bigger then needed
• Heuristics inside HLS tool may not be able to get ideal sharing of

– one big_op() resources, or
– multiple small_op() resources

• Recode with one only call site, explicit mux © Accellera Systems Initiative 18
void small_opſ…ƀ { // custom resource
…}void big_opſ … ƀ {
… for (int i=0; i<10; i++) { small_opſ…ƀ}
…}void proc() {
…if (c1 && !c2) { big_op(v1, v2, x, y);} else if (!c1 && c2) { big_op(v2, v3, x, y);} else { big_op(v3, v4, x, y);}
…} …void proc() {

…v_t a1, a2;if (c1 && !c2) { a1 = v1; a2 = v2;} else if (!c1 && c2) { a1 = v2; a2 = v3;} else { a1 = v3; a2 = v4} big_op(a1, a2, x, y);
…}

Hardware Designers using HLS
• Hardware designer write code with hardware structure in mind

– HLS is used to help reduce the amount of details and get to goal faster
• Architecture exploration fast vs. small never happens

– Great for sale demo, but designer always already have an architecture in mind
• Designer has architecture in mind

– will often struggle to find a way to code it in SystemC and synthesizable to the desired RTL
– This gets better with experience, but designer does not have that experience on first project

• Once a design coded well -> huge productivity
• Designer uses abstraction to quickly make improvement to design

– in ways impossible to do with RTL flow
• EǀeŶ if Đode appears to ďe ͞loǁer-leǀel ,͟ there is still iŵŵeŶse ǀalue!

– Time scale important for first project (get it in the product), QOR for subsequent projects © Accellera Systems Initiative 19

Improving SystemC and HLS for Mass Deployment
• To turŶ RTL desigŶers iŶto HLS desigŶers…

– The tools must work, in a predictable way
– Train designers to not expect HLS tool to do anything fancy beyond clean abstraction
– ClearlǇ doĐuŵeŶt ǁhat ͞softǁare optiŵizatioŶ͟ tool supports…

… aŶd proǀide ŵeaŶs to ĐheĐk if it did it ĐorreĐtlǇ ;i.e. high-quality QOR analysis capabilities)
• Improve SystemC standard such that code can carry intended hardware architecture

– What should be pipelined,
– What should be custom resources,
– What should be unrolled, etc.

• Improve SystemC standard TLM interface for synthesis
– Resets, parallel non-blocking accesses, decide channel buffering or not

• Improve SystemC datatypes
– Simulation speed, bit widths known at run-time, complex, etc.Good QOR needs good designer! HLS will not eliminate hardware designer jobs!© Accellera Systems Initiative 20

Links
• Accellera SystemC Synthesis Working group:

– http://www.accellera.org/activities/working-groups/systemc-synthesis
• Accellera SystemC Language Working group:

– http://www.accellera.org/activities/working-groups/systemc-language
• Please join and participate!
• Numerous commercial HLS tools on the market, and exciting research tools to ckeck out!© Accellera Systems Initiative 21

http://www.accellera.org/activities/working-groups/systemc-synthesis
http://www.accellera.org/activities/working-groups/systemc-language

Questions? Comments?Thank you so much for attending!!!© Accellera Systems Initiative 22

