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Abstract 

This paper introduces the Universal Verification Methodology (UVM) using SystemC and C++  

(UVM-SystemC), to advance system-level verification practices. UVM-SystemC enables the creation of a 

structured, modular, configurable and reusable test bench environment. Unlike other initiatives to create 

UVM in SystemC, the presented proof-of-concept class library uses identical constructs as defined in the 

UVM standard for test and sequence creation, verification component and test bench configuration and 

execution by means of simulation. Users familiar with either SystemC and/or with UVM will immediately feel 

comfortable to start using UVM-SystemC right away. The Universal Verification Methodology becomes 

universal, at last. 
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1 - Introduction 

Electronic System Level (ESL) design has become a mature and proven practice to tackle the challenges in the 

concept and architecture design phases of complex embedded systems. Novel design technologies based on system-

level language standards like SystemC [1] and the definition of transaction-level modeling (TLM) resulted in a 

variety of ESL methodologies, flows and tools to assist system architects and engineers to design and model these 

embedded systems. Examples are the creation of virtual prototypes to support use cases such as software 

development, architecture exploration and system verification [2]. 

However, the primary focus in ESL design has always been on the actual system-level design aspects, in terms of 

modeling the hardware and software components, and to a lesser extent on the creation of reusable verification 

environments.  But as the verification effort starts dominating the total design effort, more advanced verification 

methodologies are needed to enable reuse and interoperability of SystemC-based test benches or verification 

components (developed internally or offered by 3
rd

 parties) between the system-level and sub-system or RTL 

implementation phase.  

This is where the Universal Verification Methodology standard [3] inspired us. UVM consolidates verification best 

practices by introducing a unified approach for test and sequence creation, building verification components, test 

bench configuration, and execution by means of simulation. To benefit from these concepts, essential UVM features 

are introduced in a SystemC/C++ class library, to avoid multi-language integration hassles and SystemVerilog [4] 

dependencies within a SystemC-centric ESL design and verification flow. 

This paper gives an introduction to the verification methodology and class library in UVM-SystemC and 

demonstrates the strong resemblance with the UVM standard. The paper is organized as follows: the next section 

gives a historical perspective based on prior work and explains the main reasons for developing UVM in SystemC. 

In section 3, the basic concepts and features of UVM-SystemC are presented, followed by the foundation elements 

and examples presented in section 4. In section 5, the creation of a simple yet complete verification environment in 

UVM-SystemC is explained. The paper concludes with a summary and outlook in section 6.   
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2 – Historical perspective and motivation 

The trend to start earlier with system-verification in the design cycle, in combination with the growing complexity 

of the actual design implementation (and its virtual prototype counterpart), emphasizes the need to apply a proven 

verification methodology. Therefore there have been many attempts in the past to create structured and reusable 

verification environments in SystemC/C++. In [5], the Open Verification Methodology (OVM) formed the basis for 

creating a SystemC-equivalent verification environment. The System Verification Methodology [6] was based on 

OVM-SystemC, donated by Cadence to the community [7]. Mentor Graphics released a SystemC version as part of 

their Advanced Verification Methodology (AVM) [8]. Also Synopsys introduced as part of their Verification 

Methodology Manual (VMM) a class library in SystemC [9, 10]. More recent donations to the community [11] 

address the need to support a true multi-language verification environment in SystemVerilog, SystemC and e [12]. 

However, all these initiatives do not fully comply with the methods defined in the UVM standard, primarily because 

they are built on the former AVM, OVM, and VMM technologies. The consolidation into a single UVM standard 

resulted in major changes. As a consequence, the user has to deal with the incompatibilities related to simulation 

semantics and language constructs. Especially the move from OVM to UVM significantly changed the way 

components deal with the phasing mechanism and how the end-of-test is managed. To avoid legacy concepts and 

constructs in modern test benches, migration to UVM standard compatible implementations should be encouraged. 

Alternative solutions are proposed in [13, 14, 15] to address the multi-language integration challenges found in 

today‟s verification environments, by defining a set of coding guidelines centered around TLM communication. 

However, the creation of reusable verification components and integration in a test bench is much more than having 

an agreed communication method; additional elements like test bench configuration and reuse of test sequences do 

require a more holistic view on UVM and its principles, and justifies making these concepts available in other 

languages. 

Therefore an up-to-date and UVM standard compliant language definition and reference implementation is needed 

in SystemC/C++, which not only gives the user community a semantically and syntactically correct implementation 

of UVM, but also the same user experience in terms of the UVM “look & feel”. Especially the latter aspect would 

facilitate UVM users to start using SystemC for system-level and hardware/software co-verification, or make 

SystemC or software experts more familiar with the powerful UVM concepts to advance in the verification practice. 

Ultimately, this will benefit the entire design community, where verification and system-level design practices come 

closer together. It will serve the universal objectives of the UVM, addressing the need for having a common 

verification platform, including hardware prototyping in which C-based test sequences or verification components in 

UVM-SystemC are reused in Hardware-in-the-Loop (HiL) simulation or Rapid Control Prototyping (RCP) [16]. 

3 – Overview of UVM-SystemC 

UVM-SystemC defines all the essential features to create a UVM standard compliant verification environment. It 

contains many built-in capabilities dedicated to verification, such as test and test bench creation, configuration, 

phasing, comparing, scoreboarding, reporting, etc. Table 1 gives a summary of the available UVM-SystemC features 

and also lists the elements which are under development. In the following sections, the essential UVM concepts 

described in this table are introduced to create a structured, modular, configurable and reusable verification 

environment.  
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UVM-SystemC functionality Status

Testbench creation with component classes:
agent, sequencer, driver, monitor, scoreboard, etc.



Test creation with test, (virtual) sequences, etc. 

Configuration and factory mechanism 

Phasing and objections 

Policies to print, compare, pack, unpack, etc. 

Messaging and reporting 

Register abstraction layer and callbacks development

Coverage groups development

Constrained randomization SCV or CRAVE
 

Table 1: Overview of UVM-SystemC features 

3A – Test and test bench architecture – a layered approach 

UVM-SystemC follows the same layered architecture as defined in [9], where different levels of abstraction are 

introduced to clearly distinguish test case definition from test scenarios and the actual verification environment on 

which these sequences are executed, as shown in Figure 1. 
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Figure 1: Layered verification environment architecture of UVM  

The highest layer defines the actual tests, which consist of the selection of the verification environment (test bench) 

and sequences. The scenario layer will generate the actual test sequence(s), which consists of streams of 

transactions. The functional layer contains the sequencers, which deal with the ordering and arbitration of these 

transactions. In addition it also defines the self-checking infrastructure using a scoreboard and performs functional 

coverage and pass/fail reporting. The command layer contains the physical-level drivers, monitors and checkers. The 

signal layer, which is the lowest layer in the UVM test bench hierarchy, connects the test bench via (physical) 

signals with the Device-under-test (DUT). 

With the overall objective to encourage reuse of verification environments and tests scenarios, UVM is built in a 

modular fashion with standardized communication interfaces between its components. A typical verification 

environment consists of multiple UVM verification components or agents, which typically contain a sequencer, 

driver and monitor. These verification components use TLM to interface with the higher levels in the test bench 

architecture and use a physical-level interface to communicate with the DUT.   
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For the creation of the test bench and its verification components, specific classes derived from uvm_component 

are available: uvm_env, uvm_agent, uvm_monitor, uvm_driver, uvm_sequencer, uvm_scoreboard, etc. These 

dedicated classes are introduced to be able to distinguish each component from another component and to introduce 

specific methods per component type. For the creation of tests, the class uvm_test is available, forming the 

container class to instantiate the test bench and to select the (virtual) sequence (uvm_sequence) which will be 

executed. 

3B – Configurability and refactoring using the configuration and factory mechanism 

To facilitate and promote reuse of existing verification components, entire environments or test sequences in 

different tests or even across different projects, a high degree of reconfiguration and refactoring capabilities are 

offered in UVM-SystemC. 

The availability of a resource and configuration database (uvm_resource_db and uvm_config_db) is beneficial to 

provide access to configuration information from any place in the verification environment. Configuration properties 

are often stored at one of the higher layers in the UVM stack (e.g. in the test or test bench) and retrieved at the lower 

levels (e.g. in the agent, driver or monitor) to configure the components for specific verification tasks. For example, 

the interface object which is instantiated and connected to the DUT in the top-level, is also stored in the 

configuration database, so each verification component can be bound to the same interface by retrieving the handle 

to this interface object. The configuration database supports name-based and type-based storage and retrieval by 

introducing the static member functions set and get, respectively. The use of wildcards (e.g. * and ?) and regular 

expressions facilitate the configuration of multiple attributes with a single definition. 

The UVM factory (uvm_factory) is based on the classical factory design pattern [17] to create objects without 

specifying the exact implementation for these objects that will be created. It offers a non-intrusive and flexible way 

of reconfiguration of the test sequence or test bench topology without changing the original code. For example, 

UVM component and object overrides for specific tests are specified at a high level in the test bench hierarchy. The 

configuration and factory in UVM-SystemC are object-type aware. This means that the UVM type_id-based 

configuration and creation functions in the factory are supported to substitute a predefined object or component type 

with another specialized type. In addition to type overrides, factory overrides by instance name are possible. The use 

of the UVM factory requires that each verification object and component is derived from class uvm_object or 

uvm_component, is registered in the factory by means of special utility macros (UVM_*_UTILS), and is 

instantiated using the static member function type_id::create. In section 4 the usage of the configuration and factory 

mechanism is demonstrated.  

3C – Test execution using the phasing and objection mechanism 

For the execution of tests, the UVM phasing mechanism follows a well-defined order of execution of pre-defined 

callback functions and processes called phases, which run either sequentially or concurrently. The primary objective 

of the phasing mechanism is to facilitate synchronization between the UVM components during execution.  

This section explains in detail how the UVM phases are mapped onto the SystemC phases.  

UVM defines nine common phases, including four pre-run phases (build_phase, connect_phase, 

end_of_elaboration_phase and start_of_simulation_phase), a run-phase (run_phase) and four post-run phases 

(extract_phase, check_phase, report_phase and final_phase). These phases are mapped on the regular SystemC 

phases before_end_of_elaboration, end_of_elaboration and start_of_simulation, see Figure 2.  In contrast to the 

UVM implementation in SystemVerilog, where all UVM phases are executed as part of the simulation phase, the 

UVM-SystemC implementation executes the pre-run phases as part of the SystemC elaboration phase. This means 

that the construction of the design hierarchy and connections for the (SystemC) DUT and (UVM-SystemC) test 

bench and its verification components all happen in the elaboration phase and thus prior to simulation.  
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Figure 2: UVM common and runtime phases mapped on the SystemC phases 

In addition to these common phases, a refined runtime phasing schedule is available, which executes in parallel with 

the existing run-phase. It offers a reset_phase, configure_phase, main_phase and shutdown_phase to encapsulate 

DUT specific actions. Each of these runtime phases offer additional callbacks for pre- and post-processing functions, 

and can be recognized with the pre_ and post_ prefix. The practical use of these refined runtime phases is a topic of 

discussion in the UVM standardization committee, and it remains unclear at this stage whether changes are made to 

these runtime phases. Although available in UVM-SystemC, the use of runtime phases is therefore not 

recommended. Besides the common and UVM runtime phases, user-defined phases could be added. UVM-SystemC 

also supports forward and backward jumping for the runtime phases.  

The callbacks build_phase and connect_phase are executed sequentially within the SystemC 

before_end_of_elaboration phase. In the build phase, all UVM components are instantiated to construct the entire 

test bench topology using the factory. All components are connected in the connect phase.  It is recommended to use 

the UVM build and connect phase, and not use the SystemC before_end_of_elaboration callback, to guarantee 

proper execution of the test bench construction. 

The UVM callback end_of_elaboration_phase is available for post-elaboration activity, such as printing or 

hierarchy analysis. This callback is executed as part of the SystemC end_of_elaboration phase. The UVM callback 

start_of_simulation_phase is available to configure the verification components. It should not be used to configure 

the DUT. This callback is executed as part of the SystemC start_of_simulation phase. 

The callback run_phase and (optional) runtime phases offer the placeholders to execute the actual test scenarios and 

to perform configurations for the DUT. These runtime phases are all spawned SystemC processes and can consume 

time, unlike the other phases which are untimed function calls. 

Post-processing of the results is performed in the callbacks extract_phase, check_phase and report_phase, where 

the relevant results from the UVM verification components are extracted, checked and reported, respectively. The 

final_phase enables the application to clean-up and finalize the verification activity, such as closing files. Although 

not part of the UVM standard, the SystemC callback end_of_simulation could be used to perform additional tasks 

before the simulation is terminated. 

Execution of these phases is done in a top-down (▼) or bottom-up order (▲), as depicted in Figure 2. A top-down 

and bottom-up phase is completed as soon as all callbacks for all applicable components in the hierarchy have been 

called and returned. UVM-SystemC also implements the objection mechanism to synchronize the runtime phases. A 

runtime phase should raise an objection (raise_objection) to block execution to the next phase and after completion 

of its tasks it should drop the objection (drop_objection) to allow proceeding to the next phase. A runtime phase 

will terminate as soon as all objections for that phase are dropped. In this case, all running (or waiting) spawned 

SystemC processes are killed.  
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3D – Other UVM-SystemC features 

As most of the communication in the UVM test bench is transaction-oriented, additional functionality is offered to 

support printing, comparing, packing, and unpacking of these transactions and their internal properties. For example, 

the printer policy (uvm_printer) enables printing of the transaction properties to the standard output (stdout) in a 

table or tree-based manner. The comparer functionality (uvm_comparer) can be used in a scoreboard to perform the 

comparison of the reference and measured transactions. To serialize and de-serialize the transaction properties, the 

pack and unpack policies (uvm_packer) can be used, respectively  

The messaging and reporting features offer the user the standard UVM functionality to report information, warnings, 

errors or fatal errors. It supports a component-level reporting mechanism by setting the severity level on a per-

instance basis and messages can be filtered based on their verbosity settings. In addition, the convenience macros 

UVM_INFO, UVM_WARNING, UVM_ERROR, and UVM_FATAL are made available.  

Currently under development are the UVM register abstraction layer and the callback interface. The UVM 

implementation in SystemVerilog makes use of „native‟ verification features of this language, such as the 

constrained randomization and coverage groups. Therefore UVM-SystemC will define the necessary language 

constructs for randomization and coverage, but will rely on an external constrained random solver, for example 

based on the SystemC verification (SCV) [18] or CRAVE [19] library. 

4 – Using the UVM-SystemC foundation elements 

In this section, the foundation elements of UVM-SystemC are explained in detail, like the creation of a verification 

component, the application of the factory for registration and component instantiation, and the definition of 

sequence items, sequences and sequencers. To keep the examples in this paper concise, the code of the interface (.h) 

and the implementation (.cpp) are combined. 

4A – The cornerstone of UVM: the agent component 

Listing 1 below shows the creation of an UVM component with the user-defined name vip_agent in UVM-SystemC. 

An agent encapsulates the components which are necessary to drive and monitor the (physical) signals to (or from) 

the DUT. Typically, it contains three components: a sequencer, a driver and a monitor. The agent could also contain 

analysis functionality for basic coverage and checking, but this is not covered in this simple example. 
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class vip_agent : public uvm_agent  

{ 

 public: 

  vip_sequencer<vip_trans>* sequencer;  

  vip_driver<vip_trans>*    driver; 

  vip_monitor*              monitor; 

   

  vip_agent( uvm_name name ) 

  : uvm_agent( name ), sequencer(0), driver(0), monitor(0) {} 

 

  UVM_COMPONENT_UTILS(vip_agent); 

 

  virtual void build_phase( uvm_phase& phase ) 

  { 

    uvm_agent::build_phase(phase); 

  

    if ( get_is_active() == UVM_ACTIVE ) 

    { 

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

vifvif

analysis
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      sequencer = vip_sequencer<vip_trans>::type_id::create("sequencer", this); 

      assert(sequencer); 

      driver = vip_driver<vip_trans>::type_id::create("driver", this); 

      assert(driver); 

    } 

    monitor = vip_monitor::type_id::create("monitor", this); 

    assert(monitor); 

  } 

 

  virtual void connect_phase( uvm_phase& phase ) 

  { 

    if ( get_is_active() == UVM_ACTIVE ) 

      driver->seq_item_port.connect(sequencer->seq_item_export); 

  } 

}; 

Listing 1: Agent in UVM-SystemC 

A UVM agent inherits its basic functionality from the base class uvm_agent (Line 1). In contrast with UVM-

SystemVerilog, which offers the constructor called „new‟, the constructor in C++ has the same name as the class 

name (Line 8). The argument with type uvm_name is the container for the string name and provides the mechanism 

for building the hierarchical names. In order to register this component in the UVM factory, the macro 

UVM_COMPONENT_UTILS is used (Line 11). 

The agent implements two callbacks, namely the build_phase (Line 13) and the connect_phase (Line 28), which 

are called in the simulation build and connect phase, respectively. The user should always call the build_phase of 

the base class (Line 15), to make sure that the configuration variables for this component are retrieved correctly.  

UVM agents can be active or passive. Active agents drive signals to the DUT and thus instantiates a driver and 

sequencer. Passive agents not do not drive the DUT and therefore do not instantiate a driver and sequencer. 

Independent on the active or passive mode of the agent, the monitor is always instantiated to collect the results. In 

Listing 1, the member function get_is_active is used (Line 17 and 30) to retrieve the configuration for this agent. 

This configuration item is defined in the test bench, which is discussed in section 5, Listing 8. 

Instead of using the C++ operator new to instantiate the sequencer, driver and monitor, the UVM factory is used for 

instantiation, by means of the static member function type_id::create (Line 19, 21, and 24). In this way, the test 

bench or test definition itself is able to override these components for dedicated tests. 

The connection between the sequencer and driver is done in Line 31. Both driver port (seq_item_port) and 

sequencer port (seq_item_export) are part of their respective component base classes. For compatibility reasons, the 

member function connect is made available for users familiar with UVM, but users familiar with SystemC can also 

use the member function bind or operator(), as this connection is made using the SystemC port binding 

infrastructure. The connection of the driver and monitor to the DUT is done via the configuration mechanism inside 

the driver or monitor, and not in the agent. This is presented in section 5. 

4B – The UVM-SystemC sequencer 

The creation of a sequencer is often a trivial task for the user, simply because all functionality, such as sequence 

ordering and arbitration, is inherited from the base class. Listing 2 below shows the implementation of the 

vip_sequencer, which is a template class derived from uvm_sequence (Line 2). The template argument REQ is the 

„request‟, which defines the sequence item (Line 1).  
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template <class REQ>  

class vip_sequencer : public uvm_sequencer<REQ> 

{  

 public: 

  vip_sequencer( uvm_name name ) 

   : uvm_sequencer<REQ>( name ) {} 

 

  UVM_COMPONENT_PARAM_UTILS(vip_sequencer<REQ>); 

 

}; 

 

 

Listing 2: Sequencer in UVM-SystemC 

Similar as in the agent, the constructor argument for the sequencer, uvm_name, defines the string name and stores 

the hierarchical name (Line 5). The sequencer is registered in the UVM factory using the macro 

UVM_COMPONENT_PARAM_UTILS (Line 8). Note that the template argument is added to the class name in 

this macro, offering a very flexible mechanism to deal with registration of template classes. 

4C – The UVM-SystemC driver 

The agent and sequencer presented in the previous sections did not reveal many fancy features of UVM-SystemC; it 

was mainly instantiation of components and factory registration. In Listing 3, showing the driver, more interesting 

UVM-SystemC features are introduced. 
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template <class REQ>  

class vip_driver : public uvm_driver<REQ>  

{  

 public:  

  vip_if* vif; 

 

  vip_driver( uvm_name name ) : uvm_driver<REQ>(name), vif(0) {} 

 

  UVM_COMPONENT_PARAM_UTILS(vip_driver<REQ>); 

 

  virtual void build_phase( uvm_phase& phase ) 

  { 

   uvm_driver<REQ>::build_phase(phase);  

 

   if ( !uvm_config_db<vip_if*>::get(this, "*", "vif", vif) ) 

      UVM_FATAL( this->get_name(), "Interface to DUT not defined! Simulation aborted!" ); 

  } 

 

  virtual void run_phase( uvm_phase& phase ) 

  { 

    REQ req, rsp; 

    while(true) // forever loop 

    { 

      this->seq_item_port->get_next_item(req); 

      drive_transfer(req); 

      rsp.set_id_info(req); 

      this->seq_item_port->item_done(); 

      this->seq_item_port->put_response(rsp); 

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

vifvif

analysis

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

vifvif

analysis

class vip_if  

{ 

 public: 

  sc_signal<int> sig_a; 

  ...  

  vip_if() : sig_a("sig_a"), ... 

  {} 

}; 
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    } 

  } 

 

  virtual void drive_transfer( const REQ& p ) 

  { 

    ... 

    vif->sig_a.write(...); 

  } 

};  

Listing 3: Driver in UVM-SystemC 

The UVM driver called vip_driver is a template class and inherits its basic functionality from the base class 

uvm_driver (Line 2). The template argument REQ is the „request‟, which defines the actual sequence item 

(transaction) which is used to store the relevant properties for the creation of the physical signals to drive the DUT. 

Line 5 defines the placeholder vif needed to store the handle to the interface object of type vip_if, which contains one 

or multiple channels (e.g. of type sc_signal, see code inlay). The interface is retrieved using the member function 

get of the configuration database (Line 15). The interface is defined (aka set) in the top-level, which is described in 

the next section. In case no interface is found, a fatal error is presented and the simulation will stop, by using the 

reporting macro UVM_FATAL (Line 16). 

The driver‟s constructor argument uvm_name passes the string name to the base class (Line 7). As the driver is also 

a template class, it is registered using the macro UVM_COMPONENT_PARAM_UTILS where the class name 

and template argument are passed as argument of this macro (Line 9). 

The actual behavior of the driver is implemented in the callback run_phase (Line 19). In this callback, the driver 

repeatedly requests sequence items (transactions), encapsulated in a sequence, via the sequencer, using the member 

function get_next_item (Line 24). The „request‟ transaction is translated to one or more physical signal(s) in the 

user-defined member function driver_transfer. Note that in this function, the value is directly written to the channel, 

which is accessible via the interface vip_if (Line 35). In order to indicate to the sequencer that the transaction is 

completed, the driver calls the member function item_done (Line 27). Optionally, response information can be 

passed back to the sequencer using the member function put_response (Line 28). In this case, the identity 

information of the initial request transaction should be made available as well, and therefore the member function 

set_id_info is called beforehand to copy this information from the request into the response transaction (Line 26).  

4D – The UVM-SystemC monitor 

A UVM monitor collects signal information from the interface it is connected to. This information is combined into 

transactions, which are made available to the other components in the verification environment, such as scoreboard 

or coverage collection objects, using TLM analysis interfaces. Listing 4 shows an example of a monitor called 

vip_monitor, which is derived from class uvm_monitor (Line 1). The collected information is exported on an 

analysis port item_collected_port, containing transactions of type vip_trans (Line 4). Although not explained in 

detail in this simple example, a monitor can contain additional checking and coverage functionality, which can be 

enabled by using the configuration mechanism (Line 6, 7, 19, 20, 35, and 36). The end-to-end self-checking is done 

in scoreboards, and will be explained in section 5. 

The constructor argument of type uvm_name passes the string name to the base class (Line 9). The macro 

UVM_COMPONENT_UTILS is used to register this object in the factory (Line 13). 
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class vip_monitor : public uvm_monitor  

{  

 public: 

  uvm_analysis_port<vip_trans> item_collected_port; 

  vip_if* vif; 

  bool checks_enable; 

  bool coverage_enable; 

 

  vip_monitor( uvm_name name ) : uvm_monitor( name ),  

    item_collected_port("item_collected_port"), vif(0), 

    checks_enable(false), coverage_enable(false) {} 

 

  UVM_COMPONENT_UTILS(vip_monitor); 

 

  virtual void build_phase( uvm_phase& phase ) 

  { 

    uvm_monitor::build_phase(phase); 

 

    uvm_config_db<bool>::get(this, "*", "checks_enable", checks_enable); 

    uvm_config_db<bool>::get(this, "*", "coverage_enable", coverage_enable); 

    if ( !uvm_config_db<vip_if*>::get(this, "*", "vif", vif) ) 

      UVM_FATAL( get_name(), "Interface to DUT not defined! Simulation aborted!" ); 

  } 

 

  virtual void run_phase( uvm_phase& phase ) 

  { 

    vip_trans p; 

    while (true) // forever loop 

    { 

      ... // Collect the data into transaction vip_trans 

      item_collected_port.write(p); 

 

      if ( checks_enable ) { ... } 

      if ( coverage_enable ) { ... } 

    } 

  } 

}; 

Listing 4: Monitor in UVM-SystemC 

The actual signal detection and collection is done in an endless loop as part of the run_phase and is sent to the 

analysis port using the member function write (Line 31).  

4E – Sequence items and sequences 

In the previous section the actual signal to drive the DUT was encapsulated in a sequence, which was processed by 

the driver by requesting it from the sequencer. This section will show how sequence item and sequences are defined 

in UVM-SystemC.  

Sequences encapsulate sequence items, also called transactions. The sequence item contains the actual properties (or 

attributes) of a transaction. Note that sequences are not part of the test bench hierarchy, but are UVM objects which 

are mapped on one or more sequencers. Similar as with verification components, sequences and sequence items can 

be configured via the factory. Sequences may contain other sequences to form a layered structure. 
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class vip_trans : public uvm_sequence_item  

{  

 public: 

  int addr; 

  int data; 

  bus_op_t op; 

 

  vip_trans( const std::string& name = "vip_trans" )  

  : addr(0x0), data(0x0), op(BUS_READ) {} 

 

  UVM_OBJECT_UTILS(vip_trans); 

 

  virtual void do_print( uvm_printer& printer ) const { ... } 

  virtual void do_pack( uvm_packer& packer ) const { ... } 

  virtual void do_unpack( uvm_packer& packer ) { ... } 

  virtual void do_copy( const uvm_object* rhs ) { ... } 

  virtual bool do_compare( const uvm_object* rhs ) const { ... } 

}; 

Listing 5: Sequence item in UVM-SystemC 

Listing 5 shows the implementation of a sequence item called vip_trans. The transaction is derived from class 

uvm_sequence_item (Line 1). It contains three member variables address (addr), data (data) and an enumerator 

indicating BUS_READ or BUS_WRITE (Line 4-6). The macro UVM_OBJECT_UTILS is used to register the 

sequence item in the factory (Line 12). UVM-SystemC does not implement the field macros, due to the known 

limitations of runtime performance and debug transparency. Therefore a sequence item should implement all 

elementary member functions to print, pack, unpack, copy and compare the data items explicitly. For this, the 

member functions do_print, do_pack, do_unpack, do_copy and do_compare are available (Line 13-17). Note that 

the example does not show the constrained randomization features, as these are not implemented in UVM-SystemC. 

Instead, libraries like SCV or CRAVE can be used for this purpose. 

The UVM sequence item is used as template argument for the creation of the actual sequence, as shown in Listing 6. 

A sequence is derived from template class uvm_sequence (Line 2). The macro UVM_OBJECT_PARAM_UTILS 

supports the registration of template classes with multiple arguments, which are derived from uvm_object (Line 8). 
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template <typename REQ = uvm_sequence_item, typename RSP = REQ> 

class vip_sequence : public uvm_sequence<REQ,RSP>  

{ 

 public: 

  vip_sequence( const std::string& name )  

  : uvm_sequence<REQ,RSP>( name ) {}  

 

  UVM_OBJECT_PARAM_UTILS(vip_sequence<REQ,RSP>); 

 

  virtual void pre_body() 

  { 

    if ( starting_phase != NULL )  

      starting_phase->raise_objection(this); 

  } 

 

  virtual void body() 

  { 

    REQ* req = new REQ(); 
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    RSP* rsp = new RSP(); 

    ... 

    start_item(req); 

    // req->randomize(); // randomization compatibility layer not yet available in UVM-SystemC 

    finish_item(req); 

    get_response(rsp); 

  } 

 

  virtual void post_body() 

  { 

    if ( starting_phase != NULL )  

      starting_phase->drop_objection(this); 

  } 

}; 

Listing 6: Sequence in UVM-SystemC 

The callback function body is used to implement the user-specific test scenario (Line 16). The member functions 

start_item and finish_item are called to negotiate and then send the sequence to the sequencer (Line 21 and 23). 

The member function randomize, defined as part of the compatibility layer to the SCV or CRAVE library, is not yet 

available (Line 22).  

The member function body is automatically called from the higher level in the test bench, for example by explicitly 

calling the member function start in a sequence. Alternatively, a sequence can be started implicitly by defining a 

default sequence in a test along with specifying the component and phase where it should be executed. The latter 

approach is presented in the next section, see Listing 10. 

The callback functions pre_body and post_body (Line 10 and 27) are called before and after the callback body, 

respectively, to raise and to drop an objection only when the sequence has no parent sequence. For this purpose, the 

data member starting_phase is used, offering a handle to the default sequence (Line 13 and 30).  

5 – Creating test benches and executing tests in UVM-SystemC 

In the previous section the basic foundation elements of UVM-SystemC were presented to create verification 

components and sequences. In practice however, we expect that the focus in verification should be on the 

development of the actual tests, creation of the scoreboard, and execution of numerous test scenarios. The creation 

and configuration of the test bench should be a straight-forward exercise by reusing verification components 

(developed internally or offered by 3
rd

 parties) and reusing predefined sequences from a sequence library.  

Therefore we present in this section the process of assembly and configuration of the test bench and demonstrate 

how to define tests, which select and execute sequences on the test bench. It also shows the creation of a scoreboard 

to make self-checking test benches and the use of the type-based configuration database to connect the DUT with 

the verification components across the test bench hierarchy, all using SystemC and C++ constructs. 

5A – Creating self-checking test benches using a scoreboard 

A UVM scoreboard is responsible for the self-checking capabilities in a verification environment. Listing 7 shows a 

typical skeleton of a scoreboard, using the base class uvm_scoreboard (Line 1). It typically contains multiple 

subscribers (also called listeners), which are connected to the monitors using uvm_analysis_export interfaces (Line 

4, 5, 7 and 8). With the use of this TLM analysis interface, a call to the member function write in a monitor is 

actually executed on each connected subscriber, which then calls the corresponding write method implemented in 

the scoreboard (Line 33 and 34). A subscriber can also act as a predictor, which consumes the input stimulus that is 

sent to the DUT and calculates the expected result based on an algorithm or reference model, and passes this to the 

scoreboard. 
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class scoreboard : public uvm_scoreboard 

{  

 public: 

  uvm_analysis_export<vip_trans> xmt_listener_imp; 

  uvm_analysis_export<vip_trans> rcv_listener_imp; 

  bool error; 

  xmt_subscriber* xmt_listener; 

  rcv_subscriber* rcv_listener; 

 

  scoreboard( uvm_name name ) : uvm_scoreboard( name ),  

    xmt_listener_imp("xmt_listener_imp"), 

    rcv_listener_imp("rcv_listener_imp"),  

    xmt_listener(0), rcv_listener(0) {} 

 

  UVM_COMPONENT_UTILS(scoreboard); 

 

  virtual void build_phase( uvm_phase& phase ) 

  { 

    uvm_scoreboard::build_phase(phase); 

    ... 

    xmt_listener = xmt_subscriber::type_id::create("xmt_listener", this); 

    assert(xmt_listener); 

    rcv_listener = rcv_subscriber::type_id::create("rcv_listener", this); 

    assert(rcv_listener); 

  } 

 

  virtual void connect_phase( uvm_phase& phase ) 

  { 

    xmt_listener_imp.connect( xmt_listener->analysis_export ); 

    rcv_listener_imp.connect( rcv_listener->analysis_export ); 

  } 

 

  virtual void write_xmt( const vip_trans& p ) { ... } // store reference information 

  virtual void write_rcv( const vip_trans& p ) { ... } // compare received data with reference data 

}; 

Listing 7: Scoreboard in UVM-SystemC 

The actual evaluation functionality, which is the self-checking part in the scoreboard, is done by comparing the 

reference and received transactions. The implementation of the comparison depends on the type of application and 

therefore not presented in detail. In most cases, the transaction properties acting as golden reference are stored on a 

stack (e.g. FIFO or vector), in a write method called by the first subscriber (e.g. write_xmt). The comparison is done 

as soon as a transaction is received by the second subscriber, by calling another write method (e.g. write_rcv). The 

comparison result is stored in the public variable error, which is used in the test component to report the pass/fail 

result. 

5B – The UVM-SystemC test bench 

The test bench is defined as the complete verification environment which instantiates and configures the universal 

verification components (UVCs), scoreboard, and virtual sequencer if necessary. The UVCs are sub-environments in 

the test bench, which contain one or more agents. 
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Listing 8 shows the implementation of the test bench. It uses the base class uvm_env (Line 1). The UVCs and 

scoreboard are instantiated using the factory (Line 17-22). This facilitates component overriding from the test 

scenario, as discussed in the next sections. The configuration database is used to configure each agent in the UVC as 

being active or passive, by means of the global function set_config_int (Line 24 and 25). 
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class testbench : public uvm_env  

{  

 public: 

  vip_uvc*    uvc1; 

  vip_uvc*    uvc2; 

  scoreboard* scoreboard1; 

 

  testbench( uvm_name name ) : uvm_env( name ), uvc1(0),  

    uvc2(0), scoreboard1(0) {} 

 

  UVM_COMPONENT_UTILS(testbench); 

 

  virtual void build_phase( uvm_phase& phase ) 

  { 

    uvm_env::build_phase(phase); 

 

    uvc1 = vip_uvc::type_id::create("uvc1", this); 

    assert(uvc1); 

    uvc2 = vip_uvc::type_id::create("uvc2", this); 

    assert(uvc2); 

    scoreboard1 = scoreboard::type_id::create("scoreboard1", this); 

    assert(scoreboard1); 

 

    set_config_int("uvc1.*", "is_active", UVM_ACTIVE); 

    set_config_int("uvc2.*", "is_active", UVM_PASSIVE); 

  } 

 

  virtual void connect_phase( uvm_phase& phase ) 

  { 

    uvc1->agent->monitor->item_collected_port.connect(scoreboard1->xmt_listener_imp); 

    uvc2->agent->monitor->item_collected_port.connect(scoreboard1->rcv_listener_imp); 

  } 

}; 

Listing 8: Test bench in UVM-SystemC 

The test bench only makes the connections between the monitors of the UVCs and the listeners (subscribers) in the 

scoreboard (Line 37 and 38); the connections between the UVCs and the DUT are arranged within the driver and 

monitor of each UVC.  
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template <class REQ>  

class new_driver : public vip_driver<REQ> 

{ 

 public: 

  new_driver( uvm_name name ) : vip_driver<REQ>( name ) {} 

  UVM_COMPONENT_PARAM_UTILS(new_driver<REQ>); 

  ...  

};  

Listing 9: New driver declaration to override existing driver component 

5C – Description of the test 

Each UVM test is defined as a dedicated test class derived from class uvm_test, as shown in Listing 10 (Line 1). It 

instantiates the test bench (Line 16) and defines the default sequence which will be executed on the sequencer of one 

of the verification components (Line 19-21).  

A new driver called new_driver is defined in Listing 9 (only partly shown), which will be used to override the 

original vip_driver instantiated in Listing 1. The factory member function set_type_override_by_type is used to 

override the original UVM driver in the agent by a new driver (Listing 10, line 23 and 24). The types of the original 

and new driver are obtained by calling the static member function get_type. 

The result from the scoreboard checking is extracted in the extract_phase and updates the local data member 

test_pass.  The actual pass/fail reporting is done in the callback report_phase using the available UVM macros for 

reporting information and errors. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

class test : public uvm_test  

{  

 public: 

  testbench* tb; 

  bool test_pass; 

 

  test( uvm_name name ) : uvm_test( name ),  

    tb(0), test_pass(true) {} 

 

  UVM_COMPONENT_UTILS(test); 

 

  virtual void build_phase( uvm_phase& phase ) 

  { 

    uvm_test::build_phase(phase); 

 

    tb = testbench::type_id::create("tb",this); 

    assert(tb); 

 

    uvm_config_db<uvm_object_wrapper*>::set( this, 

      tb.uvc1.agent.sequencer.run_phase", "default_sequence", 

      vip_sequence<vip_trans>::type_id::get()); 

 

    set_type_override_by_type( vip_driver<vip_trans>::get_type(), 

      new_driver<vip_trans>::get_type() ); 

  } 

 

  virtual void run_phase( uvm_phase& phase ) 

  { 
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    UVM_INFO( get_name(), "** UVM TEST STARTED **", UVM_NONE ); 

  } 

 

  virtual void extract_phase( uvm_phase& phase ) 

  { 

    if ( tb->scoreboard1.error ) 

      test_pass = false; 

  } 

 

  virtual void report_phase( uvm_phase& phase ) 

  { 

    if ( test_pass ) 

      UVM_INFO( get_name(), "** UVM TEST PASSED **", UVM_NONE ); 

      else 

        UVM_ERROR( get_name(), "** UVM TEST FAILED **" ); 

  } 

}; 

Listing 10: Test definition in UVM-SystemC 

5D – The main program (Top-level) 

The main program, also called top-level, uses the SystemC sc_main function and contains the DUT, the interfaces 

connected to the DUT, and the definition of the test, as shown in Listing 11. The interfaces are stored in the 

configuration database, so it can be used by the UVC drivers and monitors to connect to the DUT (Line 8-11).  
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int sc_main(int, char*[])  

{  

  dut* my_dut = new dut("my_dut"); 

 

  vip_if* vif_uvc1 = new vip_if; 

  vip_if* vif_uvc2 = new vip_if; 

 

  uvm_config_db<vip_if*>::set(0, "*.uvc1.*",  

                              "vif", vif_uvc1); 

  uvm_config_db<vip_if*>::set(0, "*.uvc2.*",  

                              "vif", vif_uvc2); 

 

  my_dut->in(vif_uvc1->sig_a); 

  my_dut->out(vif_uvc2->sig_a); 

 

  run_test("test"); 

 

  sc_start(); 

 

  return 0; 

} 

Listing 11: The main program (top-level) in UVM-SystemC 

The test to be executed is either defined by explicitly instantiating the test object (of type uvm_test) or implicitly by 

specifying the test as argument of the function run_test (Line 16). The latter method makes it possible to pass the 

test as string via the command line, available via the arguments of the function sc_main, and pass it to the run_test 

method.  
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The simulation is started using the SystemC function sc_start. It is recommended not to specify the simulation stop 

time, nor use the SystemC function sc_stop, as the end-of-test is automatically managed by the UVM-SystemC 

phasing mechanism. 

6 – Summary and outlook 

The Universal Verification Methodology standard offers the verification community good guiding principles to 

develop structured, modular, configurable and reusable verification environments. In order to introduce the same 

valuable concepts to the system-level design community, the UVM library is made available in SystemC/C++, 

offering them a powerful asset to further advance in system verification and hardware/software co-verification. 

Furthermore, it facilitates reuse of verification components, which are developed internally or offered by 3
rd

 parties, 

between concept and architecture design and the IC implementation phase. As UVM-SystemC is compliant with the 

UVM standard and is using identical semantics and language constructs, it gives the user community the same “look 

& feel”, with the aim to bring verification and system-level design best practices closer together. 

As a next step, the UVM-SystemC library will be extended with a UVM standard compatible register abstraction 

layer and callback mechanism. Furthermore, integration of constrained randomization capabilities using the 

SystemC Verification or CRAVE library is being developed, as well as the introduction of coverage groups.  

In order to seek for standardization and industry adoption of UVM in SystemC, the objective is to contribute the 

initial language reference definition and associated proof-of-concept implementation of UVM-SystemC to Accellera 

Systems Initiative. It is therefore likely that the presented constructs are subject to change as part of the envisioned 

standardization process. 

Ultimately, this initiative brings us one step closer in realizing the vision where the Universal Verification 

Methodology can be truly seen as language-independent methodology standard. By making UVM available in 

recognized languages such as SystemVerilog and SystemC/C++, new applications and use cases besides system 

verification, like hardware-in-the-loop simulation and rapid control prototyping will emerge. The Universal 

Verification Methodology becomes universal, at last. 
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