
Advanced UVM Register Modeling
There’s More Than One Way to Skin A Reg

Mark Litterick, Marcus Harnisch
Verilab GmbH

Munich, Germany
mark.litterick@verilab.com, marcus.harnisch@verilab.com

Abstract— This paper provides an overview of register model
operation in the UVM and then explains the key aspects of base
class code that enable effective complex register modeling.
Several possible solutions to common modeling problems are
discussed in detail with a focus on supporting both active and
passive operation. In addition the performance impact of large
register models is analyzed and improved solutions provided.

Keywords—UVM, Register-Model, Register-Performance

I. INTRODUCTION
Writing effective register models for most complex designs

involves modeling any number of imaginative register field
operations, side effects and interactions between different
registers. The Universal Verification Methodology (UVM)
provides a standard base class libraries that enable users to
implement just about anything the designers can dream up, but
the documented examples, recommendations and guidelines
are misleading and can result in ineffective implementation and
poor performance.

This paper provides a brief overview of register model
operation in the UVM and then explains the key aspects of
base class code that enable complex register modeling,
including:

A. Multiple Solutions
By presenting and analyzing multiple possible

implementations for several modeling problems, we are able to
present the user with a clear understanding of what patterns are
more appropriate to specific applications and why. From this
analysis we derive guidelines on when it is appropriate to use
callbacks, when custom fields are required, and illustrate the
use of dynamic field access policies.

B. Passive Operation
The basic UVM register model application programming

interface (API) is very stimulus-centric. In particular the user is
presented with the opportunity to customize derived fields
using pre/post read/write hooks in the base field class and
associated callbacks. As a result many register models are built
up using hooks that do not result in correctly modeled register
behavior in a passive context, i.e. under any circumstances
when the Device Under Test (DUT) register receives stimulus
that was not a direct result of running a corresponding
sequence on the register model; typically passive reuse in an

environment with alternate stimulus, or where registers are
updated from internal sources such as an embedded
microcontroller. For passive modeling the standard access
hooks suggested by UVM documentation are inappropriate and
the implementer needs to make use of alternative callbacks.

C. Performance
In a typical complex System on Chip (SoC) device we can

easily have tens of thousands of register fields in the model. If
we follow the standard guidelines for factory generation as
proposed by the UVM we suffer from a significant load and
build-time performance penalty. The paper observes that since
register models are generated to-order from the documentation
source, it is not part of the standard use-case to perform factory
overrides on registers or fields. We demonstrate what the
factory overheads are and provide alternative guidelines on
how to minimize register model overhead without
compromising usability. In addition we also explore the
possibility to build registers on-demand.

II. UVM REGISTER OVERVIEW
In a verification context, a register model (or register

abstraction layer) is a set of classes that model the memory-
mapped behavior of registers and memories in the DUT in
order to facilitate stimulus generation and functional checking
(and optionally some aspects of functional coverage). The
UVM provides a set of base classes that can be extended to
implement comprehensive register modeling capabilities as
detailed in [1] and [2]. The fundamental structure of the actual
register model is illustrated in Figure 1.

Fig. 1. Register Model Structure

www.verilab.com

The register model itself is a set of DUT-specific files that
extend the UVM base classes. Due to the number of registers
required and their regular structure, the model files are usually
generated from a textual register description source (such as
XML) in parallel with the generation of actual RTL for the
DUT registers. The top-level register block is instantiated in
the verification environment in parallel with other interface
verification components, as shown in Figure 2.

Fig. 2. Environment with register model, adapter and predictor

Note that the reusable interface components do not contain
a reference to the register model (since this would compromise
portability), but the enclosing environment implements any
required interaction between the interface components and the
model. The main interaction between the register model and
the rest of the verification environment is via adapter and
predictor components:

• uvm_reg_adapter converts between register model read
and write methods and the interface-specific transactions

• uvm_reg_predictor updates the register model based on
observed transactions published by a monitor

A good introduction to register model usage and how to set
up the adapter and predictor is provided by [3].

A. Active and Passive Operation
The UVM register model supports both active and passive

modes of operation and is often used in an environment where
both are required as shown in Figure 3. In an active context,
register operations are sourced via the register model read and
write methods, which in turn get converted to sequence items
for an interface verification component via the adapter (path 1
in Figure 3). Passive operation refers to any register operation
where the stimulus did not explicitly use the register model
access methods directly, for instance if an interface component
sequence is executed directly by the virtual sequencer without
calling the register model access methods (path 2 in Figure 3),
or if the register content is affected by a bus transaction from
an alternative stimulus source, for example an embedded CPU
running firmware (as shown by path 3 in Figure 3).

Fig. 3. Access Paths for Active and Passive Operations

Another form of passive operation is when the register
model is used in an environment where the stimulus is
provided by some other mechanism entirely (such as
executable software, or a legacy non-UVM environment), but
the model is still required to be accurate for checks and
functional coverage. For actual bus traffic from an alternative
source to be observed, a predictor must be present on the
corresponding bus hierarchy. The UVM register model API is
very stimulus-centric and the documentation is focused on the
active usage of the class constructs, which leads to confusion in
partial and fully passive contexts.

It is not just the field modeling aspect that needs to be
aware of passive usage, but also any checks that make use of
the register model state. For example implementing register
checks using the mirror method in a sequence (which reads the
register and checks the mirrored value against the read value) is
not portable to a vertical reuse scenario; so monitors should be
used to implement passive checks instead [4].

B. Predictable and Volatile Modeling
The accurate modeling of all register fields in the DUT

goes beyond the capabilities provided by the register model
constructs, since many register fields are modified by the DUT
in response to alternative stimulus and not just bus operations.
Such register fields are not predictable, based only on
described behavior in relation to read and write operations, and
are termed volatile from the model viewpoint. Typically these
registers are not checked directly by the model, but rather the
RTL value is probed using active monitoring via the specified
HDL path (i.e. the actual path to the RTL register field in the
DUT), in order to keep the field up to date [5]. This means the
model adapts to DUT behavior and additional external checks
should be used to validate that the DUT field, available in the
register model, has the correct value under all circumstances
dictated by the specification. In some cases it may also be
possible to model status registers as read-only but non-volatile,
and analyze external stimulus directly to predict new register
values based on observed events.

Modeling and checking volatile register behavior in the
larger context is non-trivial, but is part of the overall
verification environment modeling responsibilities. For
instance, how do we validate that the resultant value on a
volatile register bit is correct if both the bus and the hardware
try to update the bit at the same time? Which operation has
priority and has that been implemented correctly in the DUT?
More fundamentally, what external stimulus should cause the

volatile register field to be updated to a particular value and
when may this occur deep inside the design? A full analysis of
all aspects of volatile register field modeling in the context of
functional behavior of the application is outside the scope of
this paper; the remaining sections focus on maintaining an
accurate model of non-volatile register fields.

III. REGISTER MODEL OPERATION

A. Register Access API
An overview of the register and field access API is

provided by [1], with a more detailed explanation provided by
[6]. Each field has a corresponding predicted and mirrored
value, as well as reset state and hooks for additional operations
such as randomization via a value field, as shown in Figure 4.

Fig. 4. Register Field Variables and Access Methods

For non-volatile register fields the mirrored value provides
the current state of the register field based on all active and
passive bus operations. For volatile fields additional modeling
is required to maintain the state of the mirrored value based on
other non-bus related application-specific behavior. Register
operations can be summarized as:

• write, poke, set-update and randomize-update are all
active operations which update both the mirrored and DUT
register values

• read, peek and mirror are all active operations which
update the mirrored value based on DUT register values

• reset and predict are passive operations which update the
mirrored value independent of active model stimulus

Note that the model is normally reset during construction
and for all subsequent observed reset events and is expected to
match the DUT reset state. The predict method is called in
response to observed bus transactions published via the
associated predictor component, but it is also called as part of
all active write and read operations, including backdoor
operations which have no bus traffic at all.

B. Hooks and Callbacks
The term callback is often abused in software engineering

in general, and the UVM documentation in particular, even
though the uvm_callback mechanism is quite well defined. In
the context of register modeling, we need to make a clear

distinction between the two main mechanisms, hooks and
callbacks, which are used to affect register model behavior.

Register and field base classes provide a set of empty
virtual method hooks (pre_write, post_write, pre_read and
post_read), which are called at specific points in the execution
of the register operations. The register model developer can
implement one or more of these methods in the derived class in
order to affect the functionality. This is normal object-oriented
behavior and nothing to do with the callback mechanism.

class my_reg_field extends uvm_reg_field;
 ...
 virtual task post_write(uvm_reg_item rw);
 // specific implementation
 endtask
 ...
endclass

The callback base classes also have empty virtual methods
(pre_write, post_write, pre_read, post_read, post_predict,
encode and decode), but they are only executed if a callback is
registered with a specific field or register (which causes it to be
added to a list). The developer can derive a user-defined
callback class from the base class and implement one or more
of the virtual methods to affect the functionality.

class my_field_cb extends uvm_reg_cbs;
 ...
 function new(string name="my_field_cb", ...);
 ...
 virtual task post_write(uvm_reg_item rw);
 // specific implementation
 endtask
 ...
endclass

The callback class must then be constructed and registered
with the field or register for which the method will be called.
Callbacks are allocated dynamically and we can register
multiple callbacks for different orthogonal features with the
same register field. In addition the constructor for the callback
does not have a fixed signature, so the functionality of each
callback is very flexible.

my_field_cb my_cb = new("my_cb", ...);
uvm_reg_field_cb::add(regX.fieldY, my_cb);

Hence the method implementation is done in a derived
uvm_reg_field class for hooks, and in a derived uvm_reg_cbs
class for callbacks. The virtual method hook is always called
but the related method from the callback is only called if the
callback is registered with the corresponding field, as shown in
the following extract from the uvm_reg_field file:

task uvm_reg_field::do_write(uvm_reg_item rw);
 ...
 pre_write(rw); // virtual method hook
 for (uvm_reg_cbs cb=cbs.first();
 cb!=null; cb=cbs.next())
 cb.pre_write(rw); // callback method
 ...
 rw.local_map.do_write(rw); // actual write
 ...
 post_write(rw); // virtual method hook
 for (uvm_reg_cbs cb=cbs.first();
 cb!=null; cb=cbs.next())
 cb.post_write(rw); // callback method
 ...
endtask

For passive modeling of the register behavior the
post_predict callback method is the most important since it is
executed by the uvm_reg_field::predict method after any
observed read or write operation, irrespective of the source of
the bus traffic, including backdoor accesses [7]. Note that it is
important to register the callbacks which implement
post_predict with fields and not registers, since post_predict is
only called from a uvm_reg_field::predict() operation; in other
words if we associate the callback with the register object, then
we effectively add a post_predict method to the derived class
which will not be called by the super class!

C. Field Access Policies
The UVM provides a comprehensive set of pre-defined

field access policies [1], which are summarized in Table I. The
field access policy is normally setup during build by the
configure method.

TABLE I. SUMMARY OF PRE-DEFINED FIELD ACCESS POLICIES

 An important aspect of field access policies is that they are
necessarily self-contained, in that the field’s behavior can be
explained in terms of register operations in isolation from other
fields and registers as shown in Figure 5.

Fig. 5. Field Access Policy Behavior

UVM provides mechanisms to support the addition of user-
defined access policies, which are defined using the static
uvm_reg_field::define_access method. Furthermore, the access
policy can be changed dynamically by calling set_access, even
after the register model is locked. There is also a get_access
method that returns the current access policy for the field.

It is important to be aware that defining, adding and using a
user-defined access policy does not actually create any specific
modeling behavior in itself - in fact the behavior of a user-
defined access policy defaults to that of the RW policy. To get
specific user-defined policy behavior the user must alter the
behavior of actual accesses to the corresponding register field

by implementing virtual methods in either the hooks or
callbacks.

Field access policies should not be confused with the access
rights declared when a register is added to a particular address
map. Registers can be added to more than one map
(corresponding to different interfaces in the DUT) with
different access rights (RW, RO or WO are the only choices);
whether a register field can be read or written depends on both
the field’s configured access policy and the register’s rights in
the map being used to access the field [2].

Although comprehensive, the set of pre-defined field access
policies can never be exhaustive; for example we have dealt
with designs requiring read-to-reset, write-to-reset, write-key-
to-set/clear/reset, and write-sequence-to-set/clear/reset/write
behavior - all of which can be solved with dedicated user-
defined access policies.

D. Register Field Interaction
In practice, most special register operations tend to require

interaction between different register fields, rather than self-
contained field access policy behavior. These register field side
effects are not modeled out of the box by the UVM register
abstraction layer; however, mechanisms are provided to enable
users to develop advanced modeling relationships using the
underlying hooks and callbacks. Typically this involves adding
a handle from one register field to another, and connecting it in
a higher-level code (e.g. register block) that has access to the
interacting fields. If the field names are unique throughout the
model, we can also use get_field_by_name method to connect
the cross references, otherwise it is safer to use hierarchical
names (as shown in the examples). Figure 6 shows the
interaction of two fields, from separate registers, in a generic
manner; both register field operations (i.e. read and write) as
well as field value can affect the operation of the affected field.

Fig. 6. Field Interaction & Side Effects

Typical examples of field interaction include locking or
protecting a register field based on another fields content, or
controlling the timing of a buffer update based on a write to
separate trigger field which may be in the same register, a
different register in the same scope, or a different register
block.

It normally makes sense to identify a field as having a user-
defined access policy even though the behavior is not entirely
self-contained in accesses to this field (but rather is modeled by
side-effects from other register fields) in order to identify the
field as special. Care is required here due to the very loose
binding between the affected field and the controlling field; this

encapsulation problem does not exist in self-contained user-
defined access policies.

E. Register Side Effects
Register side effects are not limited to interaction of fields.

In fact register field operations can be extended to influence
many other aspects of verification environment behavior, such
as modifying configuration fields in an interface or legacy
verification component when a related configuration register is
updated in the model.

Implementation of these kinds of side effects is similar to
that for register field interaction, except the relationships
between the two structures must be handled at an even higher
level, typically the environment which instantiates both the
register model and the other verification components.

IV. WORKED EXAMPLES
This section provides some worked examples for modeling

certain types of register field behavior and interaction. In each
case we discuss several possible solutions and look at the
relative benefits of each of these.

A. Example User-Defined Access Policy - Write-to-Reset
While write-to-clear (WC) and write-to-set (WS) are

available as pre-defined field access policies, some devices
have a requirement for write-to-reset behavior that can be
implemented as a user-defined field access policy (which we
will call WRES). In this case the register field is set to its
current reset value (which was initialized using configure, or
by set_reset, and is presumably not all ones or all zeros,
otherwise the pre-defined policies could be used) on a write.
Other variations of this access policy include read-to-reset,
write-1-to-reset, write-0-to-reset, etc. The basic mechanism is
illustrated in Figure 7.

Fig. 7. Write-to-Reset User-Defined Access Policy

1) Write-to-Reset Using post_write Hook
One possible implementation for this access policy is to use

a derived register field, which is extended from the
uvm_reg_field base class, and implement the post_write virtual
method hook to set the mirror to the reset value as shown in the
following code.

class wres_reg_field extends uvm_reg_field;

 `uvm_object_utils(wres_reg_field)

 local static bit m_wres = define_access("WRES");

 function new(string name = "wres_reg_field"); ...

 virtual task post_write(uvm_reg_item rw);
 // set the mirror to reset value after a write

 if (!predict(rw.get_reset())) `uvm_error(...)
 endtask

endclass

The enclosing register definition needs to declare a field of
the corresponding derived type, and can set the access policy in
the configure method for the field as shown in the following
code example:

class wres_reg extends uvm_reg;

 `uvm_object_utils(wres_reg)

 rand wres_reg_field wres_field; // special field

 function new(string name="wres_reg"); ...

 virtual function void build();
 wres_field = wres_reg_field::type_id::create(
 "wres_field");
 wres_field.configure(
 this,8,0,"WRES",0,8'hAB,1,1,1);
 endfunction

endclass

The corresponding register block only has to create the
enclosing register and add it to the required address maps, as
shown:

class my_reg_block extends uvm_reg_block;
 virtual function void build();
 ...
 wres_reg = wres_reg::type_id::create("wres_reg");
 wres_reg.configure(this, null, "wres_reg");
 wres_reg.build();
 default_map.add_reg(wres_reg, 'h24, "RW");
 ...

2) Write-to-Reset Using post_write Callback
This user-defined field access policy can also be

implemented using callbacks. In order to make a clearer
comparison between the hook and callback implementations,
we will first illustrate overloading the post_write virtual
method in a callback class and registering this callback with the
corresponding field. For callbacks we need to define a derived
class that extends from the uvm_reg_cbs class and add the
user-defined behavior to this class.

class wres_field_cb extends uvm_reg_cbs;

 local static bit m_wres =
 uvm_reg_field::define_access("WRES");

 function new(string name = "wres_field_cb"); ...

 virtual task post_write(uvm_reg_item rw);
 // set the mirror to reset value after a write
 if (!predict(rw.get_reset())) `uvm_error(...)
 endtask

endclass

In this case the enclosing register definition just uses the
base uvm_reg_field class for the field, and configures it as
before:

class wres_reg extends uvm_reg;

 `uvm_object_utils(wres_reg)

 rand uvm_reg_field wres_field; // base field type

 function new(string name="wres_reg"); ...

 virtual function void build();
 wres_field = uvm_reg_field::type_id::create(
 "wres_field");
 wres_field.configure(
 this, 8, 0, "WRES", 0, 8'hAB, 1, 1, 1);
 endfunction

endclass

In order to use the callback functionality, we need to
construct the callback and register it with the corresponding
register field. This additional work is typically done in the
generated code for the corresponding register block:

function void my_reg_block::build();
 wres_field_cb wres_cb = new("wres_cb");
 ...
 wres_reg = wres_reg::type_id::create("wres_reg");
 wres_reg.configure(this, null, "wres_reg");
 wres_reg.build();
 default_map.add_reg(wres_reg, 'h24, "RW");
 ...
 uvm_reg_field_cb::add(wres_reg.wres_field, wres_cb);
 ...

The key thing to be aware of at this stage is that both of the
above implementations using post_write are inadequate since
they do not correctly handle register updates in a passive
context. Specifically the post_write methods from both the
field and the callback classes are only executed if the write
method is called on the corresponding field of the register (or
enclosing register class). If another master, for example an
embedded CPU, performs a write to the register without going
through the register model bus adapter, then these methods are
not called and the register operation is not correctly mirrored in
the model.

3) Write-to-Reset Using post_predict Callback
The following code shows a better implementation of the

write-to-reset user-defined field access policy that works for
both active and passive register updates. In this case the
post_predict method from the callback class is used to set the
field value whenever any type of write is observed on the
register field. The basic register field class does not have a
post_predict virtual method, it is only available in the callback
class; it is called by field::predict whenever an active front or
backdoor operation occurs or passively when a predictor
component observes a published bus transaction.

class wres_field_cb extends uvm_reg_cbs;
 ...
 virtual function void post_predict(
 input uvm_reg_field fld,
 input uvm_reg_data_t previous,
 inout uvm_reg_data_t value,
 input uvm_predict_e kind,
 input uvm_path_e path,
 input uvm_reg_map map
);
 // set the mirror to reset value after a write
 if (kind == UVM_PREDICT_WRITE)
 value = fld.get_reset();
 endfunction

endclass

The enclosing register definition and callback registration
are identical to that shown previously for the post_write
callback implementation.

B. Example Field Interaction - Locked/Protected Field
A common requirement for registers is that a field can be

locked, or protected, when another register field has a specific
value. This locking can be relatively permanent (so we
configure the registers and then lock them down for the
duration of the application phase) or it can be temporary (for
example some registers are frozen temporarily while we
reconfigure another aspect of device operation). The actual
locking value can be a single bit or a multi-bit key. The basic
operation is illustrated in Figure 8.

Fig. 8. Lock/Protect Field Interaction

1) Lock/Protect Operation Using pre_write
The UVM User Guide [1] provides examples of how to

implement protected operation using pre_write hooks and
callbacks; this is repeated here for the purposes of illustration.
The first example implements pre_write in a derived register
field with a handle to the locking field (called protect_mode in
this example) as shown:

class protected_field extends uvm_reg_field;
 local uvm_reg_field protect_mode;

 virtual task pre_write(uvm_reg_item rw);
 // Prevent the write if protect mode is ON
 if (protect_mode.get()) begin
 rw.value = value;
 endtask
endclass

The second example implements pre_write in a callback
class which uses a handle to a protect_mode field:

class protected_field_cb extends uvm_reg_cbs;
 local uvm_reg_field protect_mode;

 virtual task pre_write(uvm_reg_item rw);
 // Prevent the write if protect mode is ON
 if (protect_mode.get()) begin
 uvm_reg_field field;
 if ($cast(field,rw.element))
 rw.value = field.get();
 end
 endtask
endclass

protected_field_cb protect_cb = new(
 “protect_cb”,protect_mode)
uvm_callbacks#(my_field_t,uvm_reg_cbs)::add(
 my_field, protect_cb);

Both of these implementations interfere with the actual
write operation operation by changing rw.value in the
pre_write method. This means the write method will continue
with the wrong (protected) data value. For a locked field we
must explicitly check that if we write a different value to the
register when the register is locked or protected, then the new
value should be ignored by the DUT register. Additionally, the
pre_write method is only called during an active write
operation and does not work in a passive context.

2) Lock Operation Using post_predict Callback
This section illustrates an improved implementation of the

locked field operation using the post_predict callback that also
works for passive modes of operation. The post_predict
method has a parameter that provides the previous value of the
register field prior to the operation, hence we can restore this
value if a write is attempted and the register is locked.

class protect_field_cb extends uvm_reg_cbs;

 local uvm_reg_field lock_field;

 function new (string name, uvm_reg_field lock);
 super.new (name);
 this.lock_field = lock;
 endfunction

 virtual function void post_predict(...);
 if (kind == UVM_PREDICT_WRITE) begin
 if (lock_field.get()) begin
 // Revert to previous value if protected
 value = previous;
 end
 end
 endfunction

endclass

In this case the callback is registered with the protected
field, and it is passed a handle to the lock field (which can be in
another register or block), which is taken into account when a
write operation is attempted on the protected field.

protect_field_cb prot_cb = new(
 "prot_cb",lock_reg.lock_field);
uvm_reg_field_cb::add(
 prot_reg.prot_field, prot_cb);

3) Lock Operation Using Dynamic Access Policy
Another alternative that works for both active and passive

modes is to modify the protected field access policy
dynamically in response to changes in the lock field. In this
case a callback is defined to change the access policy of a field
accessed by a handle. The callback is registered with the
locking field (not with the protected field) and therefore when a
write operation is performed on the lock field the access mode
for the protected field is modified from RW (read/write for
unlocked or unprotected) to RO (read-only for locked or
protected state).

Modifications to access policies using set_access are
allowed after the model is built and locked, but normally
discouraged since this leads to confusion relative to the static

register definition. In this case it is quite a good fit though
because if any code does a get_access on the protected field,
the model will return the truth about the current state of the
field - either RW or RO.

class lock_field_cb extends uvm_reg_cbs;

 local uvm_reg_field protected_field;

 function new (string name, uvm_reg_field prot);
 super.new (name);
 this.protected_field = prot;
 endfunction

 virtual function void post_predict(...);
 if (kind == UVM_PREDICT_WRITE) begin
 if (value)
 void'(protected_field.set_access("RO"));
 else
 void'(protected_field.set_access("RW"));
 end
 endfunction

endclass

In this case the callback is registered with the locking field,
and is passed a handle to the protected field, such that a write
operation observed on this lock field may alter the access
policy of the protected field.

lock_field_cb lock_cb = new(
 "lock_cb", prot_reg.prot_field);
uvm_reg_field_cb::add(
 lock_reg.lock_field, lock_cb);

C. Example Field Interaction - Triggered Buffered Writes
Another common requirement, especially in applications

with a lot of pseudo-static configuration registers, is that the
register writes are buffered and not applied to the functional
part of the DUT until a trigger field or register is accessed
(sometimes with a particular key value, or even a sequence of
writes). When the trigger is written, a coherent set of buffered
register fields is then copied to the active registers and
operation continues. The basic mechanism is illustrated in
Figure 9.

Fig. 9. Triggered Buffered Write Operation

1) Buffered Write Using Overlapped Registers
One possible solution here is to define two registers that are

located at the same address but have different access rights.
One register is WO and contains the buffer value - so the user
can always write to the buffer. The other register, which is co-
located at the same address, is RO and contains the actual
operational value after the most recent trigger (this is really the
current value in the application). A callback can be used to

copy from the buffer to the current register whenever a trigger
occurs. As discussed previously, for this to operate in passive
mode we need to specialize the post_predict method rather
than the post_write method in the callback that is registered
with the trigger field, then copy from the buffer to the current
register in the other field. An example of the trigger callback
code is shown below:

class trig_field_cb extends uvm_reg_cbs;

 local uvm_reg_field current, buffer;

 function new (string name,
 uvm_reg_field current,
 uvm_reg_field buffer);
 super.new (name);
 this.current = current;
 this.buffer = buffer;
 endfunction

 virtual function void post_predict(...);
 if (kind == UVM_PREDICT_WRITE) begin
 uvm_reg_data_t val = buffer.get_mirrored_value();
 if (!current.predict(val)) `uvm_error(...)
 end
 endfunction

endclass

Two registers are required just to implement the basic
functionality (remember we do need to store the buffered data
somewhere!):

class cur_reg extends uvm_reg;
 `uvm_object_utils(cur_reg)
 rand uvm_reg_field cur_field;
 function new (...);
 virtual function void build();
 cur_field = uvm_reg_field::type_id::create(
 "cur_field");
 cur_field.configure(
 this, 32, 0, "RO", 0, 32'h00004444, 1, 1, 1);
 endfunction
endclass

class buf_reg extends uvm_reg;
 `uvm_object_utils(buf_reg)
 rand uvm_reg_field buf_field;
 function new (...);
 virtual function void build();
 buf_field = uvm_reg_field::type_id::create(
 "buf_field");
 buf_field.configure(
 this, 32, 0, "WO", 0, 32'h00004444, 1, 1, 1);
 endfunction
endclass

In this case the callback is constructed with handles to the
extra buffer register and the target destination register, but is
registered with the trigger field (i.e. the one experiencing the
dynamic operation). Notice that both the current and buffer
registers are added to the register map:

class my_reg_block extends uvm_reg_block;
 ...
 virtual function void build();
 ...
 trig_field_cb trig_cb;
 ...
 default_map.add_reg(cur_reg, 'h10, "RO");
 default_map.add_reg(buf_reg, 'h10, "WO");

 ...
 // create callback and register with trigger
 trig_cb = new(
 "trig_cb", cur_reg.cur_field, buf_reg.buf_field);
 uvm_reg_field_cb::add(
 trig_reg.trig_field, trig_cb);

Even though the proposed implementation works in both
active and passive contexts, there are three problems with this
implementation:

• it is not possible to share the address with another register

• it is harder to generate two registers in place of one

• it is more confusing since we add a dummy register

The first problem arises because we have already shared
two registers at the same address. Hence it is not possible to do
a triggered buffered write-only register shared with another
independent status register sharing the same address (which
turned out to be a requirement in one project). Since we have to
really treat the register as two separate registers, the generation
is probably more complicated (depending on your generator
tool) and the implementation is certainly more confusing (since
the user sees multiple registers sharing an address when the
source register description does not imply that is the case).

2) Buffered Write Using Derived Field and Callbacks
A better solution for this problem is to implement a derived

field class that contains the buffer field. This buffer field is
used to store a persistent value of the data for all writes to the
register. Whenever an appropriate write occurs to the trigger
register, the buffer field is copied to the register mirror. This
approach also works if the triggered buffer register is WO and
has to share an address with an actual RO status register.

There are two minor complications here; firstly the buffer
typically needs to be reset to the same value as the nominal
register; but this is easily achieved (without caring about actual
values) using the get_reset method in the field reset function as
shown below.

class buffered_reg_field extends uvm_reg_field;

 local uvm_reg_data_t buffer;

 `uvm_object_utils(buffered_reg_field)

 function new(string name); ...

 virtual function void reset(string kind = "HARD");
 super.reset(kind);
 buffer = get_reset(kind);
 endfunction

endclass

The second minor complication is that the extended field
only has access to active methods such as pre_write and
post_write which would result in an implementation that was
not tolerant of passive operation if we did the setting of the
buffer value there. So we need to use the post_predict method
in an additional callback in order to set the buffer and restore
the mirrored value for all observed write operations on the
register. This callback is registered with the buffered register
field.

class buffered_field_cb extends uvm_reg_cbs;

 local buffered_reg_field buf_field;

 function new(string name, buffered_reg_field buf);
 super.new (name);
 this.buf_field = buf;
 endfunction

 virtual function void post_predict(...);
 if (kind == UVM_PREDICT_WRITE) begin
 // save the write value to the buffer
 buf_field.buffer = value;
 // restore the previous value to the mirror
 value = previous;
 end
 endfunction

endclass

Another callback is required which is registered with the
trigger field. This callback contains a handle to the buffer
field, and implements the post_predict method in order to
transfer the buffer to the mirror in the other register when the
required value is written to the trigger.

class trig_field_cb extends uvm_reg_cbs;

 local buffered_reg_field buf_field;

 function new(string name, buffered_reg_field buf);
 super.new (name);
 this.buf_field = buf;
 endfunction

 virtual function void post_predict(...);
 // update the target mirror from the buffer
 if (kind == UVM_PREDICT_WRITE) begin
 if (value==1) // any write, boolean or key...
 if (!buf_field.predict(buf_field.buffer))
 `uvm_error(...)
 end
 endfunction

endclass

Note that since multiple callbacks can be registered with
the same trigger field we can update many buffer registers with
one trigger, but each requires a callback to be registered.
Alternatively, we can add many handles to various buffered
registers into the same callback and register this once with the
trigger field (which might give better performance in cases
where there are many buffered registers and frequent triggers).
The corresponding register definitions look like the following:

class buffered_reg extends uvm_reg;

 `uvm_object_utils(buffered_reg)

 rand buffered_reg_field buf_field; // special field

 function new (...);

 virtual function void build();
 buf_field = buffered_reg_field::type_id::create(
 "buf_field");
 buf_field.configure(
 this, 32, 0, "RWB", 0, 32'hBBBBBBBB, 1, 1, 1);
 endfunction

endclass

For each buffered field we need both callbacks, one
registered with the buffer field and the other registered with the

trigger field, since both fields undergo observed operations (a
write to the buffer needs to be stored, a write to the trigger
causes the other register to update mirror from the buffer).
Remember to register both of these callbacks with fields and
not registers, since the post_predict method is only called from
uvm_reg_field::predict operation.

class my_reg_block extends uvm_reg_block;

 `uvm_object_utils(dut_vlog_reg_block)
 ...
 virtual function void build();
 trig_field_cb trig_cb;
 buffered_field_cb buf_cb;
 ...
 default_map.add_reg(buf_reg, 'h10, "RW");
 ...
 // create callback and register with trigger
 trig_cb = new(
 "trig_cb", buf_reg.buf_field);
 uvm_reg_field_cb::add(
 trig_reg.trig_field, trig_cb);

 // create callback and register with buffered
 buf_cb = new(
 "buf_cb", buf_reg.buf_field);
 uvm_reg_field_cb::add(
 buf_reg.buf_field, buf_cb);

D. Side Effects Outside of Register Model
Register side effects are not limited to interaction of fields

and can be extended to influence many other aspects of
verification environment behavior. For example, the UVM
documentation describes randomization of the register model,
and then applying the random configuration registers to the
DUT using the update method; but this overlooks the fact that
many interface verification components also need
configuration object fields to be updated in response to DUT
register operations (including passive updates from other
sources). Implementing verification component configuration
updates directly from sequences is not recommended since this
will not work in a passive context. Furthermore implementing
configuration updates by snooping on observed bus traffic
inside the DUT using a passive monitor will not function
correctly for backdoor writes to the registers. Figure 10
illustrates how we can spy on register operations using a
callback in order to maintain the configuration variables for a
generic or legacy verification component, which does not have
a reference to the model.

Fig. 10. Interaction Between Register Field and VC Config

1) Configuration Update using Callback

The actual implementation in this case is similar to what
was shown previously for field interaction using callbacks,
except that software encapsulation demands that neither the
register model code nor the reusable interface verification
component can contain a direct reference to one another. Hence
the callback is defined, constructed and registered by the
enclosing scope - specifically the environment that instantiates
both the register model and the hierarchy which included the
interface verification component. All callback classes can be
defined enclosed in a single file (in a similar manner to
sequence library files) and imported. In order to support
passive operation, the post_predict method will be used to call
an access method from the required configuration object. If a
translation between register value and protocol configuration
parameter is required (for example from integer to enumerated
type) then it can be encapsulated in the callback.

class reg_cfg_cb extends uvm_reg_cbs;

 local my_config cfg; // handle to config object

 function new (string name, my_config cfg);
 super.new (name);
 this.cfg = cfg;
 endfunction

 virtual function void post_predict(...);
 if (kind == UVM_PREDICT_WRITE)
 // call the config access function
 cfg.set_my_var(my_enum_t'(value));
 endfunction

endclass

This callback is constructed with a reference to the target
configuration object, and registered with the required register
field that undergoes the write operation as shown below.

class my_env extends uvm_env;
 ...
 reg_cfg_cb cfg_cb;
 ...
 virtual function void build_phase(...);
 super.build_phase(phase);
 uvc_inst = my_uvc::type_id::create(...);
 reg_model = my_reg_model::type_id::create(...);

 reg_model.configure(...);
 reg_model.build();
 reg_model.lock_model();

 ...
 endfunction

 virtual function void connect_phase(...);
 super.connect_phase(phase);
 cfg_cb = new("cfg_cb", uvc_inst.cfg);
 uvm_reg_field_cb::add(reg_model.field, cfg_cb);
 endfunction
 ...
endclass

V. REGISTER MODEL PERFORMANCE
When working with small stand-alone block-level

verification environments, it is easy to overlook any potential
register model performance concerns. However, when
validating a complete SoC the register model code can become
a significant performance burden. The main problem is due to
the sheer volume of registers in a complex SoC, which can

easily get to more than 10k register fields for a device with a
lot of configuration and flexibility (this is typical for instance
in applications with a lot of analog sub-components). Since the
register model has each field, register and hierarchical block
defined by classes, we often have considerably more
SystemVerilog classes in the register model than the rest of the
verification environment. This section looks at two possible
aspects of register model performance improvement.

A. Life Without the Factory
In order to demonstrate the issues, consider an actual

project where we observed a performance hit during
compilation, load, build and execution phases of an SoC
environment with a big register model (over 14k fields
contained in about 7k registers), compared with running the
environment without the model in place. Some of this
performance is clearly due to the overhead of just having many
more class objects declared and built in the verification
environment, but we were also suspicious about the factory’s
role in dealing with the large number of classes.

It is important to note that the register model use-case is
different to that for normal verification components and
reusable environments (where the factory is, and should be,
used as a matter of course). Specifically, the register model is
generated on demand from a single source (XML in our case);
it is already specialized for the intended purpose and
regenerated for each derivative of the DUT. So the main
questions are:

• can we avoid the factory for register model operation?

• how much of a performance benefit does that achieve?

The UVM user and reference guides state that we must use
the uvm_object_utils to register the user specified field classes
and registers with the factory and that we should use the
factory create method instead of constructing directly using the
new function. However, if our use-case does not involve using
any features of the factory and we have a large number of
register model classes, then using the factory seems like
unnecessary overhead. In fact the UVM register model
functions correctly without uvm_object_utils; specifically, if
the normal factory enabled register code is represented by the
following code:
class my_reg_type extends uvm_reg;
 rand uvm_reg_field fld_a;
 rand uvm_reg_field fld_b;

 `uvm_object_utils(my_reg_type)
 ...
 virtual function void build();
 fld_a = uvm_reg_field::type_id::create("fld_a");
 fld_a.configure(...);
 fld_b = uvm_reg_field::type_id::create("fld_b");
 fld_b.configure(...);
 endfunction
 ...
endclass

class my_reg_block extends uvm_reg_block;
 rand my_reg_type my_reg;
 ...
 virtual function void build();
 ...
 my_reg = my_reg_type::type_id::create(

 "my_reg",,get_full_name());
 my_reg.build();
 my_Reg.configure(...);
 default_map.add_reg(...);
 ...
 endfunction
 ...
endclass

Then, a functionally similar register definition can be
achieved by omitting the uvm_object_utils macro and replacing
the corresponding type_id::create methods with direct call to
new for fields and registers as shown below:
class my_reg_type extends uvm_reg;
 rand uvm_reg_field fld_a;
 rand uvm_reg_field fld_b;
 ...
 virtual function void build();
 fld_a = new("fld_a");
 fld_a.configure(...);
 fld_b = new("fld_b");
 fld_b.configure(...);
 endfunction
 ...
endclass

class my_reg_block extends uvm_reg_block;
 rand my_reg_type my_reg;
 ...
 virtual function void build();
 ...
 my_reg = new("my_reg");
 my_reg.build();
 my_Reg.configure(...);
 default_map.add_reg(...);
 ...
 endfunction
 ...
endclass

To give some idea of the performance impact of
deprecating the factory for this (and only this) aspect of
verification environment operation we measured various
parameters for several projects. Table II illustrates the number
of classes registered with the factory, relative size of the
compiled object, and measured times for the compile, load and
build phases for a project with 6700 register classes containing
14400 fields. Nearly all of the fields are of the base
uvm_reg_field type, so these have little impact on the factory
overhead, but just represent an increase in content for the
environment, whereas the register classes are all new derived
types. The model also uses several register blocks in the
hierarchy and a few small memories.

TABLE II. PERFORMANCE MEASUREMENTS

The first row in Table II illustrates the measurements,
without the register model, for number of types registered with
the factory, compile, load and build times (in seconds) and disk
usage for the compiled code. The second row illustrates the

same measurements in the environment when the full factory-
enabled register model is included for this project. Notice that
by adding the register model the compile time is increased, the
load time is significantly higher and the build time as well. Of
course we have added significant capability compared to the
plain environment without a register model.

However, if we generate the register model without using
the factory, then we significantly impact each of the compile,
load and build times without losing register model functionality
as shown in row 3 of Table II.

To understand why there is a significant performance
impact when using the factory for the register model we have
to look behind the scenes in the UVM base code. The
uvm_object_utils macro is summarized in the following
simplified code snippet:
`define uvm_object_utils(T) \
 `m_uvm_object_registry_internal(T,T) \
 `m_uvm_object_create_func(T) \
 `m_uvm_get_type_name_func(T) \
 ...

`define m_uvm_object_registry_internal(T,S) \
 typedef uvm_object_registry#(T,`"S`") type_id; \
 static function type_id get_type(); ...\
 virtual function uvm_obj* get_object_type(); ...\

`define m_uvm_object_create_func(T) \
 function uvm_object create (string name=""); ...\

`define m_uvm_get_type_name_func(T) \
 const static string type_name = `"T`"; \
 virtual function string get_type_name (); ...\

So basically the uvm_object_utils macro just declares some
utility methods for the name and type API to the factory, and
more importantly declares a typedef specialization of the
uvm_object_registry class called type_id (or more specifically
T::type_id since it is declared inside the class that called the
macro). The most significant performance impact is related to
the uvm_object_registry operation, which constructs an
instance of a proxy class (of type type_id) for each class that
uses the uvm_object_utils macro (which is typically all register
classes, but only a few specialized fields since most fields are
of the uvm_reg_field base type). This part of the registry
operation is shown in the following code snippet:
class uvm_object_registry #(type T, string Tname)
 extends uvm_object_wrapper;

 typedef uvm_object_registry #(T,Tname) this_type;

 local static this_type me = get();

 static function this_type get();
 if (me == null) begin
 uvm_factory f = uvm_factory::get();
 me = new;
 f.register(me);
 end
 return me;
 endfunction

 virtual function uvm_object create_object(...);
 static function T create (...);
 static function void set_type_override (...);
 static function void set_inst_override(...);

endclass

For each class that uses the uvm_object_utils macro, a
corresponding proxy class if defined. This proxy class
(this_type) is a lightweight replacement for the real class (T),
and only really knows how to construct a class of type T (i.e.
the create method) in addition to a few utility methods. The
proxy for each object type is automatically constructed using
new and added to a list in the factory by calling f.register when
the static get function is called to initialize the proxy class
variable (me). This results in an additional 7k classes being
statically declared (which also affects the memory footprint)
and takes time to construct during the static initialization phase,
when the code is loaded into a simulator.

When we build the register model hierarchy using create,
the factory class API is invoked for construction of each of the
register class instances (even though we never register type
overloads) which increases the build time, since the factory has
to look-up data stored in associative arrays to determine if the
class has been overridden by the user.

So if we avoid the static declaration and initialization
overhead and construct registers without searching for non-
existing overrides, then we get a significant performance
improvement at the start of the simulations, but we also lose
the get_type_name implementation from the uvm_object_utils
macro. However, if we look into the UVM code base we can
see that this method is only called by do_print and as part of
some error messages; since we do not print our huge register
model ever, and the error messages identify the actual register
using get_full_name (which uses get_name to return the name
parameter from the constructor call), then we do not actually
need get_type_name.

Note that the time values from Tables II are measured in
seconds, so although it is proportionally a big performance
improvement, compared to using the factory for the model, the
absolute numbers are not huge. The decision on whether
several minutes additional overhead is tolerable for each and
every simulation depends on the application and perhaps also
phase of the project. Our recommendation is to include the
capability into your register model generator and provide users
with the choice of whether to use the factory or not.

B. Register Creation On Demand
Even in the presence of a large number of registers in the

DUT and corresponding register model, individual simulations
may only require to access some small subset of the registers to
validate a particular set of functionality. For example, in the
environment used to illustrate the factory performance issues in
the previous section, most complex top-level simulation
scenarios only accessed less than 500 of the 14k register fields.

So one possible performance improvement that we
considered is whether or not we could just create the registers
we needed in our model when they were required. This idea is
not new, in fact the vr_ad register model for e was recently

enhanced to allow on-demand static info creation, in order to
minimize memory consumption and increase performance for
just this reason [8]. When enabled, the static info for a register
is only created when (and if) the register is accessed.

In fact there are two major barriers to this approach when
using SystemVerilog and the UVM. Firstly we cannot affect
the timing of the static initialization operation, so we would
always have to conclude static preparation at the start of the
simulation when the files are loaded. Secondly, no fields or
registers may be added to the UVM register model after the
lock_model method has been called and lock_model is required
to initialize the address map prior to functional use of the
model. We did analyze in some detail whether we could
modify the functional behavior to achieve closure on the
address map without building all of the registers, but it did not
seem worth the trouble since the observed performance impact
is related to the static initialization phase for the model. All
attempts at performance improvements by this approach were
unsuccessful.

VI. CONCLUSION/RESULTS
All of the examples illustrated in the paper were used in

real projects. In fact it was only during the evolution of these
projects that we started to develop best practices that were
aligned with the UVM operation and not the generic guidelines
provided by the UVM documentation. A summary of the
performance improvements is also provided as well as a
discussion on the limitations that prevented on-demand register
building from happening with the current UVM base-classes.
All implementations were validated in UVM-1.1d and also in
OVM-2.1.2 using a version of uvm_reg_pkg derived from the
original OVM-2.1.2 version and updated with all the bug fixes
and code improvements from UVM-1.1d, which Verilab has
released back to the community [9].

REFERENCES

[1] Accellera, “UVM User Guide, v1.1”, www.uvmworld.org
[2] Accellera, “UVM Reference Guide, v1.1d” , www.uvmworld.org
[3] V. Cooper, “Getting Started with UVM - a beginner’s guide”, ISBN-

978-0615819976
[4] S. Rosenberg, “Register This! Experiences Applying UVM Registers”,

DVCon 2012
[5] J. Bromley, “I Spy with My VPI - Monitoring signals by name, for the

UVM register package and more”, SNUG 2012
[6] ClueLogic, “UVM Tutorial for Candy Lovers - 16. Register Access

Methods”, www.cluelogic.com
[7] S. Holloway, “The UVM Register Layer - introduction, experiences and

recipes”, DVClub 2012
[8] Cadence, “UVM e User Guide, v13.1”, www.cadence.com
[9] Verilab, “uvm_reg for OVM - uvm_reg_pkg-1.1d”, www.verilab.com

