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Abstract— This paper provides an overview of register model 
operation in the UVM and then explains the key aspects of base 
class code that enable effective complex register modeling. 
Several possible solutions to common modeling problems are 
discussed in detail with a focus on supporting both active and 
passive operation.  In addition the performance impact of large 
register models is analyzed and improved solutions provided. 
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I.  INTRODUCTION 
Writing effective register models for most complex designs 

involves modeling any number of imaginative register field 
operations, side effects and interactions between different 
registers. The Universal Verification Methodology (UVM) 
provides a standard base class libraries that enable users to 
implement just about anything the designers can dream up, but 
the documented examples, recommendations and guidelines 
are misleading and can result in ineffective implementation and 
poor performance. 

This paper provides a brief overview of register model 
operation in the UVM and then explains the key aspects of 
base class code that enable complex register modeling, 
including: 

A. Multiple Solutions 
By presenting and analyzing multiple possible 

implementations for several modeling problems, we are able to 
present the user with a clear understanding of what patterns are 
more appropriate to specific applications and why. From this 
analysis we derive guidelines on when it is appropriate to use 
callbacks, when custom fields are required, and illustrate the 
use of dynamic field access policies.  

B. Passive Operation 
The basic UVM register model application programming 

interface (API) is very stimulus-centric. In particular the user is 
presented with the opportunity to customize derived fields 
using pre/post read/write hooks in the base field class and 
associated callbacks. As a result many register models are built 
up using hooks that do not result in correctly modeled register 
behavior in a passive context, i.e. under any circumstances 
when the Device Under Test (DUT) register receives stimulus 
that was not a direct result of running a corresponding 
sequence on the register model; typically passive reuse in an 

environment with alternate stimulus, or where registers are 
updated from internal sources such as an embedded 
microcontroller. For passive modeling the standard access 
hooks suggested by UVM documentation are inappropriate and 
the implementer needs to make use of alternative callbacks.  

C. Performance 
In a typical complex System on Chip (SoC) device we can 

easily have tens of thousands of register fields in the model. If 
we follow the standard guidelines for factory generation as 
proposed by the UVM we suffer from a significant load and 
build-time performance penalty. The paper observes that since 
register models are generated to-order from the documentation 
source, it is not part of the standard use-case to perform factory 
overrides on registers or fields. We demonstrate what the 
factory overheads are and provide alternative guidelines on 
how to minimize register model overhead without 
compromising usability. In addition we also explore the 
possibility to build registers on-demand. 

II. UVM REGISTER OVERVIEW 
In a verification context, a register model (or register 

abstraction layer) is a set of classes that model the memory-
mapped behavior of registers and memories in the DUT in 
order to facilitate stimulus generation and functional checking 
(and optionally some aspects of functional coverage). The 
UVM provides a set of base classes that can be extended to 
implement comprehensive register modeling capabilities as 
detailed in [1] and [2]. The fundamental structure of the actual 
register model is illustrated in Figure 1. 

 

 

Fig. 1. Register Model Structure 
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The register model itself is a set of DUT-specific files that 
extend the UVM base classes. Due to the number of registers 
required and their regular structure, the model files are usually 
generated from a textual register description source (such as 
XML) in parallel with the generation of actual RTL for the 
DUT registers. The top-level register block is instantiated in 
the verification environment in parallel with other interface 
verification components, as shown in Figure 2. 

 

 

Fig. 2. Environment with register model, adapter and predictor 

Note that the reusable interface components do not contain 
a reference to the register model (since this would compromise 
portability), but the enclosing environment implements any 
required interaction between the interface components and the 
model. The main interaction between the register model and 
the rest of the verification environment is via adapter and 
predictor components: 

• uvm_reg_adapter converts between register model read 
and write methods and the interface-specific transactions 

• uvm_reg_predictor updates the register model based on 
observed transactions published by a monitor 

A good introduction to register model usage and how to set 
up the adapter and predictor is provided by [3]. 

A. Active and Passive Operation 
The UVM register model supports both active and passive 

modes of operation and is often used in an environment where 
both are required as shown in Figure 3. In an active context, 
register operations are sourced via the register model read and 
write methods, which in turn get converted to sequence items 
for an interface verification component via the adapter (path 1 
in Figure 3). Passive operation refers to any register operation 
where the stimulus did not explicitly use the register model 
access methods directly, for instance if an interface component 
sequence is executed directly by the virtual sequencer without 
calling the register model access methods (path 2 in Figure 3), 
or if the register content is affected by a bus transaction from 
an alternative stimulus source, for example an embedded CPU 
running firmware (as shown by path 3 in Figure 3). 

 

 

Fig. 3. Access Paths for Active and Passive Operations 

Another form of passive operation is when the register 
model is used in an environment where the stimulus is 
provided by some other mechanism entirely (such as 
executable software, or a legacy non-UVM environment), but 
the model is still required to be accurate for checks and 
functional coverage. For actual bus traffic from an alternative 
source to be observed, a predictor must be present on the 
corresponding bus hierarchy. The UVM register model API is 
very stimulus-centric and the documentation is focused on the 
active usage of the class constructs, which leads to confusion in 
partial and fully passive contexts.  

It is not just the field modeling aspect that needs to be 
aware of passive usage, but also any checks that make use of 
the register model state. For example implementing register 
checks using the mirror method in a sequence (which reads the 
register and checks the mirrored value against the read value) is 
not portable to a vertical reuse scenario; so monitors should be 
used to implement passive checks instead [4].  

B. Predictable and Volatile Modeling 
The accurate modeling of all register fields in the DUT 

goes beyond the capabilities provided by the register model 
constructs, since many register fields are modified by the DUT 
in response to alternative stimulus and not just bus operations. 
Such register fields are not predictable, based only on 
described behavior in relation to read and write operations, and 
are termed volatile from the model viewpoint. Typically these 
registers are not checked directly by the model, but rather the 
RTL value is probed using active monitoring via the specified 
HDL path (i.e. the actual path to the RTL register field in the 
DUT), in order to keep the field up to date [5]. This means the 
model adapts to DUT behavior and additional external checks 
should be used to validate that the DUT field, available in the 
register model, has the correct value under all circumstances 
dictated by the specification. In some cases it may also be 
possible to model status registers as read-only but non-volatile, 
and analyze external stimulus directly to predict new register 
values based on observed events. 

Modeling and checking volatile register behavior in the 
larger context is non-trivial, but is part of the overall 
verification environment modeling responsibilities. For 
instance, how do we validate that the resultant value on a 
volatile register bit is correct if both the bus and the hardware 
try to update the bit at the same time? Which operation has 
priority and has that been implemented correctly in the DUT? 
More fundamentally, what external stimulus should cause the 



volatile register field to be updated to a particular value and 
when may this occur deep inside the design? A full analysis of 
all aspects of volatile register field modeling in the context of 
functional behavior of the application is outside the scope of 
this paper; the remaining sections focus on maintaining an 
accurate model of non-volatile register fields. 

III. REGISTER MODEL OPERATION 

A. Register Access API 
An overview of the register and field access API is 

provided by [1], with a more detailed explanation provided by 
[6]. Each field has a corresponding predicted and mirrored 
value, as well as reset state and hooks for additional operations 
such as randomization via a value field, as shown in Figure 4.  

 

Fig. 4. Register Field Variables and Access Methods 

For non-volatile register fields the mirrored value provides 
the current state of the register field based on all active and 
passive bus operations. For volatile fields additional modeling 
is required to maintain the state of the mirrored value based on 
other non-bus related application-specific behavior. Register 
operations can be summarized as: 

• write, poke, set-update and randomize-update are all 
active operations which update both the mirrored and DUT 
register values 

• read, peek and mirror are all active operations which 
update the mirrored value based on DUT register values 

• reset and predict are passive operations which update the 
mirrored value independent of active model stimulus 

Note that the model is normally reset during construction 
and for all subsequent observed reset events and is expected to 
match the DUT reset state. The predict method is called in 
response to observed bus transactions published via the 
associated predictor component, but it is also called as part of 
all active write and read operations, including backdoor 
operations which have no bus traffic at all.  

B. Hooks and Callbacks 
The term callback is often abused in software engineering 

in general, and the UVM documentation in particular, even 
though the uvm_callback mechanism is quite well defined. In 
the context of register modeling, we need to make a clear 

distinction between the two main mechanisms, hooks and 
callbacks, which are used to affect register model behavior.  

Register and field base classes provide a set of empty 
virtual method hooks (pre_write, post_write, pre_read and 
post_read), which are called at specific points in the execution 
of the register operations. The register model developer can 
implement one or more of these methods in the derived class in 
order to affect the functionality. This is normal object-oriented 
behavior and nothing to do with the callback mechanism.  

class my_reg_field extends uvm_reg_field; 
  ... 
  virtual task post_write(uvm_reg_item rw); 
    // specific implementation 
  endtask 
  ... 
endclass 

The callback base classes also have empty virtual methods 
(pre_write, post_write, pre_read, post_read, post_predict, 
encode and decode), but they are only executed if a callback is 
registered with a specific field or register (which causes it to be 
added to a list). The developer can derive a user-defined 
callback class from the base class and implement one or more 
of the virtual methods to affect the functionality.  

class my_field_cb extends uvm_reg_cbs; 
  ... 
  function new(string name="my_field_cb", ...); 
  ... 
  virtual task post_write(uvm_reg_item rw); 
    // specific implementation 
  endtask 
  ... 
endclass 

The callback class must then be constructed and registered 
with the field or register for which the method will be called. 
Callbacks are allocated dynamically and we can register 
multiple callbacks for different orthogonal features with the 
same register field. In addition the constructor for the callback 
does not have a fixed signature, so the functionality of each 
callback is very flexible.  

my_field_cb my_cb = new("my_cb", ...); 
uvm_reg_field_cb::add(regX.fieldY, my_cb);  

Hence the method implementation is done in a derived 
uvm_reg_field class for hooks, and in a derived uvm_reg_cbs 
class for callbacks. The virtual method hook is always called 
but the related method from the callback is only called if the 
callback is registered with the corresponding field, as shown in 
the following extract from the uvm_reg_field file: 

task uvm_reg_field::do_write(uvm_reg_item rw); 
  ... 
  pre_write(rw); // virtual method hook 
  for (uvm_reg_cbs cb=cbs.first();  
       cb!=null; cb=cbs.next()) 
    cb.pre_write(rw); // callback method 
  ... 
  rw.local_map.do_write(rw); // actual write 
  ... 
  post_write(rw); // virtual method hook 
  for (uvm_reg_cbs cb=cbs.first();  
       cb!=null; cb=cbs.next()) 
    cb.post_write(rw); // callback method 
  ... 
endtask 



For passive modeling of the register behavior the 
post_predict callback method is the most important since it is 
executed by the uvm_reg_field::predict method after any 
observed read or write operation, irrespective of the source of 
the bus traffic, including backdoor accesses [7]. Note that it is 
important to register the callbacks which implement 
post_predict with fields and not registers, since post_predict is 
only called from a uvm_reg_field::predict() operation; in other 
words if we associate the callback with the register object, then 
we effectively add a post_predict method to the derived class 
which will not be called by the super class! 

C. Field Access Policies 
The UVM provides a comprehensive set of pre-defined 

field access policies [1], which are summarized in Table I. The 
field access policy is normally setup during build by the 
configure method. 

TABLE I.  SUMMARY OF PRE-DEFINED FIELD ACCESS POLICIES 

 

 An important aspect of field access policies is that they are 
necessarily self-contained, in that the field’s behavior can be 
explained in terms of register operations in isolation from other 
fields and registers as shown in Figure 5. 

 

Fig. 5. Field Access Policy Behavior 

UVM provides mechanisms to support the addition of user-
defined access policies, which are defined using the static 
uvm_reg_field::define_access method. Furthermore, the access 
policy can be changed dynamically by calling set_access, even 
after the register model is locked. There is also a get_access 
method that returns the current access policy for the field. 

It is important to be aware that defining, adding and using a 
user-defined access policy does not actually create any specific 
modeling behavior in itself - in fact the behavior of a user-
defined access policy defaults to that of the RW policy. To get 
specific user-defined policy behavior the user must alter the 
behavior of actual accesses to the corresponding register field 

by implementing virtual methods in either the hooks or 
callbacks.  

Field access policies should not be confused with the access 
rights declared when a register is added to a particular address 
map. Registers can be added to more than one map 
(corresponding to different interfaces in the DUT) with 
different access rights (RW, RO or WO are the only choices); 
whether a register field can be read or written depends on both 
the field’s configured access policy and the register’s rights in 
the map being used to access the field [2]. 

Although comprehensive, the set of pre-defined field access 
policies can never be exhaustive; for example we have dealt 
with designs requiring read-to-reset, write-to-reset, write-key-
to-set/clear/reset, and write-sequence-to-set/clear/reset/write 
behavior - all of which can be solved with dedicated user-
defined access policies.  

D. Register Field Interaction 
In practice, most special register operations tend to require 

interaction between different register fields, rather than self-
contained field access policy behavior. These register field side 
effects are not modeled out of the box by the UVM register 
abstraction layer; however, mechanisms are provided to enable 
users to develop advanced modeling relationships using the 
underlying hooks and callbacks. Typically this involves adding 
a handle from one register field to another, and connecting it in 
a higher-level code (e.g. register block) that has access to the 
interacting fields. If the field names are unique throughout the 
model, we can also use get_field_by_name method to connect 
the cross references, otherwise it is safer to use hierarchical 
names (as shown in the examples). Figure 6 shows the 
interaction of two fields, from separate registers, in a generic 
manner; both register field operations (i.e. read and write) as 
well as field value can affect the operation of the affected field. 

 

Fig. 6. Field Interaction & Side Effects 

Typical examples of field interaction include locking or 
protecting a register field based on another fields content, or 
controlling the timing of a buffer update based on a write to 
separate trigger field which may be in the same register, a 
different register in the same scope, or a different register 
block. 

It normally makes sense to identify a field as having a user-
defined access policy even though the behavior is not entirely 
self-contained in accesses to this field (but rather is modeled by 
side-effects from other register fields) in order to identify the 
field as special. Care is required here due to the very loose 
binding between the affected field and the controlling field; this 



encapsulation problem does not exist in self-contained user-
defined access policies.  

E. Register Side Effects 
Register side effects are not limited to interaction of fields. 

In fact register field operations can be extended to influence 
many other aspects of verification environment behavior, such 
as modifying configuration fields in an interface or legacy 
verification component when a related configuration register is 
updated in the model.  

Implementation of these kinds of side effects is similar to 
that for register field interaction, except the relationships 
between the two structures must be handled at an even higher 
level, typically the environment which instantiates both the 
register model and the other verification components.  

IV. WORKED EXAMPLES 
This section provides some worked examples for modeling 

certain types of register field behavior and interaction. In each 
case we discuss several possible solutions and look at the 
relative benefits of each of these.  

A. Example User-Defined Access Policy - Write-to-Reset 
While write-to-clear (WC) and write-to-set (WS) are 

available as pre-defined field access policies, some devices 
have a requirement for write-to-reset behavior that can be 
implemented as a user-defined field access policy (which we 
will call WRES). In this case the register field is set to its 
current reset value (which was initialized using configure, or 
by set_reset, and is presumably not all ones or all zeros, 
otherwise the pre-defined policies could be used) on a write. 
Other variations of this access policy include read-to-reset, 
write-1-to-reset, write-0-to-reset, etc. The basic mechanism is 
illustrated in Figure 7. 

 

Fig. 7. Write-to-Reset User-Defined Access Policy 

1) Write-to-Reset Using post_write Hook 
One possible implementation for this access policy is to use 

a derived register field, which is extended from the 
uvm_reg_field base class, and implement the post_write virtual 
method hook to set the mirror to the reset value as shown in the 
following code.  

class wres_reg_field extends uvm_reg_field; 
 
  `uvm_object_utils(wres_reg_field) 
   
  local static bit m_wres = define_access("WRES"); 
 
  function new(string name = "wres_reg_field"); ... 
 
  virtual task post_write(uvm_reg_item rw); 
    // set the mirror to reset value after a write 

    if (!predict(rw.get_reset())) `uvm_error(...) 
  endtask 
 
endclass 

The enclosing register definition needs to declare a field of 
the corresponding derived type, and can set the access policy in 
the configure method for the field as shown in the following 
code example: 

class wres_reg extends uvm_reg; 
 
  `uvm_object_utils(wres_reg) 
 
  rand wres_reg_field wres_field; // special field 
   
  function new(string name="wres_reg"); ... 
 
  virtual function void build(); 
    wres_field = wres_reg_field::type_id::create( 
      "wres_field"); 
    wres_field.configure( 
      this,8,0,"WRES",0,8'hAB,1,1,1);  
  endfunction 
 
endclass 

The corresponding register block only has to create the 
enclosing register and add it to the required address maps, as 
shown: 

class my_reg_block extends uvm_reg_block; 
  virtual function void build(); 
    ... 
    wres_reg = wres_reg::type_id::create("wres_reg"); 
    wres_reg.configure(this, null, "wres_reg"); 
    wres_reg.build(); 
    default_map.add_reg(wres_reg, 'h24, "RW"); 
    ... 

2) Write-to-Reset Using post_write Callback 
This user-defined field access policy can also be 

implemented using callbacks. In order to make a clearer 
comparison between the hook and callback implementations, 
we will first illustrate overloading the post_write virtual 
method in a callback class and registering this callback with the 
corresponding field. For callbacks we need to define a derived 
class that extends from the uvm_reg_cbs class and add the 
user-defined behavior to this class.  

class wres_field_cb extends uvm_reg_cbs; 
 
  local static bit m_wres =  
    uvm_reg_field::define_access("WRES"); 
 
  function new(string name = "wres_field_cb"); ... 
 
  virtual task post_write(uvm_reg_item rw); 
    // set the mirror to reset value after a write 
    if (!predict(rw.get_reset())) `uvm_error(...) 
  endtask 
 
endclass 

In this case the enclosing register definition just uses the 
base uvm_reg_field class for the field, and configures it as 
before: 

class wres_reg extends uvm_reg; 
 
  `uvm_object_utils(wres_reg) 
 



  rand uvm_reg_field wres_field; // base field type 
   
  function new(string name="wres_reg"); ... 
 
  virtual function void build(); 
    wres_field = uvm_reg_field::type_id::create( 
      "wres_field"); 
    wres_field.configure( 
      this, 8, 0, "WRES", 0, 8'hAB, 1, 1, 1);  
  endfunction 
 
endclass 

In order to use the callback functionality, we need to 
construct the callback and register it with the corresponding 
register field. This additional work is typically done in the 
generated code for the corresponding register block: 

function void my_reg_block::build(); 
 wres_field_cb wres_cb = new("wres_cb"); 
 ... 
 wres_reg = wres_reg::type_id::create("wres_reg"); 
 wres_reg.configure(this, null, "wres_reg"); 
 wres_reg.build(); 
 default_map.add_reg(wres_reg, 'h24, "RW"); 
 ... 
 uvm_reg_field_cb::add(wres_reg.wres_field, wres_cb); 
 ... 

The key thing to be aware of at this stage is that both of the 
above implementations using post_write are inadequate since 
they do not correctly handle register updates in a passive 
context. Specifically the post_write methods from both the 
field and the callback classes are only executed if the write 
method is called on the corresponding field of the register (or 
enclosing register class). If another master, for example an 
embedded CPU, performs a write to the register without going 
through the register model bus adapter, then these methods are 
not called and the register operation is not correctly mirrored in 
the model.  

3) Write-to-Reset Using post_predict Callback 
The following code shows a better implementation of the 

write-to-reset user-defined field access policy that works for 
both active and passive register updates. In this case the 
post_predict method from the callback class is used to set the 
field value whenever any type of write is observed on the 
register field. The basic register field class does not have a 
post_predict virtual method, it is only available in the callback 
class; it is called by field::predict whenever an active front or 
backdoor operation occurs or passively when a predictor 
component observes a published bus transaction. 

class wres_field_cb extends uvm_reg_cbs; 
  ... 
  virtual function void post_predict( 
    input  uvm_reg_field   fld, 
    input  uvm_reg_data_t  previous, 
    inout  uvm_reg_data_t  value, 
    input  uvm_predict_e   kind, 
    input  uvm_path_e      path, 
    input  uvm_reg_map     map 
  ); 
    // set the mirror to reset value after a write 
    if (kind == UVM_PREDICT_WRITE)  
      value = fld.get_reset(); 
  endfunction 
 
endclass 

The enclosing register definition and callback registration 
are identical to that shown previously for the post_write 
callback implementation.  

B. Example Field Interaction - Locked/Protected Field 
A common requirement for registers is that a field can be 

locked, or protected, when another register field has a specific 
value. This locking can be relatively permanent (so we 
configure the registers and then lock them down for the 
duration of the application phase) or it can be temporary (for 
example some registers are frozen temporarily while we 
reconfigure another aspect of device operation). The actual 
locking value can be a single bit or a multi-bit key. The basic 
operation is illustrated in Figure 8. 

 

Fig. 8. Lock/Protect Field Interaction 

1) Lock/Protect Operation Using pre_write 
The UVM User Guide [1] provides examples of how to 

implement protected operation using pre_write hooks and 
callbacks; this is repeated here for the purposes of illustration. 
The first example implements pre_write in a derived register 
field with a handle to the locking field (called protect_mode in 
this example) as shown: 

class protected_field extends uvm_reg_field; 
  local uvm_reg_field protect_mode; 
 
  virtual task pre_write(uvm_reg_item rw); 
    // Prevent the write if protect mode is ON 
    if (protect_mode.get()) begin 
      rw.value = value; 
  endtask 
endclass 

The second example implements pre_write in a callback 
class which uses a handle to a protect_mode field:  

class protected_field_cb extends uvm_reg_cbs; 
  local uvm_reg_field protect_mode; 
 
  virtual task pre_write(uvm_reg_item rw); 
    // Prevent the write if protect mode is ON 
    if (protect_mode.get()) begin 
        uvm_reg_field field; 
        if ($cast(field,rw.element)) 
          rw.value = field.get(); 
    end 
  endtask 
endclass 

 



protected_field_cb protect_cb = new( 
  “protect_cb”,protect_mode) 
uvm_callbacks#(my_field_t,uvm_reg_cbs)::add( 
  my_field, protect_cb); 

Both of these implementations interfere with the actual 
write operation operation by changing rw.value in the 
pre_write method. This means the write method will continue 
with the wrong (protected) data value. For a locked field we 
must explicitly check that if we write a different value to the 
register when the register is locked or protected, then the new 
value should be ignored by the DUT register. Additionally, the 
pre_write method is only called during an active write 
operation and does not work in a passive context. 

2) Lock Operation Using post_predict Callback 
This section illustrates an improved implementation of the 

locked field operation using the post_predict callback that also 
works for passive modes of operation. The post_predict 
method has a parameter that provides the previous value of the 
register field prior to the operation, hence we can restore this 
value if a write is attempted and the register is locked.  

class protect_field_cb extends uvm_reg_cbs; 
 
  local uvm_reg_field lock_field; 
   
  function new (string name, uvm_reg_field lock); 
    super.new (name); 
    this.lock_field = lock; 
  endfunction 
 
  virtual function void post_predict(...); 
    if (kind == UVM_PREDICT_WRITE) begin 
      if (lock_field.get()) begin 
        // Revert to previous value if protected 
        value = previous; 
      end 
    end 
  endfunction 
 
endclass 

In this case the callback is registered with the protected 
field, and it is passed a handle to the lock field (which can be in 
another register or block), which is taken into account when a 
write operation is attempted on the protected field.   

protect_field_cb prot_cb = new( 
  "prot_cb",lock_reg.lock_field); 
uvm_reg_field_cb::add( 
  prot_reg.prot_field, prot_cb); 

3) Lock Operation Using Dynamic Access Policy 
Another alternative that works for both active and passive 

modes is to modify the protected field access policy 
dynamically in response to changes in the lock field. In this 
case a callback is defined to change the access policy of a field 
accessed by a handle. The callback is registered with the 
locking field (not with the protected field) and therefore when a 
write operation is performed on the lock field the access mode 
for the protected field is modified from RW (read/write for 
unlocked or unprotected) to RO (read-only for locked or 
protected state).  

Modifications to access policies using set_access are 
allowed after the model is built and locked, but normally 
discouraged since this leads to confusion relative to the static 

register definition. In this case it is quite a good fit though 
because if any code does a get_access on the protected field, 
the model will return the truth about the current state of the 
field - either RW or RO.  

class lock_field_cb extends uvm_reg_cbs; 
 
  local uvm_reg_field protected_field; 
 
  function new (string name, uvm_reg_field prot); 
    super.new (name); 
    this.protected_field = prot; 
  endfunction 
 
  virtual function void post_predict(...); 
    if (kind == UVM_PREDICT_WRITE) begin 
      if (value)  
        void'(protected_field.set_access("RO")); 
      else         
        void'(protected_field.set_access("RW")); 
    end 
  endfunction 
 
endclass 

In this case the callback is registered with the locking field, 
and is passed a handle to the protected field, such that a write 
operation observed on this lock field may alter the access 
policy of the protected field.  

lock_field_cb lock_cb = new( 
  "lock_cb", prot_reg.prot_field); 
uvm_reg_field_cb::add( 
  lock_reg.lock_field, lock_cb); 

C. Example Field Interaction - Triggered Buffered Writes 
Another common requirement, especially in applications 

with a lot of pseudo-static configuration registers, is that the 
register writes are buffered and not applied to the functional 
part of the DUT until a trigger field or register is accessed 
(sometimes with a particular key value, or even a sequence of 
writes). When the trigger is written, a coherent set of buffered 
register fields is then copied to the active registers and 
operation continues. The basic mechanism is illustrated in 
Figure 9. 

 

Fig. 9. Triggered Buffered Write Operation 

1) Buffered Write Using Overlapped Registers 
One possible solution here is to define two registers that are 

located at the same address but have different access rights. 
One register is WO and contains the buffer value - so the user 
can always write to the buffer. The other register, which is co-
located at the same address, is RO and contains the actual 
operational value after the most recent trigger (this is really the 
current value in the application). A callback can be used to 



copy from the buffer to the current register whenever a trigger 
occurs. As discussed previously, for this to operate in passive 
mode we need to specialize the post_predict method rather 
than the post_write method in the callback that is registered 
with the trigger field, then copy from the buffer to the current 
register in the other field. An example of the trigger callback 
code is shown below: 

class trig_field_cb extends uvm_reg_cbs; 
 
  local uvm_reg_field current, buffer; 
 
  function new (string name,  
                uvm_reg_field current,  
                uvm_reg_field buffer); 
   super.new (name); 
   this.current = current; 
   this.buffer = buffer; 
  endfunction 
 
  virtual function void post_predict(...); 
   if (kind == UVM_PREDICT_WRITE) begin 
    uvm_reg_data_t val = buffer.get_mirrored_value(); 
    if (!current.predict(val)) `uvm_error(...) 
   end 
  endfunction 
 
endclass 

Two registers are required just to implement the basic 
functionality (remember we do need to store the buffered data 
somewhere!): 

class cur_reg extends uvm_reg; 
  `uvm_object_utils(cur_reg) 
  rand uvm_reg_field cur_field; 
  function new (...); 
  virtual function void build(); 
    cur_field = uvm_reg_field::type_id::create( 
      "cur_field"); 
    cur_field.configure( 
      this, 32, 0, "RO", 0, 32'h00004444, 1, 1, 1); 
  endfunction 
endclass 
 
class buf_reg extends uvm_reg; 
  `uvm_object_utils(buf_reg) 
  rand uvm_reg_field  buf_field; 
  function new (...); 
  virtual function void build(); 
    buf_field = uvm_reg_field::type_id::create( 
      "buf_field"); 
    buf_field.configure( 
      this, 32, 0, "WO", 0, 32'h00004444, 1, 1, 1); 
  endfunction 
endclass 

In this case the callback is constructed with handles to the 
extra buffer register and the target destination register, but is 
registered with the trigger field (i.e. the one experiencing the 
dynamic operation). Notice that both the current and buffer 
registers are added to the register map: 

class my_reg_block extends uvm_reg_block; 
  ... 
  virtual function void build(); 
   ... 
   trig_field_cb trig_cb; 
   ... 
   default_map.add_reg(cur_reg, 'h10, "RO"); 
   default_map.add_reg(buf_reg, 'h10, "WO"); 

   ... 
   // create callback and register with trigger  
   trig_cb = new( 
    "trig_cb", cur_reg.cur_field, buf_reg.buf_field); 
   uvm_reg_field_cb::add( 
     trig_reg.trig_field, trig_cb); 

Even though the proposed implementation works in both 
active and passive contexts, there are three problems with this 
implementation: 

• it is not possible to share the address with another register 

• it is harder to generate two registers in place of one 

• it is more confusing since we add a dummy register 

The first problem arises because we have already shared 
two registers at the same address. Hence it is not possible to do 
a triggered buffered write-only register shared with another 
independent status register sharing the same address (which 
turned out to be a requirement in one project). Since we have to 
really treat the register as two separate registers, the generation 
is probably more complicated (depending on your generator 
tool) and the implementation is certainly more confusing (since 
the user sees multiple registers sharing an address when the 
source register description does not imply that is the case). 

2) Buffered Write Using Derived Field and Callbacks 
A better solution for this problem is to implement a derived 

field class that contains the buffer field. This buffer field is 
used to store a persistent value of the data for all writes to the 
register. Whenever an appropriate write occurs to the trigger 
register, the buffer field is copied to the register mirror. This 
approach also works if the triggered buffer register is WO and 
has to share an address with an actual RO status register.  

There are two minor complications here; firstly the buffer 
typically needs to be reset to the same value as the nominal 
register; but this is easily achieved (without caring about actual 
values) using the get_reset method in the field reset function as 
shown below.  

class buffered_reg_field extends uvm_reg_field; 
 
  local uvm_reg_data_t buffer;  
 
  `uvm_object_utils(buffered_reg_field) 
   
  function new(string name); ... 
 
  virtual function void reset(string kind = "HARD"); 
    super.reset(kind); 
    buffer = get_reset(kind); 
  endfunction 
 
endclass 

The second minor complication is that the extended field 
only has access to active methods such as pre_write and 
post_write which would result in an implementation that was 
not tolerant of passive operation if we did the setting of the 
buffer value there. So we need to use the post_predict method 
in an additional callback in order to set the buffer and restore 
the mirrored value for all observed write operations on the 
register. This callback is registered with the buffered register 
field. 

class buffered_field_cb extends uvm_reg_cbs; 



 
  local buffered_reg_field buf_field; 
   
  function new(string name, buffered_reg_field buf); 
    super.new (name); 
    this.buf_field = buf; 
  endfunction 
 
  virtual function void post_predict(...); 
    if (kind == UVM_PREDICT_WRITE) begin 
      // save the write value to the buffer 
      buf_field.buffer = value; 
      // restore the previous value to the mirror 
      value = previous; 
    end 
  endfunction 
 
endclass 

Another callback is required which is registered with the 
trigger field.  This callback contains a handle to the buffer 
field, and implements the post_predict method in order to 
transfer the buffer to the mirror in the other register when the 
required value is written to the trigger.   

class trig_field_cb extends uvm_reg_cbs; 
 
  local buffered_reg_field buf_field; 
   
  function new(string name, buffered_reg_field buf); 
    super.new (name); 
    this.buf_field = buf; 
  endfunction 
 
  virtual function void post_predict(...); 
    // update the target mirror from the buffer  
    if (kind == UVM_PREDICT_WRITE) begin 
      if (value==1) // any write, boolean or key... 
        if (!buf_field.predict(buf_field.buffer))  
          `uvm_error(...) 
    end 
  endfunction 
 
endclass 

Note that since multiple callbacks can be registered with 
the same trigger field we can update many buffer registers with 
one trigger, but each requires a callback to be registered. 
Alternatively, we can add many handles to various buffered 
registers into the same callback and register this once with the 
trigger field (which might give better performance in cases 
where there are many buffered registers and frequent triggers). 
The corresponding register definitions look like the following: 

class buffered_reg extends uvm_reg; 
 
  `uvm_object_utils(buffered_reg) 
 
  rand buffered_reg_field buf_field; // special field 
 
  function new (...); 
 
  virtual function void build(); 
    buf_field = buffered_reg_field::type_id::create( 
      "buf_field"); 
    buf_field.configure( 
      this, 32, 0, "RWB", 0, 32'hBBBBBBBB, 1, 1, 1); 
  endfunction 
 
endclass 

For each buffered field we need both callbacks, one 
registered with the buffer field and the other registered with the 

trigger field, since both fields undergo observed operations (a 
write to the buffer needs to be stored, a write to the trigger 
causes the other register to update mirror from the buffer). 
Remember to register both of these callbacks with fields and 
not registers, since the post_predict method is only called from 
uvm_reg_field::predict operation. 

class my_reg_block extends uvm_reg_block; 
 
 `uvm_object_utils(dut_vlog_reg_block) 
 ... 
 virtual function void build(); 
  trig_field_cb trig_cb; 
  buffered_field_cb buf_cb; 
  ... 
  default_map.add_reg(buf_reg, 'h10, "RW"); 
  ... 
  // create callback and register with trigger 
  trig_cb = new( 
    "trig_cb", buf_reg.buf_field); 
  uvm_reg_field_cb::add( 
    trig_reg.trig_field, trig_cb); 
     
  // create callback and register with buffered 
  buf_cb = new( 
    "buf_cb", buf_reg.buf_field); 
  uvm_reg_field_cb::add( 
    buf_reg.buf_field, buf_cb); 

D. Side Effects Outside of Register Model 
Register side effects are not limited to interaction of fields 

and can be extended to influence many other aspects of 
verification environment behavior. For example, the UVM 
documentation describes randomization of the register model, 
and then applying the random configuration registers to the 
DUT using the update method; but this overlooks the fact that 
many interface verification components also need 
configuration object fields to be updated in response to DUT 
register operations (including passive updates from other 
sources). Implementing verification component configuration 
updates directly from sequences is not recommended since this 
will not work in a passive context. Furthermore implementing 
configuration updates by snooping on observed bus traffic 
inside the DUT using a passive monitor will not function 
correctly for backdoor writes to the registers. Figure 10 
illustrates how we can spy on register operations using a 
callback in order to maintain the configuration variables for a 
generic or legacy verification component, which does not have 
a reference to the model. 

 

Fig. 10. Interaction Between Register Field and VC Config 

1) Configuration Update using Callback 



The actual implementation in this case is similar to what 
was shown previously for field interaction using callbacks, 
except that software encapsulation demands that neither the 
register model code nor the reusable interface verification 
component can contain a direct reference to one another. Hence 
the callback is defined, constructed and registered by the 
enclosing scope - specifically the environment that instantiates 
both the register model and the hierarchy which included the 
interface verification component. All callback classes can be 
defined enclosed in a single file (in a similar manner to 
sequence library files) and imported. In order to support 
passive operation, the post_predict method will be used to call 
an access method from the required configuration object. If a 
translation between register value and protocol configuration 
parameter is required (for example from integer to enumerated 
type) then it can be encapsulated in the callback. 

class reg_cfg_cb extends uvm_reg_cbs; 
  
  local my_config cfg; // handle to config object 
  
  function new (string name, my_config cfg); 
    super.new (name); 
    this.cfg = cfg; 
  endfunction 
  
  virtual function void post_predict(...); 
    if (kind == UVM_PREDICT_WRITE) 
      // call the config access function 
      cfg.set_my_var(my_enum_t'(value)); 
  endfunction 
  
endclass 

This callback is constructed with a reference to the target 
configuration object, and registered with the required register 
field that undergoes the write operation as shown below.  

class my_env extends uvm_env; 
  ... 
  reg_cfg_cb cfg_cb;  
  ... 
  virtual function void build_phase(...); 
    super.build_phase(phase); 
    uvc_inst = my_uvc::type_id::create(...); 
    reg_model = my_reg_model::type_id::create(...); 

 reg_model.configure(...); 
 reg_model.build(); 
 reg_model.lock_model(); 

    ... 
  endfunction 
 
  virtual function void connect_phase(...); 
    super.connect_phase(phase); 
    cfg_cb = new("cfg_cb", uvc_inst.cfg); 
    uvm_reg_field_cb::add(reg_model.field, cfg_cb); 
  endfunction 
  ... 
endclass 

V. REGISTER MODEL PERFORMANCE 
When working with small stand-alone block-level 

verification environments, it is easy to overlook any potential 
register model performance concerns. However, when 
validating a complete SoC the register model code can become 
a significant performance burden. The main problem is due to 
the sheer volume of registers in a complex SoC, which can 

easily get to more than 10k register fields for a device with a 
lot of configuration and flexibility (this is typical for instance 
in applications with a lot of analog sub-components). Since the 
register model has each field, register and hierarchical block 
defined by classes, we often have considerably more 
SystemVerilog classes in the register model than the rest of the 
verification environment. This section looks at two possible 
aspects of register model performance improvement. 

A. Life Without the Factory  
In order to demonstrate the issues, consider an actual 

project where we observed a performance hit during 
compilation, load, build and execution phases of an SoC 
environment with a big register model (over 14k fields 
contained in about 7k registers), compared with running the 
environment without the model in place. Some of this 
performance is clearly due to the overhead of just having many 
more class objects declared and built in the verification 
environment, but we were also suspicious about the factory’s 
role in dealing with the large number of classes. 

It is important to note that the register model use-case is 
different to that for normal verification components and 
reusable environments (where the factory is, and should be, 
used as a matter of course). Specifically, the register model is 
generated on demand from a single source (XML in our case); 
it is already specialized for the intended purpose and 
regenerated for each derivative of the DUT. So the main 
questions are: 

• can we avoid the factory for register model operation? 

• how much of a performance benefit does that achieve? 

The UVM user and reference guides state that we must use 
the uvm_object_utils to register the user specified field classes 
and registers with the factory and that we should use the 
factory create method instead of constructing directly using the 
new function. However, if our use-case does not involve using 
any features of the factory and we have a large number of 
register model classes, then using the factory seems like 
unnecessary overhead. In fact the UVM register model 
functions correctly without uvm_object_utils; specifically, if 
the normal factory enabled register code is represented by the 
following code: 
class my_reg_type extends uvm_reg; 
  rand uvm_reg_field fld_a; 
  rand uvm_reg_field fld_b; 

  `uvm_object_utils(my_reg_type) 
  ... 
  virtual function void build(); 
   fld_a = uvm_reg_field::type_id::create("fld_a"); 
   fld_a.configure(...); 
   fld_b = uvm_reg_field::type_id::create("fld_b"); 
   fld_b.configure(...); 
  endfunction 
  ... 
endclass 

class my_reg_block extends uvm_reg_block; 
  rand my_reg_type my_reg; 
  ... 
  virtual function void build(); 
    ... 
    my_reg = my_reg_type::type_id::create(  



      "my_reg",,get_full_name()); 
    my_reg.build(); 
    my_Reg.configure(...); 
    default_map.add_reg(...); 
    ... 
  endfunction 
  ... 
endclass 

Then, a functionally similar register definition can be 
achieved by omitting the uvm_object_utils macro and replacing 
the corresponding type_id::create methods with direct call to 
new for fields and registers as shown below: 
class my_reg_type extends uvm_reg; 
  rand uvm_reg_field fld_a; 
  rand uvm_reg_field fld_b; 
  ... 
  virtual function void build(); 
   fld_a = new("fld_a"); 
   fld_a.configure(...); 
   fld_b = new("fld_b"); 
   fld_b.configure(...); 
  endfunction 
  ... 
endclass 

class my_reg_block extends uvm_reg_block; 
  rand my_reg_type my_reg; 
  ... 
  virtual function void build(); 
    ... 
    my_reg = new("my_reg"); 
    my_reg.build(); 
    my_Reg.configure(...); 
    default_map.add_reg(...); 
    ... 
  endfunction 
  ... 
endclass 

To give some idea of the performance impact of 
deprecating the factory for this (and only this) aspect of 
verification environment operation we measured various 
parameters for several projects. Table II illustrates the number 
of classes registered with the factory, relative size of the 
compiled object, and measured times for the compile, load and 
build phases for a project with 6700 register classes containing 
14400 fields. Nearly all of the fields are of the base 
uvm_reg_field type, so these have little impact on the factory 
overhead, but just represent an increase in content for the 
environment, whereas the register classes are all new derived 
types. The model also uses several register blocks in the 
hierarchy and a few small memories.  

TABLE II.  PERFORMANCE MEASUREMENTS 

 

The first row in Table II illustrates the measurements, 
without the register model, for number of types registered with 
the factory, compile, load and build times (in seconds) and disk 
usage for the compiled code. The second row illustrates the 

same measurements in the environment when the full factory-
enabled register model is included for this project. Notice that 
by adding the register model the compile time is increased, the 
load time is significantly higher and the build time as well. Of 
course we have added significant capability compared to the 
plain environment without a register model. 

However, if we generate the register model without using 
the factory, then we significantly impact each of the compile, 
load and build times without losing register model functionality 
as shown in row 3 of Table II.  

To understand why there is a significant performance 
impact when using the factory for the register model we have 
to look behind the scenes in the UVM base code. The 
uvm_object_utils macro is summarized in the following 
simplified code snippet: 
`define uvm_object_utils(T) \ 
  `m_uvm_object_registry_internal(T,T) \ 
  `m_uvm_object_create_func(T) \ 
  `m_uvm_get_type_name_func(T) \ 
  ... 

`define m_uvm_object_registry_internal(T,S) \ 
  typedef uvm_object_registry#(T,`"S`") type_id; \ 
  static function type_id get_type(); ...\ 
  virtual function uvm_obj* get_object_type(); ...\ 

`define m_uvm_object_create_func(T) \ 
  function uvm_object create (string name=""); ...\ 

`define m_uvm_get_type_name_func(T) \ 
  const static string type_name = `"T`"; \ 
  virtual function string get_type_name (); ...\ 

So basically the uvm_object_utils macro just declares some 
utility methods for the name and type API to the factory, and 
more importantly declares a typedef specialization of the 
uvm_object_registry class called type_id (or more specifically 
T::type_id since it is declared inside the class that called the 
macro). The most significant performance impact is related to 
the uvm_object_registry operation, which constructs an 
instance of a proxy class (of type type_id) for each class that 
uses the uvm_object_utils macro (which is typically all register 
classes, but only a few specialized fields since most fields are 
of the uvm_reg_field base type). This part of the registry 
operation is shown in the following code snippet:  
class uvm_object_registry #(type T, string Tname) 
  extends uvm_object_wrapper; 

  typedef uvm_object_registry #(T,Tname) this_type; 

  local static this_type me = get();  

  static function this_type get(); 
    if (me == null) begin 
      uvm_factory f = uvm_factory::get(); 
      me = new; 
      f.register(me); 
    end 
    return me; 
  endfunction 

  virtual function uvm_object create_object(...);  
  static function T create (...); 
  static function void set_type_override (...); 
  static function void set_inst_override(...); 

endclass 



For each class that uses the uvm_object_utils macro, a 
corresponding proxy class if defined. This proxy class 
(this_type) is a lightweight replacement for the real class (T), 
and only really knows how to construct a class of type T (i.e. 
the create method) in addition to a few utility methods. The 
proxy for each object type is automatically constructed using 
new and added to a list in the factory by calling f.register when 
the static get function is called to initialize the proxy class 
variable (me). This results in an additional 7k classes being 
statically declared (which also affects the memory footprint) 
and takes time to construct during the static initialization phase, 
when the code is loaded into a simulator.  

When we build the register model hierarchy using create, 
the factory class API is invoked for construction of each of the 
register class instances (even though we never register type 
overloads) which increases the build time, since the factory has 
to look-up data stored in associative arrays to determine if the 
class has been overridden by the user.  

So if we avoid the static declaration and initialization 
overhead and construct registers without searching for non-
existing overrides, then we get a significant performance 
improvement at the start of the simulations, but we also lose 
the get_type_name implementation from the uvm_object_utils 
macro. However, if we look into the UVM code base we can 
see that this method is only called by do_print and as part of 
some error messages; since we do not print our huge register 
model ever, and the error messages identify the actual register 
using get_full_name (which uses get_name to return the name 
parameter from the constructor call), then we do not actually 
need get_type_name. 

Note that the time values from Tables II are measured in 
seconds, so although it is proportionally a big performance 
improvement, compared to using the factory for the model, the 
absolute numbers are not huge. The decision on whether 
several minutes additional overhead is tolerable for each and 
every simulation depends on the application and perhaps also 
phase of the project. Our recommendation is to include the 
capability into your register model generator and provide users 
with the choice of whether to use the factory or not.  

B. Register Creation On Demand 
Even in the presence of a large number of registers in the 

DUT and corresponding register model, individual simulations 
may only require to access some small subset of the registers to 
validate a particular set of functionality. For example, in the 
environment used to illustrate the factory performance issues in 
the previous section, most complex top-level simulation 
scenarios only accessed less than 500 of the 14k register fields.  

So one possible performance improvement that we 
considered is whether or not we could just create the registers 
we needed in our model when they were required. This idea is 
not new, in fact the vr_ad register model for e was recently 

enhanced to allow on-demand static info creation, in order to 
minimize memory consumption and increase performance for 
just this reason [8]. When enabled, the static info for a register 
is only created when (and if) the register is accessed.  

In fact there are two major barriers to this approach when 
using SystemVerilog and the UVM. Firstly we cannot affect 
the timing of the static initialization operation, so we would 
always have to conclude static preparation at the start of the 
simulation when the files are loaded. Secondly, no fields or 
registers may be added to the UVM register model after the 
lock_model method has been called and lock_model is required 
to initialize the address map prior to functional use of the 
model. We did analyze in some detail whether we could 
modify the functional behavior to achieve closure on the 
address map without building all of the registers, but it did not 
seem worth the trouble since the observed performance impact 
is related to the static initialization phase for the model. All 
attempts at performance improvements by this approach were 
unsuccessful. 

VI. CONCLUSION/RESULTS 
All of the examples illustrated in the paper were used in 

real projects. In fact it was only during the evolution of these 
projects that we started to develop best practices that were 
aligned with the UVM operation and not the generic guidelines 
provided by the UVM documentation. A summary of the 
performance improvements is also provided as well as a 
discussion on the limitations that prevented on-demand register 
building from happening with the current UVM base-classes. 
All implementations were validated in UVM-1.1d and also in 
OVM-2.1.2 using a version of uvm_reg_pkg derived from the 
original OVM-2.1.2 version and updated with all the bug fixes 
and code improvements from UVM-1.1d, which Verilab has 
released back to the community [9].  
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