Advanced UVM
in the real world
- Tutorial -

Mark Litterick
Jason Sprott
Jonathan Bromley
Vanessa Cooper
2014

l/ = DESIGN AND VERIFICATION
@ & = 2 = == 2

dccéiiéera N S r —) DVLCOON

N - I ug-'.\ - : : CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

INTRODUCTION

IIIIIIIIIIIIIIIIIIIII

A - —

© Ver-llab & Acce”era 2 NNNNNNNNNNNNNNNNNNNNN

Verification Environment -9

Universal Verification Methodology

SystemVerilog IEEE1800
i

SYSTEMS INITIATIVE

What is UVM?

(UVM)

© Verilab & Accellera

“—
gm—

d

“—

Application-specific code
Uses UVM building blocks
Open source (Apache)
Class library

Consistent methodology
Facilitates interoperability

Supported by all simulators

Multi-language simulators

VHDL, Verilog,
SystemVerilog, SystemC

IIIIIIIIIIIIIIIIIIIII

CONFERENCE AND EXHIBITION

Key Elements

SystemVerilog Verification

Language Concepts
e syntax e constrained-random
« RTL e coverage-driven
« OOP « transaction-level
« class » sequences
* interface scoreboards
efc... efc...

UVM Methodology
base-classes
use-cases
» configuration-db
» factory operation

phases
accellera |
© Verilab & Accellera

etc...
SYSTEMS INITIATIVE

2014

DESIGN AND VERIFICATION

DVLCOIN

CONFERENCE AND EXHIBITION

SystemVerilog

* Language syntax & semantics are pre-requisite
— detailed understanding is not unique to UVM...
— ...but, verification superset much bigger than design!

Design Verification
RTL signals OOP
blocks interfaces class
modules clocking-block random
vectors scheduling constraints
assignments functions coverage
arrays tasks gueues

etc. etc. etc.

// IIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

Verification Concepts

* Generic language-independent concepts apply
— detailed understanding is not unique to UVM...
— ...but, implementation details do vary!

eRM Verification Concepts
\ - architecture (env-agent-sqr/drv/mon) . __~7| UVM
Vera . . .
> « random configuration & build
« constrained-random sequence stimulus
» scoreboard & protocol checkers
AVM « functional coverage collection & analysis
VMM 7 « transaction-level modeling & TLM ports
oum Pl * messaging & S|m_ulat|on debug
 verification planning & closure

« eftc... 2014

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

Methodology

e Base-class library
— generic building blocks
— solutions to software patterns
— save time & effort

 Way of doing things
— consistent approach
— facilitates interoperability

— engineering resource flexibility

range of complexity,
implementation difficulty,
and learning curve

SYSTEMS INITIATIVE

reg-model
factory

config-db
callbacks
parameterizing
sequences
seq-items
transactions
phases
transaction-recording
event-pool
field-macros
TLM-ports
virtual-interfaces
messaging
components

objects
2014

DESIGN AND VERIFICATION

DV

CONFEREN CE AND EXHIBITI ON

Tutorial Topics

* Selected based on:
— experiences on many projects at different clients
— relatively complex implementation or confusing for user
— benefit from deeper understanding of background code
— require more description than available documentation

* Demystifying the UVM Configuration Database

* Behind the Scenes of the UVM Factory

* Effective Stimulus & Sequence Hierarchies
 Advanced UVM Register Modeling & Performance

// IIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEE

IIIIIIIIIIIIIIIII

Demystifying the UVM
Configuration Database

Vanessa Cooper, Verilab, Inc.
Paul Marriott, Verilab Canada

IIIIIIIIIIIIIIIIIIIII

SYSTEMS INITIATIVE

Introduction

e What is the uvm_config db?

e When is the uvm_config_db used?

e How is data stored and retrieved?

e How do | debug when something goes wrong?
e Conclusion

// IIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEE

IIIIIIIIIIIIIIIII

WHAT IS THE CONFIGURATION
DATABASE

accellera | DVCOIN
© Verilab & Accellera 3 . CONFERENCEAND EXHIBITION

IIIIIIIIIIIIIIIII

Configuration Database

The database is essentially a lookup table
which uses a string as a key and allows you to
add and retrieve entries.

* uvm_resource_db
— data sharing mechanism where hierarchy is not important
— each entry is called a resource

— when accessing the database, you must specify the
resource type as a parameter

class uvm _resource db# (type T=uvm object)

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

Configuration Database

get_by_type

get_by name

set

read_by name
read by type

write_by name

write_by type

SYSTEMS INITIATIVE

Methods

Description

Gets the resource by the type specified by
the parameter so the only argument is the
scope

Gets a resource by using both the scope
and name

Creates a new resource in the database

Locates the resource using the scope and
name

Locates the resource using only the scope

Creates the resource by scope and name

Creates the resource by scope only

TABLE 1: uvm_resource_db methods

2014

DESIGN AND VERIFICATION

DV

CONFERENCE AND EXHIBITION

Configuration Database

Example: A scoreboard has a bit disable_sb that turns off checking if the
value is 1. How do you change the value of that bit using the
uvm_resource_db?

uvm resource dbi (bit) ::set (“"CHECKS DISABLE”,
static function vo “disable scoreboard”,
1, this);

input

uvm_resource db# (bit) : :read by name (“CHECKS DISABLE”,
“disable scoreboard”,
disable_ sb);

All functions are static and must @
2014

use scope resolution operator :: DESIoN AND VEAEIOATION
accellera DV

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Configuration Database

Example: Using the uvm_resource db with register tests

uvm resource db# (bit) ::set ({“REG::",
m env.m reg.get full name(),
“.cfg reg”},
“NO_REG TESTS”, 1, this);

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

WHEN IS THE CONFIGURATION
DATABASE USED

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

IIIIIIIIIIIIIIIII

Configuration Database

The database is essentially a lookup table
which uses a string as a key and allows you to
add and retrieve entries.

* uvm_config_db
— used when hierarchy is important

— can specify, with great detail, the level of access to a
resource

— almost always used instead of the resource database

class uvm_config_db#(type T=int) extends uvm_resource_db#(T)

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

DATA STORAGE AND RETRIEVAL

accellera | DVCOIN
© Verilab & Accellera i0 CONFERENCEANDEXHIBITION

IIIIIIIIIIIIIIIII

Configuration Database

cntxt: starting point -
; e~xuvm_config _db
— : ‘act from.the uvm_config _db

inst_name: instance name

which limits accessibility S~ \

static function void set (uvm_compo t cntxt,
string inst name,

string field name,

T value)

pd

field_name: label used for lookup /

value: value to be stored

2014

DESIGN AND VERIFICATION
accellera | DVLCLIN
@ Ver”ab & ACCeIIera 11 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Configuration Database

cntxt: starting point

| —

e Virtual Interface

inst_name: instance name
which limits accessibility

Ef) : :set(uvm_root::get(),
— *II,

“dut_intf”,

o

field_name: label used for lookup

* should rarely be usedf

value: value to be stored

accellera |
© Verilab & Accellera

SYSTEMS INITIATIVE

2014

DESIGN AND VERIFICATION

DVLCON

1 2 CONFERENCE AND EXHIBITION

Configuration Database

uvm config db# (TYPE) : :set (uvm_root::get(),“*.path”,“label”,value) ;

“vif”
11 rty_Cnt”
“env_cfg”

uvm config db# (TYPE) : :get(this,“”,“label”,value) ;

accellera | VTN
© Verilab & Accellera 13 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

DEBUGGING

- \ DESIGN AND VERIFICATION
accellera | DVCOIN

; / © Verllab & Acce”era 14 NNNNNNNNNNNNNNNNNNNNN
SYSTEMS INITIATIVE

Configuration Database

What's the first step in debugging?

if('uvm config db# (TYPE) ::get (this,“”,“1label”,value))
‘uvm_fatal ("NOVIF”, “Virtual interface GET failed.”)

DESIGN AND VERQIFQ;!TIAéN
accellera | VTN
© Verilab & Accellera 15 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Configuration Database

sim _cmd +UVM TESTNAME=my test +UVM RESOURCE DB TRACE

sim cmd +UVM_TESTNAME=my test +UVM_CONFIG DB TRACE

UVM _INFO reporter [CFGDB/SET] Configuration “* agent.* in intf”

(type virtual interface dut 1f) set by = (virtual interface
dut if)

UVM INFO report [CFGDB/GET] Configuration

‘uvm test top.env.agent.driver.in intf” (type virtual interface
dut if) read by uvm test top.env.agent.driver = (virtual
interface dut if) °?

DESIGN AND VE;FQ;]T&)N
accellera DV O

SYSTEMS INITIATIVE

CONCLUSION

- \ DESIGN AND VERIFICATION
accellera | DVCOIN

; / © Verllab & Acce”era 17 NNNNNNNNNNNNNNNNNNNNN
SYSTEMS INITIATIVE

Configuration Database

 The database is a powerful facility used in testbench
constuction

* The resource database can be thought of as a pool of
variables used without concern for hierarchy

* The configuration database is structured
hierarchically and is more suited to data that is
related to the structure of the testbench itself.

DESIGN AND VEFgFQ;]Tﬂ’)N
accellera DVCOIN

IIIIIIIIIIIIIIIII

REFERENCES

- \ DESIGN AND VERIFICATION
accellera | DVCOIN

_ © Verilab & Accellera i9 CONFERENCEANDEXHIBITION
SYSTEMS INITIATIVE

Additional Reading & References

 http://www.accellera.org

* Vanessa Cooper, Getting Started with UVM: A
Beginner’s Guide, 1%t ed, Verilab Publishing, 2013

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

IIIIIIIIIIIIIIIII

SYSTEMS INITIATIVE

Questions

(2014

DESIGN AND VERIFICATION

DVLCOIN

CONFERENCE AND EXHIBITION

H(=15

Behind the Scenes of the
UVM Factory

Mark Litterick, Verilab GmbH.

IIIIIIIIIIIIIIIIIIIII

veriabn BEDS

SYSTEMS INITIATIVE

Introduction

e Factory pattern in OOP
e standard software paradigm

e Implementation in OVM/UVM

e base-class implementation and operation

e Usage of factory and build configuration
e understanding detailed usage model

e Debugging factory problems & gotchas

e things the watch out for and common mistakes

e Conclusion

e additional reading and references 5014

// IIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEE

IIIIIIIIIIIIIIIII

FACTORY PATTERN

accellera | DVCOIN
p © Verilab & Accellera 3 CONFERENCEANDEXHIBITION

IIIIIIIIIIIIIIIII

Software Patterns

In software engineering, a design pattern is
a general reusable solution to a commonly
occurring problem within a given context.

e SystemVerilog is an Object-Oriented Programming language
« OVM/UVM make extensive use of standard OOP patterns

— Factory - creation of objects without specifying exact type

— Object Pool - sharing set of initialized objects

— Singleton - ensure only one instance with global access

— Proxy - provides surrogate or placeholder for another object
— Publisher/Subscriber - object distribution to 0 or more targets
— Strategy/Policy - implement behavioural parameter sets

— etc...

2014

// DESIGN AND VERIFICATION
NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

The Factory Pattern

The factory method pattern is an object-oriented creational design pattern
to implement the concept of factories and deals with the problem of creating
objects without specifying the exact class of object that will be created.

e OVM/UVM implement a version of the factory method pattern

* Factory method pattern overview:
— define a seperate method for creating objects

— subclasses override method to specify derived type
— client receives handle to derived class

* Factory pattern enables:

— users override class types and operation
without modifying environment code

— just add derived class & override line

— original code operates on derived class "2
without being aware of substitution

substitute any component or object in the verification
environment without modifying a single line of code 5014

accellera DV O

SYSTEMS INITIATIVE

Factory Usage in OVM/UVM

e Factory is an essential part of OVM/UVM
— required for test registration and operation

— recommended for all components
(env, agent, sequencer, driver, monitor, scoreboard, etc.)

— recommended for all objects
(config, transaction, seq_item, etc.)

— not appropriate for static interconnect
(TLM port, TLM FIFO, cover group, interface, etc.)
* Operates in conjunction with configuration
— both affect topology and behavior of environment
— factory responsible for inst and type overrides and construction

— configuration responsible for build and functional behavior
2014

// DESIGN AND VERIFICATION
CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

FACTORY IMPLEMENTATION

3008// era © Verilab & Accellera 7 RM‘E'EEM

IIIIIIIIIIIIIIIII

OVM/UVM Factory Implementation

Factory Classes

uvm_factory > uvm_object_wrapper

uvim_component_registry uvm_object_registry

* The main O/UVM files are:

— o/uvm_object_defines.svh

— o/uvm_registry 'SV: a great benefit of OVM/UVM is that
— o/uvm_factory.sv all source-code is open-source ZI

* QOverview:
— user object and component types are registered via typedef
— factory generates and stores proxies: * registry#(T,Tname)
— proxy only knows how to construct the object it represents

— factory determines what type to create based on configuration, then
asks that type’s proxy to construct instance for the user

2014

DESIGN AND VERIFICATION

accellera DV O

SYSTEMS INITIATIVE

User AP]

* Register components and objects with the factory

"uvm_component utils (component type)

‘uvm_object utils(object type)

do not use deprecated
sequence*_utils A

e Construct components and objects using create not new

— components should be created during build phase of parent

component type::type id::create(“name",this);

object type::type id::create(“name", this);

* Use type-based override mechanisms

set type override by type(...);

set _inst override by type(...);

3008//8/’3 © Verilab & Accellera 9

SYSTEMS INITIATIVE

do not use
name-based APA

2014

DESIGN AND VERIFICATION

DVLCON

CONFERENCE AND EXHIBITION

‘'uvm_component_utils - Macro

"define uvm_component utils (T) \

class my comp extends uvm_ component;) A
"uvm_component utils (my comp)
endclass Letls) \

— — s — — o ——

class my comp extends uvm component;

staticAAunction type id get type ()

typedef uvm component registry # (my comp,"my comp") type id;

regurn type id::get();

declared a typedef specialization 't wrapper get object type () ;

/ explains what my _comp::type _idis M

of uvm_component_registry class

endfunction

but what about register and ::create ???

const static string type name = "my comp";
virtual function string get type name ();
return type name;
endfunction
endclass

3006//8/’3 © Verilab & Accellera 10

SYSTEMS INITIATIVE

2014

DESIGN AND VERIFICATION

DVLCOIN

CONFERENCE AND EXHIBITION

uvm_component_registry - Register

class uvm component registry proxy type
(type T, string Tname) eXtendSkU“‘ﬁ lightweight substitute for real object

typedef uvm component registry # (T, Tname) this type;

local static this type me = get(); €= |ocal static proxy variable calls get()

static function this type get();

if (me == null) begin construct instance of proxy, not real class
uvm_factchtory: :gec (),
me = newy, . t thf t
f.register(me) ; €= register proxy with factory

end

registration is via static initialization

return me; . . .
=> happens at simulation load time

endfupctinn
virtu function void uvm factory::register (uvm object wrapper obj):;
stat% // add to associative arrays
stati . .
i m type names|[obj.get type name ()] = obj;
statll o typesfobi] = 1;
endclas _tYP ! ’
J to register a component type, you only need a typedef ZI
| specialization of its proxy class, using ‘uvm_component_utils |5

acce//era © Verilab & Accellera 11 !S#E!NC‘EAND EXHIBITION

SYSTEMS INITIATIVE

4

ION

uvm_component_registry - Create

comp = my_comp::%ggﬁ_id::create(“ omp”, this) ;

static create function

uvm_component registry # (my comp, "my comp")

class uvm component registry # (T, Tname) extends uvm object wrapper;

static function T create (name,parent,contxt="");

uvm_object obj; 4 request factory create based on existing type overrides (if any)
uvm factory £ UVIl_IaCltory..gec(),

Obi%; f.create _component by typesgget (),contxt,name,parent) ;
un

— r\fatal(...);

£
. return handle to real override object

endf
virtual function uvm_compone%create_c ponent (name,parent);

T obj; 27 :
] A search queues for overrides

obj = new(name, parent)# —
r'e'lfunction uvm_compongent uvm factory::crgflte component by type

ok (type, contxt, nameyg parent) ;
requested type = I@nd override by type (requested type, path);
return requested type_.,create component (name, parent);

endfunction IF=-t (f : de t
call create component 1or proxy or override e
accellera _comp proxy e o~

endcl

© Verilab & Accellera 12 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Factory Overrides

not shown: use static *_type::get_type() in all cases
e Users can override original types with derived types:

— using registry wrapper methods

original type::type id::set type override (override type);

original type::type id::set _inst override (override type,...);

— using component factory methods

set type override by type(original type,override type) ;

set _inst override by type(...,original type,override type) ;

* Factory constructs override descriptor and adds to a queue:

function void uvm factory::set type override by type (...);
override = new(...);
m_type overrides.push back (override) ;

endfunction \

TV o7
© Verilab & Accellera 13 CONFERENCE AND EXHIBITION

this is the queue searched by uvm_factory::find_override_by_typeJ
accellera

SYSTEMS INITIATIVE

Factory Operation

a extends uvm_comp;
‘uvm_comp_utils(a)

b extends a;
‘uvm_comp_utils(b

test
a::type _id::set_overri

get()
 set_override()

env *

a::type_id:.create()

* get()
* set_override()
* create()

* create_comp() €=——__

ALb =

- reqgister
- override
e Create

SYSTEMS INITIATIVE

© Verilab & Accellera 14

uvm_factory

DESIGN AND VERIFICATION

DV COIN

CONFERENCE AND EXHIBITION

Summary of Factory Operation

* users only have to call macros to register types with factory
— resulting typedef is enough for registration to occur
— static initialization registers proxy classes with factory

» call type _id::create instead of new
— allows factory to search for type overrides
— factory creates instance of required type and returns handle
— components call create in build phase to allow configuration

* override using type-based interface
— factory constructs descriptor of override and adds to queue
— overrides can be per-instance or for all instances of that type
— override types must derive from original types

e external files can modify environment class structure and
behavior without changing code

2014

// DESIGN AND VERIFICATION
CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

CONFIGURATION DATABASE

3008// era © Verilab & Accellera 16 RM‘E'EEM

IIIIIIIIIIIIIIIII

OVM/UVM Configuration Overview

* OVM & UVM provide global and component set/get_config*

— for int (integral), string and object types, e.g.
set _config object("inst",6"field",value, 0);

if (!'this.get config object("field",value)) "uvm fatal(...)

« UVM these are mapped to config db, e.g. (simplification)

function void set _config object("inst",6"field", value);
uvm_config db# (uvm_object) ::set(this, "inst","field",6 value) ;
endfunction

* In UVM it is recommended to use config db explicitly

uvm_config db# (my_ type) ::set(cntxt,"inst","field" , value);

set methods do not configure targeted component fields directl

* Implements string-based lookup tables in a database
/N

DESIGN AND vsrgFQ,]TlAC.oN
DV OIN
acce//era © Verilab & Accellera 17 CONF¥CEAND EXHIBITION

SYSTEMS INITIATIVE

Automatic Field Configuration

* Normally the user has to do an explicit get from db, e.g.

uvm_config db# (my type)::get(this,"","field",value)

* build phase for component base-class automatically
configures all fields registered using field macros

function void uvm_component::build phase(...);
apply config settings(..); // search for fields & configure
endfunction

* build phase for derived comps must call super.build

class my comp extends

l
‘uvm_component_util MISSING flelii-macro results in no auto-config A
‘uvm_field int(my field,UVM DEFAULT)

function void buil(Missing super.build results in no auto-config A

super.build phase(..);
// class-specific build operations like create

=14

// DESIGN AND VERIFICATION
CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

INTERACTION OF
FACTORY & CONFIGURATION

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

IIIIIIIIIIIIIIIII

Example Environment

class my comp extends uvm component;
‘uvm component utils(my comp) €=
endclass

register class type with factory

class my obj extends uvm object;
"uvm_object utils (my obj)
endclass

class my env extends uvm env;
my comp cComp;
If'y—ObJ olog)§ , , register field for automation
uvm_ component utilils begiln (my env)
‘uvm_field_object(obj,UVM_DEFAUL%?”””
‘uvm_component utils end
function new(..);

allow auto-config using apply_config_settings()

function void buil hase (..); .] . -
. i (example) requires obj to be in config_db
super.build phase(..); there i te/ inside thi
S b m—nl) T (there is no create/new inside this env)
comp = my comp::type id::create(“comp”,this);
endfunction : :
use create() instead of new() for children
endclass -4

aéfﬂﬂf’ DVLCON

© Verilab & Accellera 20 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Example Configure and Override

class test comp extends my comp;

‘uvm component utils (test comp) must be derived in order to substitute
// modify behavior |
endclass “class test_comp extends uvm_component;”
class my test extends uvm H dogs not work, must be derived from my_compz f S

my env env;
my obj obj;
"uvm_component utils(my test)
function new(..);
function void build phase
super.build phase(..);
env = my env::type id::create(“env”,this);
obj = my_obj::type_id::create(“obj”,this);
set_type_overide by type (€= override type in factory prior to env::build
my comp::get type(), |
test comp::get type()); / configure obj in db prior to env::build
set config object (“env”,“obj”,obj,0);
endfunction

endclass build phase is top-down 5014
lower-level child::build comes after parent::build completed 4 FICATION

accellera . = e) N
© Verilab & Accellera 21 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

] create using factory (results only in new not build)

Override Order

override env and comp before my_env::type id::create is always OK

\ remember create only results in a new() not a buiIcA

endfunction

function void my test:\build phase(..);

set type overide by type (my comp, test comp); // Good
set type overide by type (my env,) ; // Good
env = my env::type id::create(“env”,this);

set type overide by type (my comp, test comp); // Good

set—type—overide_by—typet =~ »—\// Bad

override comp after my_env::type id::create is OK
since my _comp is not yet created
(it is created later in my env::build_phase)

override env after my _env::type id::create is BAD
since my env is already created
(hence override is simply ignored) 2014

DESIGN AND VERIFICATION

SYSTEMS INITIATIVE

© Verilab & Accellera

DVLCOIN

22 CONFERENCE AND EXHIBITION

Configure Order

set_config using a null value is an error
(obj is not yet constructed)

\ set_config after obj is created and before env is created is OK
functio}\vo id my t4 (env create does not use the value anyway)
— 3 . A\ //’\\ '//’ " . // Bad

obj = my_ogj::type_id::create(“obj”,this);
set config object(“env”,“obj”,obj,0); // Good
env = my env::type id::create(“env”,this);
set config object (“env”,“obj”,obj,0); // Good

endfunction set_config after both obj and env are created is also OK
(obj setting in config_db is not used until env::build phase)

so set_config* can come before or after the create for corresponding componentA

do not confuse create (which tells the factory to new original or override type) |
with build phase (which is top-down dynamic building of environment) 2014

/-' SRIFICATION
accenera © Verilab & Accellera 23 VLI

CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Interaction of Factory, Config & Build

function void build phase(..);

env = my env::type id::create(“env”,this

obj = my obj::type id::create(“obj”,this

set type overide by type (my comp, test

set config object (“env”,“obj”,obj,0);

endfunction
endclass

Iy

class my test extends uvm test;
function new(..); J

class my env extends uvm env;
‘uvm_ field object (obj,UVM DEFAULT)
function void build phase(..);
super.build phase(..); Ss=——=p
if (obj==null) “uvm fatal(..)
comp = my comp::type id::create(“comp”,this);
endfunction
endclass

acce//era © Verilab & Accellera 24

SYSTEMS INITIATIVE

014

DESIGN AND VERIFICATION

DVLCOIN

CONFERENCE AND EXHIBITION

FACTORY & CONFIGURATION
PROBLEMS

IIIIIIIIIIIIIIIIIIIII

3005// era © Verilab & Accellera 25 RM‘E'QBM

IIIIIIIIIIIIIIIII

Problem Detection

* Factory and configuration problems are especially frustrating
— often the code compiles and runs, because it is legal code
— butignores the user overrides and specialization

* Different kinds of problems may be detected:
— at compile time (if you are lucky or careless!)

— at run-time (usually during initial phases)
— never...
— ...by inspection only!
 Worse still, accuracy of report is tool dependant
— although some bugs are reported by OVM/UVM base-classgs

factory and configuration problems are a special category of bugs A

DESIGN AND VErgFQ,]TlAéN
acce//era © Verilab & Accellera 26 Q¥CEAND EXHIBITION

SYSTEMS INITIATIVE

Common Factory Problems

* using new instead of ::type_id::create
— typically deep in hierarchy somewhere, and not exposed

* deriving override class from same base as original class
— override class must derive from original class for substitution

e performing ::type_id::create on override instead of original
— this will limit flexibility and was probably not intended

* factory override after an instance of original class created
— this order problem is hard to see and reports no errors

e confusing class inheritance with build composition
— super has nothing to do with parent/child relationship
— itis only related to super-class and sub-class inheritance

bad string matching and typos when using name-based API
— name-based factory APl is not recommended, use type-based

2014

// DESIGN AND VERIFICATION
EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

Common Configuration Problems

* missing field macro when using automatic configuration
— apply _config_settings() only works with registered fields

* missing super.build* when using automatic
configuration
— apply _config_settings() is only in uvm_component base

* missing config_bd::get when config_db::set was used
— config_db::set does not interact with apply config settings()
— need an explicit config_db::get to retrieve settings

e attempting set_config_object on a null object

* bad string matching and typos for inst and name
settings

* scope and context problems with string-based config

// IIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

Debugging Hints

» call factory.print() in base-test end_of elaboration phase
— prints all classes registered with factory and current overrides

1f (uvm report enabled(UVM FULL)) factory.print();

» call this.print() in base-test end_of elaboration phase
— prints the entire test environment topology that was actually built
1f (uvm report enabled (UVM FULL)) this.print();

e temporarily call this.print() anywhere during build
— e.g. at the end of relevant suspicious new and build* functions

 use +UVM_CONFIG_DB_TRACE to debug configuration

e pay attention to the handle identifiers in tool windows
— e.g. component@123 or object@456
— they should be identical for all references to the same thing

2014

// DESIGN AND VERIFICATION
NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

CONCLUSION & REFERENCES

3008// era © Verilab & Accellera 30 RM‘E'EEM

IIIIIIIIIIIIIIIII

Conclusion

« OVM/UVM Factory is easy to use
— simple user API and guidelines
— complicated behind the scenes
— can be difficult to debug

e Standard OOP pattern - not invented for OVM/UVM

* Used in conjunction with configuration to control testbench

— topology, class types, content and behavior
— without modifying source code of environment

* You do not need to understand detailed internal operation
— but OVM/UVM have open-source code
— so we can see how it is implemented and learn...

— ...cool stuff that keeps us interested and informed!
2014

// DESIGN AND VERIFICATION
EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

Additional Reading & References

e OVM and UVM base-class code
e OVM and UVM class reference documentation

* “The OVM/UVM Factory & Factory Overrides: How They Work
- Why They Are Important”
— SNUG 2012, Cliff Cummings, www.sunburst-design.com
* “Improve Your SystemVerilog OOP Skills: By Learning
Principles and Patterns”
— SVUG 2008, Jason Sprott, www.verilab.com
e https://verificationacademy.com/sessions/understanding-
factory-and-configuration
— Verification Academy Video, Mentor
e http://cluelogic.com/2012/11/uvm-tutorial-for-candy-
lovers-10-inside-candy-factory/
— UVM Tutorial, CluelLogic eon oD Db

[SOON
3008// era © Verilab & Accellera 32 QMCEA“f’ EXHIBITION

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Questions

(2014

DESIGN AND VERIFICATION

DVLCOIN

CONFERENCE AND EXHIBITION

H(=15

UVM Stimulus and Sequences

Jonathan Bromley, Verilab Ltd
Mark Litterick, Verilab GmbH

2014

DESIGN AND VERIFICATION

verilabs BEen

SYSTEMS INITIATIVE I :1 I-I.II -~ u :‘

Introduction

e thd

(2014

. DESIGN AND VERIFICATION
accellera | DVCOIN
© Verilab & Accellera 2 . CONFERENCEAND EXHIBITION

svsTews mmaTIvE EHE=1

GETTING THE BASICS RIGHT

IIIIIIIIIIIIIIIIIIIII
accellera | DVETIN
© Verilab & Accellera 3 . CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

UVM stimulus architecture review

* Monitor+driver+sequencer B
= active agent
implementing a protocol ar ®/
e Stimulus driven into DUT ¢, monitored
] sequence . items
by a driver tems g ~g

‘ driver monitor

\ A

e Stimulus data sent to driver
from a sequencer

* Run sequences on sequencer
to make interesting activity

3003//8[’3 © Verilab & Accellera 4

SYSTEMS INITIATIVE

Stimulus transaction class (item)

* Item base class should contain ONLY transaction data

class vbus_iteméﬁtengs uvm_sequence item;
rand logic [15:0] addr; Used by monitor

‘uvm_object utils begin(vbus item) A—
‘uvm field int (addr, UVM DEFAULT) /

sqgr

 Stimulus item needs additional G

constraints and control knobs

class vbus_seq item extends vbus item;
rand bit only IO space; Bus protocol controls only!
constraint c restrict IO {\ Class is part of uvC
only IO space -> (addr >= 'hFCO00); | * NO distribution constraints
oL, * NO DUT-specific strategy

2014

// DESIGN AND VERIFICATION
CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Low-level sequences

* Simple, general-purpose stream of transactions with

some COoO rdinal‘ion Not DUT-specific! Supplied with the uvVC

class vbus_seq block wr extends vbus sequence;
rand bit [15:0] block size;
rand bit [15:0] base addr;
constraint ¢ block align {

block size inside {1,2,4,8,16}; Sr

sequences

Y

f

monitored
items

Ko

9

driver

J - NO DUT-specific strategy

addr % block_size == O;\ NO distribution constraints I: R

monitor

rand vbus seqg item item;
task body () ;
for (int beat=0; beat<block size; beat++) begin
"uvm_do with(item,
{addr==base addr+beat; dir==WR;})

end
endtask Behaviour is meaningful even without any external constraint

2014

DESIGN AND VERIFICATION

]
accellera DVl |
CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

The story so far...

* provides a flexible base for customization
e does not restrict the uVC's applicability
* already interesting for reactive slave sequences

— predominantly random
— more guidance later in this section

* may be useful for simple bring-up tests

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

LAUNCHING SEQUENCES

3008// era © Verilab & Accellera 8 “’Qxﬁq'“g“'@m

IIIIIIIIIIIIIIIII

Launching a sequence: uvm do

* On same sequencer, from another sequence's body

_ gOOd for Simple class vbus_seq block wr ...

: rand bit [15:0] block size;
Sequence hlerarChy rand bit [15:0] base addr;

class vbus_ seq bwr2 extends vbus_ sequence;
vbus seq block wr bwr seq;

task body () ;
bit [15:0] follOW_addr(;/ lower sequence runs on same sequencer
‘uvm_do (bwr seq)

follow addr — bwr seg.base addr + bwr seqg.block size;
‘uvm_do _with(bwr seq, {base addr =pfollow addr;})

constraint using values picked from
previous sequence's randomization

2014

// EGNVAND VERIFICATION
CON
acce era © Verilab & Accellera 9 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Launching a sequence: uvm do on

* On adifferent sequencer
sequence
— good for virtual sequences .
sqr_v | %y|

‘'uvm_do_on ﬁ
vbus_se @

class collision seq extends dut sequence; D M D M
"uvm_object utils(collision seq)
\uvm;declare_p_sequencer(dut_sequencen*k I

virtual sequencer

vbus write seq vbus seq; datatype of virtual sequencer
12c write seqg 12c seq;
task body () ; properties of the virtual sequencer

fork
‘uvm_do_on with (vbus seq, p sequencer.sqr v /{...})
‘uvm_do_on with(i2c seq, p sequencer.sqr 1,7 { })
Join

2014

// DESIGN AND VERIFICATION
CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Launching a sequence: start

* Can be called from any code
e Always used to start top-level test sequence

virtual sequencer

class smoke test extends dut test;
‘uvm_component utils (smoke test)
smoke test seq test seq;
base dut env env;

task run phase (uvm phase phase);

test seqg = smoke test seq:: ::Ccreate ("smoke test");

test_seqg.start (env.topfsequencer); | start(null) is possible

configure/randomize the test seq

2014

// DESIGN AND VERIFICATION
CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Review of UVM1.2 changes

* Default sequence of sequencer is deprecated
e <describe other consequent changes>

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

IIIIIIIIIIIIIIIII

Exploiting the sequencer

* m_Ssequencer
— reference to the sequencer we're running on

— datatype is uvm_sequence, too generic for most uses

* p_sequencer

— exists only if you use 'uvm_declare_p_sequencer

— has the correct data type for the sequence's expected
sequencer class

— allows access to members of that class
* persistent data across the life of many sequences
» storage of configuration information, sub-sequencer references, ...

2014

// DESIGN AND VERIFICATION
EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

Virtual sequences and sequencers

* Without a sequence item
* Roles and responsibilities
 Methodology details come later in this section

// IIIIIIIIIIIIIIIIIIIII
aceenera) o erabaAccellera 14 RN e

IIIIIIIIIIIIIIIII

Sequences without sequencers?

* We recommend you do not do this

* A hierarchy of sequencers allows clear isolation of
concerns

— each layer of the TB takes responsibility for its own activity
— make use of facilities provided by lower levels

* Each sequencer can be given references to all the
lower-level sequencers it needs to use

// IIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

Example hierarchical sequences

 TBD: example showing different styles of constraint
and different sequence design concerns at each level

— lowest (UVC) level: completely generic, no strategy, only
legality and control knobs to configure legality and basic
values

— UVC sequence library level: a big repertoire of sequences
to perform typical operations, with control knobs relevant
to those operations

— DUT level: coordinate sequences across multiple UVCs to
establish setup activity, typical operation scenarios, error
conditions

// IIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

Responsibilities of sequences at

various levels

 TBD: see previous slide, closer look at concerns on
each level

* role of control knobs in seq vs. scenario

» different styles of constraint at different levels

DESIGN AND VEFgFQ;]iN
accellera DV

NNNNNNNNNNNNNNNNNNNNNNN
lllllllllllllllll

Readback from a sequence

* If a sequence does something that returns a result...
— read data from a bus

— transaction has a response value

e ..later parts of the sequence may need the result

* For a sequence item: get result directly from the
item when the sequence has finished

* For a sequence: provide storage in the sequence,
populate from lower-level sequence or item
— needs consistent planning through the sequence hierarchy

// IIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEE

IIIIIIIIIIIIIIIII

Readback from a sequence

 TBD: several slides illustrating preferred techniques

 brief mention of methods based on use of the
monitor

* some mention of item_done() responses, generally
discouraged - better to use ref to request item

DESIGN AND VEFgFQ;]Tﬂ’)N
accellera DVCOIN

IIIIIIIIIIIIIIIII

Using a uvm_ reg model in sequences
(briefly!)

* built-in reg sequences
* reading and writing registers

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

IIIIIIIIIIIIIIIII

How sequences should interact with

the config DB and user config objects

e Sequences should avoid pulling data directly from
the config-DB

— heavy performance overhead

* As always, populate a config object from the config
DB at build time

— A reference to a centralized config object means that value
updates in the central object are automatically visible

e Sequence should look into its sequencer to find
config object

— using p_sequencer

// IIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEE

IIIIIIIIIIIIIIIII

Guidelines for using objections in

sequences
* roughly, don't
* but there are some exceptions

 TBD: prescriptive guidance and suggestions, probably
"only in top level test sequence" (??7?)

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

IIIIIIIIIIIIIIIII

A couple of fancy examples:

* TBD:
— interrupt sequence (illustrate use of grab)

— random choice of sequence in a scenario (using
uvm_sequence_library????)

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

CONCLUSION & REFERENCES

3008// era © Verilab & Accellera 24 RM‘E'EEM

IIIIIIIIIIIIIIIII

Conclusion

 TBD

(2014

accellefa © Verilab & Accellera 25 DVD D N

svsTews mmaTIvE EUROPE|

Additional Reading & References

 UVM base-class code
 UVM class reference documentation

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

IIIIIIIIIIIIIIIII

SYSTEMS INITIATIVE

Questions

(2014

DESIGN AND VERIFICATION

DVLCOIN

CONFERENCE AND EXHIBITION

H(=15

Advanced UVM Register
Modeling & Performance

Mark Litterick, Verilab GmbH.

. DESIGNAND VERIFICATION
accellera wverillalb: DYGCON
8 \/ S W ‘ -:- R d | @ "\“}) NNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

Introduction

e UVM register model overview
— structure, integration, concepts & operation
— field modeling, access policies & interaction
— behavior modification using hooks & callbacks

* Modeling examples
— worked examples with multiple solutions illustrated
— field access policies, field interaction, model interaction

* Register model performance

— impact of factory on large register model environments

// IIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

REGISTER MODEL OVERVIEW

accellera | DVCON
© Verilab & Accellera 3 . CONFERENCEAND EXHIBITION

IIIIIIIIIIIIIIIII

Register Model Structure

e Register model (or register abstraction layer)
— models memory-mapped behavior of registers in DUT
— topology, organization, packing, mapping, operation, ...
— facilitates stimulus generation, checks & coverage

REGISTER BLOCK REGISTERS FIELDS

T
REG MODE
R1| FA\] FB | FC || FD
R2 FE FF
MEMORY MEM | |
R3 €~
RX | FX |
ADDRESS ADDR
MAP MAP RN|’(’ FL |
I = - T
accellera MIRRORED VALUE | | ACTOAL VLT It 1|

SYSTEMS INITIATIVE © Verilab & Accellera 4

Register Model Integration

REG MODEL ENV
viem | B0 | [s [SEQ @
R2[|[]
MAP |[RN[] [] @ BUS UVC
1

T m N

RN S N D SR NORMALLY AUTO-

[- = GENERATED
PREDICTOR [AGENﬁT M S| €— DUE TO REGULAR

| STRUCTURE AND LARGE SIZE

* Set of DUT-specific files that extend uvm_reg* base

* Instantiated in env alongside bus interface UVCs

— adapter converts generic read/write to bus transactions
— predictor updates model based on observed transactions (2014

accellera DV O
5

SYSTEMS INITIATIVE © Verilab & Accellera

Register Model Concepts

REG MODEL ENV
R2

MAP |[RN\ [] @ BUS UVC

A .]
: ADAF‘ER FRONT-DOOR ACCESS
[I \ — LL 1@

1
PREDICTOR » NT M ACTIVE MONITORING
L-

el e
* Normal front-door access via bus transaction & I/F

— sneaky backdoor access via hdl_path - no bus transaction
* Volatile fields modified by non-bus RTL functionality
— model updated using active monitoring via hdl_path 2014

IIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE © Verilab & Accellera 6

Active & Passive Operation

REG MODE —
= @

| x
PREDICTOR [M 5| e—

* Model must tolerate active & passive operations:
1. active model read/write generates items via adapter
2. passive behavior when a sequence does not use model
3. passive behavior when embedded CPU updates register 2014

accellera DV N

SYSTEMS INITIATIVE © Verilab & Accellera 7

Register Access AP

- 0 stimulus result
configure
reset () REG MODEL
M1 mirrored
randomize () -
value :
set()| | T [} predict()
m_desired <4=RTL
write () ,update () ,poke() read () ,mirror () ,peek ()

e Use-case can be register or field-centric

— constrained random stimulus typically register-centric
e.g. reg.randomize(); reg.update();

— directed or higher-level scenarios typically field-centric

accellera DV N

SYSTEMS INITIATIVE © Verilab & Accellera 8

Register Field Modeling

* Field access pollcy modify on write modify on read
— self-contained ~EG -
operations on y’O\
this register field W=—=_»[feno =R
field value field operation
* Field interaction W) SOURCE A R
— between different . pi— /"
register fields % *,' C:;P
W=—==»| arrecTio =R

* Register access rights in associated memory map
 Model functional behavior of DUT for volatile fields 0,

SYSTEMS INITIATIVE © Verilab & Accellera 9

Field Access Policies

 Comprehensive pre-defined field access policies

N
READ

NO WRITE WRITE WRITE WRITE WRITE
WRITE VALUE CLEAR SET TOGGLE ONCE
0 WO WOC WOS - wWo1

wWC

WS

VR:I’.AUDE RO RW Wic W1Ss ml; w1
woc WOS

READ WSRC —

cear B WRC ; W1SRC Just defining access

WOSRC policy is not enough!

WCRS :

RSE;D RS WRS W1CRS | - Must al:so |mpler-nent
WOCRS special behavior!

* User-defined field access policies can be added

local static bit m =

uvm _reg field::define access (“UDAP");

£L\J

dccqd if (!'uvm reg field::define access (“UDAP”))
€ L — _

‘uvm_error(...)

SYSTEMS INITIATIVE

© Verilab & Accellera

10

Hooks & Callbacks

* Field base class has empty virtual method hooks
— implement in derived field to specialize behavior \

class my reg field extends uvm reg field;
virtual task post write(item rw);
// specific implementation
endtask

pre_write
post_write
pre_read
post _read

e Callback base class has empty virtual methods
— implement in derived callback & register it with ﬁeld\

class my field cb extends uvm reg cbs;
function new(string name, ...);
virtual task post wr
// specific implen
endtask

most important callback
for passive operation is

post_predict

my field cb my cb = new("my cb", ...);

N
accellera
~

uvm_reg field cb::add(regX.fieldY, my cb);

SYSTEMS INITIATIVE

pre_write
post _write
pre_read
post read
post_predict
encode
decode N

NNNNNNNNNNNNNNNNNNNNNNN

Hook & Callback Execution

* Field method hooks are always executed
e Callback methods are only executed if registered

task uvm reg field::do _write(item rw);

ACTUAL WRITE

rw.local map.do write (rw); €~ |

HOOK METHOD

post write (rw); €
for (uvm reg cbs cb=cbs.first();

'=null;
o 0) CALLBACK METHOD
' & | FORALL REGISTERED CBS

cb.post write(rw); |

« callbacks registered with field using add
 multiple callbacks can be registered with field
a@ « callback methods executed in cbs queue order 7%

............................

endtask

SYSTEMS INITIATIVE

MODELING EXAMPLES

IIIIIIIIIIIIIIIIIIIII
accellera | VTN
© Verilab & Accellera 13 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Write-to-Reset Example

set to reset value on write

W —_ 5 wees > R

 Example user-defined field access policy
— pre-defined access policies for Write-to-Clear/Set (WC,WS)
— user-defined policy required for Write-to-Reset (WRES)

uvm reg field::define access (“"WRES”)

 Demonstrate three possible solutions:
— post_write hook implementation in derived field
— post_write implementation in callback
— post_predict implementation in callback

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

WRES Using post_write Hook

class wres field t extends uvm_reg_field;\

DERIVED FIELD

virtual task post write(uvm reg item rw);
if (!predict(rw.get_reset())) 4 IMPLEMENT post_write TO

E NOT PASSIVE SET MIRROR TO RESET VALUE

class wres_reg_ t extends uvm reg; USE DERIVED FIELlD

rand wres field t wres field; €~ |

- FIELD CREATED IN REG::BUILD
function void build(); g

«
/7 // wres_field create()/configure(..“WRES”..)
/
!
,l class my reg block extends uvm reg block;
: rand wres_reg t wres reg;
1 . e
\‘) function void build () ; / REGISTER CREATED IN BLOCK::BUILD
\ (// wres_reg create () /configure ()/build()/add map ()
W 2014

DESIGN AND VERIFICATION

seceller "€9/block build() is not component build_phase() DV
~

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

WRES Using post_write Callback

class wres field cb extends uvm reg cbs ;'

DERIVED CALLBACK

virtual task post write (uvm reg item rw);

if (!predict(rw.get reset())) '| IMPLEMENT post write TO
[5¢] NOT PASSIVE SET MIRROR TO RESET VALUE

class wres reg t extends uvm reg;
rand uvm_reg field wres field, g

USE BASE FIELD

function void build () ;
// wres field create()/configure(..“"WRES”..)

class my reg block extends uvm reg bl CONSTRUCT CALLBACK
rand wres_reg t wres reg;

... REGISTER CALLBACK
function void build() ; WITH REQUIRED FIELD

// wres reg create () /configpfe ()/build () /gld map ()
wres field cb wres cb = new("wres cb"); 2014

3'008//q uvm reg field cb::add(wres reg.wres field, wres cb); PETRS
_/

D EXHIBITION

SYSTEMS INITIATIVE

WRES Using post predict Callback

) IMPLEMENT post _predict TO
class wres_field cb extends | sET MIRROR VALUE TO RESET STATE

virtual function void post predict(..,fld,value,..);
if (kind==UVM PREDICT WRITE) value = fld.get reset();

/| PASSIVE OPERATION

— | virtual function void post predict(
uvm reg field fld,

class wres reg t exte| 1nput
rand uvm reg field w input uvm reg data t previous,
- inout wuvm reg data t value,

function void build(| 1nput wuvm predict_e kind,
// wres field creat{ 1nput uvm _path e path,
— input uvm reg map map
1 reg bloc . g . :
crass my_red_ | post_predict is only if we use this callback
rand wres reg t : . . .
- = available for fields =P>with a register we get
Ao wold T not registers silent non-operation!
// wres reg create()/configure ()/build()/add map ()
wres field cb wres cb = new("wres cb"); 2014

RIFICATION

3/008//61 uvm reg field cb::add(wres_reg.wres field, wres cb);

D EXHIBITION

SYSTEMS INITIATIVE

Lock/Protect Example

only allow write if lock is off

W/%%} PROTECTED F—P> R

W:_—E"“ LOCK %E} R
 Example register field interaction
— protected field behavior based on state of lock field, or

— lock field operation modifies behavior of protected field

 Demonstrate two possible solutions:
— post_predict implementation in callback
— dynamic field access policy controlled by callback
— (not bad pre_write implementation from UVM User Guidef0l4.

accellera DV O

IIIIIIIIIIIIIIIII

Lock Using post predict Callback

class prot field cb extends uvm reg cbs;

HANDLE TO
local uvm reg field lock field; €= LOCK FIELD

function new (string name, uvm reg field lock);
super.new (name)

this.lock field = lock;

endfunction

virtual function void post predict(..previous,value);

1f (kind == UVM PREDICT WRITE)
if (lock field.get()) REVERT TO PREVIOUS
value = previous; € VALUE IF LOCK ACTIVE
endfunction
CONNECT LOCK FIELD

class my reg block extends uvm reg DbIocCk; W
prot field cb prot cb = new(“prot cb”, lock field);
uvim_reg field cb::add(prot field, prot cb);

.| REGISTER CALLBACK |4
accellera WITH PROTECTED FIELD |y

SYSTEMS INITIATIVE

Lock Using Dynamic Access Policy

class lock field cb extends uvm reg cbs; HANDLE TO
local uvm reg field prot field; € PROTECTED FIELD

function new (string name, uvm reg field prot);
super.new (name)
this.prot field = prot;
endfunction

1 functs 4 sost oredict| _ SETACCESS POLICY FOR
virtua. thpetion void post_Ppredic™! PROTECTED FIELD BASED ON

1f (kind == UVM PREDICT WRITE) LOCK OPERATION

if (value)
void'(prot_field.set_access("RO"))&‘ ‘
else prot_field.get access()
void' (prot field.set access ("RW' RETURNS CURRENT POLICY
€Il REGISTER CALLBACK |

WITH LOCK FIELD CONNECT PROTECTED FIELD
class my reg block extends uvm reg block;
lock field cb lockQZE\ﬁinew(“lock_cb”, prot field); 2014
qecefll. vvm_reg field cb::add(lock_field, lock_cb); 1

uuuuuuuuuuuuuuu D EXHIBITION

SYSTEMS INITIATIVE

Buffered Write Example

write to buffer read from current
w\\ l’
W —-===5> BUFFER]
: s !
4
copy onwrite | L7 jprenT —y R

to trigger |\

W %E} TRIGGER %Ep R

 Example register field interaction
— trigger field operation effects buffered field behavior

 Demonstrate two possible solutions:
— overlapped register implementation with callback
— derived buffer field controlled by multiple callbacks

.....................
O vRRIELC

accellera DV

NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE © Verilab & Accellera 21

Buffered Write Using 2 Registers

—— HANDLES TO BOTH
class tr:Lg_f:Leld_cb extends uvim_reg_d4d CcURRENT & BUFFER FIELDS

local uvm reg field current, buffer;

function new (string name, uvm reg field current,
uvm reg field buffer);

SR COPY FROM BUFFER TO CURRENT
virtual function void post predi ON WRITE TO TRIGGER

1f (kind == UVM PREDICT WRITE) Degin
uvmm_reg data t val = buffer.get mirrored value();

' ' -
if (fcurrent.predict(val)) [rg g wo REGISTER AT SAME ADDRESS

« all writes go to WO buffer
class my_reg block extends uvn. 4 reads come from RO current

default map.add reg(cur reg, 'h10, "RO") ;/
default map.add reg(buf reg, 'hl0, "WO");

« cannot share address again | REGISTER CALLBACK WITH TRIGGER FIELD
« complicated to generate = b
o confusing map for user cur fleld Jbllf reg. buf fleld) 2(2]4(_)

acce”q UVilL LSy L1lSlu L. .auu \trlg_fleld trlg_cb)
N ——

D EXHIBITION

SYSTEMS INITIATIVE

. : : ald

class buf reg field extends uvm reg field;

uvm_reg_data_t buffer; € ADD BUFFER TO DERIVED FIELD
virtual function voild reset (string RInajs, |

super.reset (kind) ; e RESET BUFFER TO FIELD RESET VALUE
buffer = get reset (kind); |

post_predict callback

class buf field cb extends uvm reg cbs; required for passive

local buf reg field buf field;

virtual function void post predict(...); // if write
buf_field.buffer = valug seT BUFFER TO VALUE ON WRITE TO FIELD,
value = previous; SET MIRROR TO PREVIOUS (UNCHANGED)

class trig field cb extends uvm reg cbs;
local buf reg field buf field; COPY BUFFER TO MIRROR
virtual function void post_predicté,/. ON WRITE TO TRIGGER
buf fileld.predict(buf field.buffer);

acce//q uvm_reg field cb::add(trig field, trig cb);
_/

. - - | REGISTER CALLBACKS WITH
buf field cb buf_cb = new (“buf bl BIbfELED ¢ ToiecED FIEL DS

uvm_reg field cb::add(buf fleld r—coy
trig field cb trig cb = new(“trgg cb”,buf field); 2014

RIFICATION

D EXHIBITION

SYSTEMS INITIATIVE

Register Side-Effects Example

 Randomize or modify registers & reconfigure DUT
— what about UVC configuration?

* update from register sequences Enot passive
* snoop on DUT bus transactions Enot backdoor
* implement post_predict callback v/

passive & backdoor

callback registered access UVC config
with model field via a handle

‘ i
REG MODEL | ! [(CMY_uve
RL[[[]]|}| side_effect cb || 4
MIEM “ if (fie]::l writezral)) ",’ n
R2 == . ‘ L
E‘ cfg.set _var(val) ;" S D
MAP ||RN "
N ENV AGENT M = 2014
accellera

IIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Config Update Using Callback

class reg cfg cb extends uvm reg cbs;
my config cfg; €= HANDLE TO CONFIG OBJECT

function new (string name, my config cfg);
super.new (name)
this.cfg = cfg;

endfunction SET CONFIG ON WRITE
virtual function void post_pred‘j?(/ (TRXﬁSFI{_I,EA?:ESI:EsEF(IQ%%gED)
if (kind == UVM PREDICT WRITE)
cfg.set var(my enum t'(value));
endfunction
ENVIRONMENT HAS
class my env extends uvm _env; UVC & REG_MODEL
I
uvc = my uvc::type id::create(...); CONNECT CONFIG
reg model = my reg block::type id::cr (R I
ﬁREGISTER CALLBACK

| reg cfg cb cfg cb = new(“cfg cb”, uve.cfg); 2014
3008//41 uvmm_reg field cb::add(reg model.reg.field, cfg cb); IR
_/

D EXHIBITION

SYSTEMS INITIATIVE

REGISTER MODEL PERFORMANCE

// IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

IIIIIIIIIIIIIIIII

Performance

* Big register models have performance impact

— full SoC can have >10k fields€—{ MANY REGISTER CLASSES
(MORE THAN REST OF ENV)

* Register model & RTL typically auto-generated
— made-to-measure for each device4deri| DIFFERENT USE-CASE

THAN FACTORY
Q)
ENV
REGISTER DESCRIPTION
J (TEXT, XML, YAML, etc.) REC MODEN,
—C DDDD

R2[|[]

AP |[RN[|
GENERATOR TOOL/SCRIPTS

(c) |uve

SYSTEMS INITIATIVE © Verilab & Accellera 27

Life Without The Factory

 Example SoC with 14k+ fields in 7k registers
— many register classes (most fields are base type)

— not using factory overrides — generated on demand

FACTORY | COMPILE LOAD BUILD
TYPES TIME TIME TIME

NO REGISTER MODEL 598 23 I 280M

+REGISTERS USING FACTORY | 8563 {’14‘1\ l"’és 13" N 702M
f 1

+REGISTERS NO FACTORY 3 710 N 7 1 < 398M

* Register model still works without the factory
— do not use uvm object utils macro for fields & registers

IIIIIIIIIIIIIIIIIIIII

a@ DV O

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE © Verilab & Accellera 28

‘'uvm_object utils

"define uvm object utils(T) \
‘I uvm obie egi: Interns .
class my reg extends uvm reg; tion
"uvm_object utils (my req)
endclass
"define m m ob-e aqi interns 4\
class my reg extends uvm reg;
typedef uvm object registry # (my reg,'"my reg") type id;
staticAunction type id get type ()
regfurn type 1d::get () ; . .« g
A get) explains what my_reg::type_id is

declare a typedef specialization | |, . ccr get object type () ;

of uvm_object_registry class

acce

but what about factory registration

Tj;lual function string get type name ();
return type name;

declare some methods
for factory API

endfunction) PPN
function uvm object create (strin and type_id::create 77?7
const static string type name = "my reg";

2014

UFICATION

© Verilab & Accellera 29

SYSTEMS INITIATIVE

DVLOIN

CONFERENCE AND EXHIBITION

uvm_object_registry

class uvm object registry

roxy type
(type T, string Tname) extends u proXy Vb

—| lightweight substitute for real object

typedef uvm object registry # (T, Tname) this type;

local static this_type me = get() ;&= |ocal static proxy variable calls get()

static function this type get();
b

if (me == null) begin construct instance of proxy, not real class
uvm_faCtoig—f_:_uﬁm:fﬁgfgz;jigeu\),
me = newy,

f.register (me) ; g register proxy with factory

end
return me;
endfunction

registration is via static initialization
=> happens at simulation load time

function void uvm factory::register (uvm object wrapper obj):;

virty

stati e , ,

stati // add to assoc%atlve arrays |

statil m_Eype_?aTgf[ob?.get_type_name()] = obj;
endcl3

« thousands of registers means thousands of proxy classes
are constructed and added to factory when files loaded
)

* do not need these classes for register generator use-case!

SYSTEMS INITIATIVE

4

JATION

IBITION

type id::create

reg= my reg::type id::create(“reg”,,get full name());

uvm_object registry # (my reg,"my reg") static create function

class uvm object registry # (T, Tname) extends uvm object wrapper;

static function T create (name,parent,contxt="");

uvm_object obj; 4 request factory create based on existing type overrides (if any)

uvm factory £ UVIl_LaCLoOry:.:.gec() .,

ob%R; f.create_object by type (gef (), ,contxt,name,parent);
. | .
n

fatal(...);

“ uvim_repo

L ndfu return handle to object

virtual function uvm object jigate_pbje (name, parent) ;
T obj; /gf .
. search queues for overrides
obj = new(name, parent)}# 7
he .
d constructs actual object 1uvm_factory. : creatffbject_by_type
| \ y N\/, — U1l L,l\k,, 11CLAITL parent) ;

create and factory search takes time for thousands of registers
during the pre-run phase for the environment (build time)
no need to search for overrides for register generator use-case!

v AN U N e MY A

SYSTEMS INITIATIVE

Conclusions

* There’s more than one way to skin a reg...

— but some are better than others!

— consider: passive operation, backdoor access, use-cases,...
* Full-chip SoC register model performance impact

— for generated models we can avoid using the factory
* All solutions evaluated in UVYM-1.1d & OVM-2.1.2

— updated uvm_reg pkg that includes UVM-1.1d bug fixes
(available from www.verilab.com)

// IIIIIIIIIIIIIIIIIIIII
EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Questions

(2014

DESIGN AND VERIFICATION

DVLCOIN

CONFERENCE AND EXHIBITION

H(=15

