
Advanced, High-Throughput Debug
From Design to Silicon

Gordon Allan & Michael Horn
Mentor Graphics Inc

1

Agenda

• Introduction – the Debug challenge

• Advanced RTL Debug Scenarios

• Debug of Complex Testbenches

• Power-aware Verification Debug

• Integrated Hardware/Software Debug

• Post-Silicon Debug Solutions

2

Verification Consumes Majority of Project Time

3

Source: Wilson Research Group and Mentor Graphics, 2014 Functional Verification Study

0%

5%

10%

15%

20%

25%

30%

1%-20% 21%-30% 31%-40% 41%-50% 51%-60% 61%-70% 71%-80% >80%

St
u

d
y

P
ar

ti
ci

p
an

ts

Percentage of Project Time Spent in Verification

2007

2012

2014

2007: Average 46%
2012: Average 56%
2014: Average 57%

H Foster, WRG Functional Verification Study, November 20143

Verification Consumes Majority of Project Time
for FPGAs too

4

Source: Wilson Research Group and Mentor Graphics, 2014 Functional Verification Study

H Foster, WRG Functional Verification Study, November 20144

0%

5%

10%

15%

20%

25%

<21% 21%-30% 31%-40% 41%-50% 51%-60% 61%-70% 71%-80% >80%

St
u

d
y

P
ar

ti
ci

p
an

ts

FPGA vs. ASIC/IC Percentage of Project Time Spent in Verification

FPGA

ASIC/IC

FPGA: Average 46%
ASIC/IC: Average 56%

Where Verification Engineers Spend Their Time

5

Source: Wilson Research Group and Mentor Graphics, 2014 Functional Verification Study

14%

22%

24%

37%

3%

Test Planning

Testbench Development

Creating Test and Running Simulation

Debug

Other

H Foster, WRG Functional Verification Study, November 20145

Key Recommendations

• Find bugs as early as possible
– Before time-consuming, resource intensive regressions are

launched

• Successively refine low power verification in every
D&V phase

• Leverage new debug technologies to expedite
causality discovery

• Break down the wall between RTL and firmware
verification

• Plan ahead for post-silicon debug

6

The Enterprise Verification Platform

7

Agenda

• Introduction – the Debug challenge

• Advanced RTL Debug Scenarios

• Debug of Complex Testbenches

• Power-aware Verification Debug

• Integrated Hardware/Software Debug

• Post-Silicon Debug Solutions

8

Debugging RTL with Visualizer

• Demonstration of example scenarios

9

Visualizer Debug Environment Architecture
Built for Performance/Capacity for the Largest SoCs

• Fast GUI data model
– Technology acquired from Axiom Design Automation
– Integrated with Questa & Veloce compilation and execution flows
– Capacity to load 500M+ gate designs in seconds

• Fast and efficient waveform database
– Custom compact database format
– Standalone option to enable worldwide debug efforts
– On-demand connectivity for fast loading times

• High performance and capacity
– “Smarter” integration with QuestaSim for even more capacity
– Common tasks happen instantly on 200M+ gate designs

10

Visualizer is Intuitive for Everyday Debug Tasks
Fast and efficient where you spend 85% of your time

• Intuitive
– Natural layout
– Easy navigation
– Quick mouse-clicks

• Responsive
– Fast waveform
– Fast source windows
– All in time-sync

• Advanced Schematic View
– Full featured
– For both RTL and gates

11

Powerful Design Comprehension Capabilities
Finding Drivers, Receivers, and design highlight is fast and easy

• 3 key navigation capabilities
– Drivers
– Receivers
– Active Drivers / Receivers

• Easy to trace back and forth
– Single click

• Quickly pinpoint activity in
time
– Execution trace
– Popup tool tips
– Value annotation

12

Unique TimeCone View to Find Cause Faster
Quickly trace back through time and view the cause of an event

• Trims down to just show the path that is relevant

13

Different colors denote different

simulation times

Searching is Both Easy and Powerful
Both design wide and local

• Easy searching and filtering in any window to find objects
• Biometric search to add a “color” tag to a search so that it

stays highlighted to see trends

14

Adding Assertions: A Powerful RTL Debug Tool
Visualizer makes it easier and faster to get them right

• Assertions make it easier to find bugs

• Easy to create and debug assertions

– Assertion Explorer

– Interactive Replay

15

Testbench

== Bugs missed due to
poor observability

Agenda

• Introduction – the Debug challenge

• Advanced RTL Debug Scenarios

• Debug of Complex Testbenches

• Power-aware Verification Debug

• Integrated Hardware/Software Debug

• Post-Silicon Debug Solutions

16

Debugging Complex Testbenches

• Demonstration of example scenarios

17

Modern Testbenches Add Complexity to Debug
Users report often 50% of debug time is in testbench

• Testbench data is dynamic
– How can you log it?

– How do you find objects and with what name?

• Testbench is complex structures such as classes
– How do you look at all of the handles and variables?

– How do you see what is happening over time inside a
class?

• Testbench is object-oriented and multi-threaded
– How do you see inheritance?

– How do you breakpoint or
view a particular thread?

18

Classes and UVM Debug in Post-Sim Mode
TB debug features normally only found in interactive debug

• All data available at no performance cost
• Easy and Powerful Browse and Analysis of Objects
• Full schematic and waveform features
• No more relying on print statements

19

Classes/UVM data in Waveform
Easily explore data and member values over time

• Easy to drag into waveforms from source or object –

• Find ‘driver’ - 1 step to add ‘this’ handle to waveform

– Expand and see its data, address, etc. Everything over time!

• Simple to see any testbench transaction to your DUT
20

Intuitive Debug for Your UVM Sequences
Easy to track, trace and see your stimulus

• Visualizer has powerful class-based debug capabilities
– See parent child relationships, find key sequences, etc.

• Questa automatically records sequences as transactions

21

Raising Abstraction: Transaction-Level Debug
Easy, Powerful Waveforms and Transaction Stripe View

• Transactions listed in start time order

• Powerful filter and search

• Drag and drop into waveform for detailed analysis

22

Testbench Debug Requiring Interactive Mode

• Just creating the testbench
and need to slowly step through it?

• Something is happening at initialization
that is not right?

• Need to run the simulation up to a
certain point, stop and explore?

• Need to understand how dynamic events
and data are being created especially the threading?

23

UVM and Class Debug in Interactive Mode
Even more capabilities available in interactive mode

• Interactive mode has everything post-sim does plus…

• Breakpoints – So you can stop the simulation in any object

• Hierarchy of currently active sequences

24

Dynamic sequence hierarchy
Set breakpoint on line,

class object or in base

class object

UVM Factory and Configuration Debug

• Explore who, what and where things are set and used

• Resolve common UVM initialization issues

25

Factory parameterized classes

and any overrides all in one place
Config database – readers, writers and

who set what

Visualizer: Unified Debug for Questa and Veloce
Maximize performance and still have ease of use

• Same debugger for both simulation and emulation

• Unique debug for TBX flow – TB from sim, DUT from emulation

• On-demand data loading for fast response with huge data

26

Visualizer

Visualizer

Visualizer Debug Environment
Summary

• High Performance/Capacity Debug

• Powerful Advanced Debug Features

• Assertion Debug

• Integrated Testbench

• Transaction Debug

• Full SystemVerilog, VHDL

• Mentor VIP integration

• Post-simulation use model

• O/S: Linux 32-bit, 64-bit

27

Agenda

• Introduction – the Debug challenge

• Advanced RTL Debug Scenarios

• Debug of Complex Testbenches

• Power-aware Verification Debug

• Integrated Hardware/Software Debug

• Post-Silicon Debug Solutions

28

Debugging Low Power Designs

• Demonstration of example scenarios

29

Traditional Design and Verification Flow
• RTL design

– Captures design intent

– Drives functional verification

– Drives synthesis

• Logical implementation
– Using standard cells and macros

– Further modified for test, ECOs, etc.

• Physical implementation
– Place & Route completes implementation

– Produces manufacturing data

• Power management
– Inherently part of physical implementation

– Not represented in earlier stages

– Not easy to optimize or redesign at this point

S
im

u
la

ti
o
n

,
L

o
g
ic

a
l
E

q
u

iv
a

le
n

c
e
 C

h
e

c
k
in

g
,
…

Layout

Can we verify power management

earlier in the flow?30

Synthesis

Place & Route

RTL

Netlist

UPF-Based Design and Verification Flow
• RTL is augmented with UPF

– To define power management architecture

• RTL + UPF verification
– To ensure that power architecture completely

supports planned power states of design

– To ensure that design works correctly under
power management

• RTL + UPF implementation
– Synthesis, test insertion, place & route, etc.

– UPF may be updated by user or tool

• NL + UPF verification
– Power aware equivalence checking, static

analysis, simulation, emulation, etc.

UPF

UPF

UPF

S
im

u
la

ti
o
n

,
L

o
g
ic

a
l
E

q
u

iv
a

le
n

c
e
 C

h
e

c
k
in

g
,
…

Netlist

Synthesis

Layout

Place & Route

RTL

31

Example Design

SRAM

(m1)

Interleaver

(i0)

PD_interleaver

(0.81V) Always

on

Async Bridge

SRAM

(m2)

SRAM

(m3)

SRAM

(m4)

PAD

IN

PAD

IN

PAD

IN

PAD

IN

PAD

IN

PAD

IN

PAD

IN

Memory

Controller

(mc0)

PD_mem_ctrl (switched 0.81V)

32

Example Design With Power Intent

SRAM

(m1)

PD_top (DUT)

(0.99V)

Interleaver

(i0)

PD_sram (0.99V)

Always on

PD_interleaver

(0.81V) Always

on

Async Bridge

SRAM

(m2)

SRAM

(m3)

SRAM

(m4)

PAD

IN

PAD

IN

PAD

IN

PAD

IN

PAD

IN

PAD

IN

PAD

IN
L S

VDD_0d81 VDD_0d99VSS

Memory

Controller

(mc0)

PD_mem_ctrl (switched 0.81V)

Fast Behavioral

Retention Model

sw

ISO

33

Power Aware Verification Tasks and Tools

34

Design Functionality

Power Management

Architecture

Power Domain

Behavior

Power Domain

Interactions

Power State

Transitions

Power Control

Hardware

Power Control

Software

System with Power

Management

Verify that design functions correctly

with power always on

Verify that power management

architecture is correct

Verify power up/down and reset/restore

on power up for each block/power domains

Verify that interfaces are correctly

isolated and level shifted

Verify that HW generates correct

control signals in correct sequence

Verify SW Power Control interfaces

with HW is correct

Verify full system with HW and SW for

power control

Verify that all transitions are covered

and behave correctly with power control

Questa PASim

Questa Formal

Questa Codelink

Veloce Emulation

Questa Power Aware Simulation

• Visualization of power management
structure and behavior

• Automatic detection of power management
errors

• Automatic power management coverage

• Automatic test plan generation

• High performance and efficiency

• Extensive IEEE 1801 UPF support

35

IEEE Std 1801™-2009

Enables power management architecture verification

with RTL and Gate-Level power aware simulation

--

----- QuestaSim Power Aware Design Element Report File -----

--

--

PD_top: {Path1} = scope /testbench/axi_dut <>

…

PD_top: {Path337} = scope /testbench/axi_dut/fpu_inst

PD_top: {Path338} = scope /testbench/axi_dut/pcu_inst

PD_top: {Path339} = scope /testbench/axi_dut/pcu_inst/sys_pcu/pcu1

PD_top: {Path340} = scope /testbench/axi_dut/pcu_inst/sys_pcu/pcu2

PD_top: {Path341} = scope /testbench/axi_dut/mem_inst

PD_fpu: {Path342} = scope /testbench/axi_dut/fpu_inst/fpu_dut <>

PD_fpu: {Path343} = scope /testbench/axi_dut/fpu_inst/fpu_dut/i_post_norm_sqrt

PD_fpu: {Path344} = scope /testbench/axi_dut/fpu_inst/fpu_dut/i_sqrt

PD_fpu: {Path345} = scope /testbench/axi_dut/fpu_inst/fpu_dut/i_pre_norm_sqrt

PD_fpu: {Path346} = scope /testbench/axi_dut/fpu_inst/fpu_dut/i_post_norm_div

PD_fpu: {Path347} = scope /testbench/axi_dut/fpu_inst/fpu_dut/i_serial_div

PD_fpu: {Path348} = scope /testbench/axi_dut/fpu_inst/fpu_dut/i_pre_norm_div

--

----- QuestaSim Power Aware Architecture Report File -----

--

…

--

Power Domain: PD_fpu, File: /home/work/dpframe/upf/subsys.upf(10).

Creation Scope: /testbench/axi_dut

Primary Supplies:

power : /testbench/axi_dut/IVDD_0d81

ground : /testbench/axi_dut/VSS

Power Switch: fpu_sw, File: /home/work/dpframe/upf/subsys.upf(64).

Output Supply port:

vout_p(/testbench/axi_dut/IVDD_0d81)

Input Supply ports:

1. vin_p(/testbench/axi_dut/VDD_0d81)

Control Ports:

1. ctrl_p(/testbench/axi_dut/pcu_inst/pd1_pwr_on)

Switch States:

1. normal_working(ON) : (ctrl_p)

2. off_state(OFF) : (!ctrl_p)

vsim

Questa PASim Native Simulation of RTL+UPF

36

HDL UPF Liberty

vopt

Test

Bench

 Compile as usual
— No change in source code

 Optimize with PA options
— Process UPF power intent

— Read Liberty libraries as needed

— Run static PA checks

 Simulate with PA options
— Generate reports/Testplan

— Visualize/debug power-managed
behavior

User PA

Models

vlog/vcom

Just a command-line switch on normal Questa simulation

37

Power Domain and its

instances is displayed

in a unique color in

structural view

Visualizing Power Domains and Structure
See colorized domains and inserted power objects natively

Power Elements such

as isolation and level

shifters shown right

next to RTL in

structural view

PA Debug - UPF Object Visualization
Explore all UPF objects from one place

• View all PA objects
in variable window

• Clubbed in PA Info

• All UPF objects
– Power Domain

– Supply Port

– Supply Net

– Supply Sets

– Logic Nets/Ports

– Add these to wave

– Do cone analysis

• Inserted PA Cells

38

Power Domains & UPF Object List
Understand all objects associated with each Power Domain

• View list of all Power
Domains & UPF Objects

• Whole power management
architecture visible
– Primary Supplies,

Power Management Strategies,
Isolated/Level Shifted Ports …

• Option to add objects to wave

• View current state/simstate

• In sync with wave window

• Filtering of objects based on current
scope/type/names

39

Power Domains Crossings
Comprehending Power Domain Connectivity

• View connected power domains

• List of all signals flowing from one domain to other

• Any violation/check in the source to sink path

• Filter/select source-sink domains

• Filtering based on
violation type

• Add signals to waveform

40

Power Aware Dynamic Messages
Interactively Debug Errors from Automatic Checks

• View and debug all PA Dynamic
Messages

• View time at which message fired

– Synced with waveforms

• Add signals/domains to
waveform

• Filtering based on message types

41

HDL Annotation
View all UPF added information in your HDL Source Context

• HDL signal coloring
– Isolation(Blue)

– Level Shifter(Blue)

– Buffer(Blue)

– Corruption(red)

• Hovering information
– Level Shifter

– Isolation

– Buffer

– Corruption

42

Visualizing Power Domain Behavior in waveform
Special patterns for corruption and isolation

43

Normal Operation
Register

saved (71)

Register

restored (71)

Corruption shown

in red crosshatch

Initial Power Up Power Down Power Up

Questa PASim Automatic Checks
Automatically detect Power Management Errors

Power Architecture Checks:

Isolation cells

• Isolation cells are inserted where
required by power state definitions

• Isolation cells correctly handle
dynamic signal behavior

Level shifters

• Level shifters are inserted where
required by power state definitions

• Level shifters shift in correct direction

• Level shifters correctly handle
dynamic signal behavior

Power Control Sequence Checks:

• Clock is disabled during power down

• Isolation is enabled during power down

• Inputs do not toggle during power down

• Retention/Isolation power is on and
stable during power down

• Retention registers are saved before
power down

• Latch enable is correctly set when
retention occurs

• Primary power is on and
stable during power up

• Non-retention registers are reset at
power up

• Power control signals do not glitch

44

Visualize Power States and Transitions
Step through states interactively

45

Current

Power State

State Dependency

Objects, Double Click to

Open the State Machine

States of

Subdomains, etc.

Automatic Power State Coverage
Coverage Information Created Directly from UPF Power States

46

UCDB

Power states and

transitions …

are stored in

the UCDB …

to measure power

state coverage …

… for coverage

closure.

PA Testplan Generation
Automatic Flow for Low Power Coverage Closure

• Vopt automatically generates QuestaPowerAwareTestplan.ucdb

• Includes both power states and dynamic tool generated PA assertions

• Coverage data stored in UCDB can be merged with testplan UCDB

• Uses Excel add-in to generate XML testplan from UCDB

47

Links to each PA

coverage item

Low Power Coverage Closure Report

• Tracks power related coverage data

– Links PA testplan items with PA coverage items in ucdb

– Used standalone or included in top-level design testplan

48

Track coverage of PA

enable assertion passes
Track coverage of PA

State and Transition

PA Debug – Supply Network Debug
Visualizer Explore the Supply Network

• Explore the power connectivity and power intent of the design (Visualize UPF)

– Power Domains, Switches, PA Strategies, Supply Ports/Nets, Logic Ports/Nets …

– View state & voltage values of UPF supplies

– View simstate of power domain

• Debug supply network created in UPF

– Do cone analysis (and time cone) on any UPF objects

– Trace back and forth on UPF supplies, trace UPF to HDL connections

49

Summary

• The UPF is the leading industry standard defines
Power Management Architecture independent from
RTL and physical design

• Debugging a Low Power/UPF enabled design
requires visualization, exploration, checking and
coverage tightly integrated with the HDL/gates

• Mentor provides the most comprehensive native low
power debugging environment for UPF

50

Agenda

• Introduction – the Debug challenge

• Advanced RTL Debug Scenarios

• Debug of Complex Testbenches

• Power-aware Verification Debug

• Integrated Hardware/Software Debug

• Post-Silicon Debug Solutions

51

Veloce2 for Full-Chip Verification and
Validation Boot OS, Drivers Validation

• Co-Emulation for UVM/SystemC testbench Acceleration

• OS and device drivers run on RTL or ISS processor models

• VirtuaLAB and physical peripherals exercise interfaces

• Golden Model for silicon bring-up and validation

CPU

Arbiter

Fabric

UART

Slave IF

GPIO

Slave IF

PCI
Express

PHY

Fabric

Software

Memory

Master IF

Display
Processor

PHY

Slave IF

SATA

PHY

Slave IF

Ethernet

PHY

Slave IF

USB

PHY

SlaveIFMaster IF

CPU

Master IF

SoC

Multi-core SW/HW debug

52

http://sandisk.com/products/usb-flash-drives/sandisk-ultra-backup-usb-flash-drive
http://sandisk.com/products/usb-flash-drives/sandisk-ultra-backup-usb-flash-drive
http://www.frys.com/product/3805567
http://www.frys.com/product/3805567

Veloce OS3 Fusion ICE and Virtual
Within One Solution

Versatile and Easy to Use Verification and Validation Solution

Virtual Peripheral

& Transactors
In Circuit Emulation

(ICE)

Quattro Maximus

The Best of Both

Worlds

53

A Door to real traffic
• No testbench creation
• Near real speed

emulation

TBX the pathway to a
spectrum of verification
possibilities
• Predictable/repeatable

behavior
• No speed compromise

+ OS3

53

Advanced Methodologies – UVM/ SV

• Advanced methodologies
enable verification
productivity

– Faster to develop reusable
application level testbenches

– Reuse from block to system
level and across the
teams/projects

– Single testbench for
simulation and emulation

Questa
UVM / SV
Testbench

DUT + VIPs
Channel

54

Unified Debug for Questa and Veloce
Maximize performance and still have ease of use

• Full signal visibility in the hardware offers fast TAT

• Same debugger for the whole simulation and emulation environment

• On-demand data loading for fast response with huge data

Visualizer
Visualizer

55

On the Fly Waveform Streaming
For Fast Bug Identification
• Waveform generation of key signals/ interfaces for entire

emulation run to identify problem area

• Monitor key interfaces for long emulation runs

• Find the failure time point very quickly with fewer signal

TBX Streaming

56

Veloce Advanced Debug for ICE

PCIe
ICE setup

SAS
ICE setup

Data Cable

Data Cable

Waveform
Streaming

Monitors
$display

Assertions ..

SoC

Design

Standard ICE SetupAdvanced Debug

Co-model Host

57

Replay Dynamic ICE Environment
Real-Time TBX

• Run emulation with ICE target connected

• Captures IO activity (stimulus) of the target on disk

Workstation

Host

First Run

IO

Target

DUT

Host

Replay Run

IO

DUT

Advanced

Debug
Veloce

Target

• Replay the captured stimulus
• ICE Targets not needed
• Repeatable behavior

• Use TBX capabilities
• Assertion and coverage
• Monitors and $display
• Interval replay for productive debug

58

Reproduce non deterministic Scenarios
Power Analysis with ICE environment

58

Goals of New HW Debug Paradigm

• Full signal visibility built on hardware accelerates
turn around time

• Augmented ICE debug combining transactor with ICE

• Homogeneous debug solution from simulation to
emulation

59

Verification Demands
New SW Debug Methods

• JTAG reasonably productive at 1 GHz

• Painfully slow at simulation and emulation speeds

Emulator
JTAG Speed Adaptor

JTAG Probe

60

Veloce New Software Debug Solutions

• Virtual Probes

– Traditional interactive debug using JTAG
transactors

– No physical JTAG probe needed – all
virtual

– Full software debug capabilities

• Codelink

– Off-line post emulation debug

– Enables efficient sharing of emulation
resource

– Full software debug capabilities

• Warpcore

– Integrates Virtual Machine with Veloce

– Enables 100 MIPS+ performance of
software execution

– Full software debug capabilities

61

Every Design is Now Multi-Core

• Multiple Embedded Cores

• Heterogeneous Protocols

• Complex Interconnect

• Embedded Software

ARM
CORTEX-M4

M
P
U

N
VI
C

W
IC

De
bu
g

Tra
ce

FPU

CORE

Audio
PLL

USB
PLL

CPU
PLL

IRC

SYSTEM

GPD

MA

Brownout

Detect
or

Power
on

Rese
t

Watchdo
g

Timer

Fla
sh

SR
AM

RO
M

MEMO

RY

ARM
CORTEX-

M0

N
VI
C

SUBSYSTEM

I
P
C

2 x
HS

USB
2.0

INTERFACES

Ether
net

MAC

LCD
Cntr

l

CAN
2.0B

SPI
FLAS
H I/F

Ether
net

Mem
Ctrl

SDI
O

Qua
d

Enc
I/F

4 x

UAR
T

3 x
SSP/S

PI

2 x
I2C

2 x
I2S

Motor
Ctrl

TIME

RS

4 x
32-bit
Timer

s

RTC

Alarm
Timer

Serial
GPIO

State
Config
Timer

CONFIGURABLE INTERFACES

OTP Key
Storage

AES
Decryptio

n

SECURITY

2 x 8 Ch
10-bit
ADC

1-bit
DAC

ANALOG

62

Codelink Non-Intrusive
Multi-Core Support

63

Full Support of Classic SW Debug
Views

Source & Assembly View Register View

Memory View

Variable View

64

Synchronized Hardware and
Software Views

Core0 Cache miss counter

65

New Paradigm:
Post-Run Software Debug

JTAG
1 MHz

CODELINK
TRACE FILE

Codelink
50 MHz ~10 Simultaneous

users

Single User

Post-Emulation

66

WarpCore: Veloce Hybrid Emulation

• Moves CPU/memory subsystem from the emulator into a virtual machine

• Speeds up execution by 50X and more

DMA

SRAM

GPIO

UART

IP

VeloceVirtual Machine

DDR

DRAM

Timer
Block

DRAM

DDR

Timer
Block

VM
Synchronizer

Software

Debug

Core 0

Core 1
Core 1
BIM

Core 0
BIM

TB
X

67

Real World Results

Veloce-Hybrid

Emulation
0

20

40

60

80

100

Design A
Design B

Design C

1,4
1,6

2,2

48 63 82

Linux Boot Performance

Often, the interesting things happen after the OS boot

68

Goals of New SW Debug Paradigm

• Non intrusive multi-core debug

• Process-level multi-core debug

• Backup rather than rerun from time zero

• Add “printf” without recompile and rerun

• Virtual machine for fast OS boot

69

Agenda

• Introduction – the Debug challenge

• Advanced RTL Debug Scenarios

• Debug of Complex Testbenches

• Power-aware Verification Debug

• Integrated Hardware/Software Debug

• Post-Silicon Debug Solutions

70

Days-to-Find (Validation)

D
a
y
s
-t

o
-S

o
lv

e

(D
e
b

u
g

)

Debug & Validation Bug Characterization

for Selected Products

Goals of Post-Silicon Validation/Debug

71

• From the time silicon comes back:

– Find all bugs quickly (validation)

– Root-cause all bugs quickly (debug)

• Just make it easy

Drive bugs down

Evolution of SOC Design
Unplanned Respins => Missed Revenue!

72

Post-Silicon Back-End Effort Growing

73

[Abramovici, DAC’06]

0

20

40

60

2000 2002 2004 2006 2008 2010

Validation as Percent
of Total Effort (%)

[Tim Cheng: “The Changing Roles of Verification and

Test in the Late-Silicon Era,” 2009 PROFIT]

 Post-silicon continues to require growing amount of total effort

 Data shows problem getting worse

Post-Silicon Debug vs. Process

SOC Validation Space Challenge

74

Functionality

CPU Cores

3D Graphics

Interconnect

I/O

Southbridge

GP GPU

X X X

System

$ Coherence

Consistence

I/O Ordering

QOS

RAS

Clocking

X

Platform HW

DRAM

Flash

Peripherals

Power Infra

Components

…

X

SW

Applications

OSs

Virtualization

Drivers

BIOS

FW

X

Security

Digital Rights

Network

Data

Protection

Rings

Power

Management

Clock Gating

Power Gating

State

save/restore

DFX

Functional

Observe/

Control

Scan Access

Electrical

Process

Voltage

TemperatureX

What does all this add up to?

We’re forced to debug post-silicon!

Observability Versus Frequency
Simulation through ASIC Silicon

75

Frequency (Hz)

| | | | | | | | | | |

1 10 100 1k 10k 100k 1M 10M 100M 1G 10G

1 -

10 -

100 -

1k -

10k -

100k -

1M -

10M -

O
b

s
e

rv
e

 R
a

ti
o

Simulation

FPGA

(Run) ASIC Si

(Run)

FPGA

(Available)

ASIC Si

(Available)

Higher

Observe

Lower

Observe

Emulation

Key
Available – Number of signals that can be MUXed out

Run – Number of signals that can be observed in single run

Post-Silicon System-Level Validation/Debug
High-Level Feature Summary Flyover

76

Feature(s) Comments

Program Flow Trace
•ARM: Coresight ETM PC trace
•AMD: BTHB
• Intel: Processor Trace

HW History Buffers Small trace buffers in HW: THBs, EHB, LBR buffers, LTSSM buffers

Scandump1

•ATPG scanchains configured as single-chain, TDI to TDO
•Debug of hardlocks and more
•“bread and butter” feature for many companies
•Destructive in nature
•Analogous to “read-back” on FPGAs

Performance Monitor &
Error Observe

Observe on pin, trigger ext. instruments, selective program flow
trace

HW Flow Control Breakpoint/single-step resume

HW Assertions Active in parallel, no programming required

Bug Replay (Si=>tester, sim.)
Really both legacy and emerging
Expensive and custom per company

1. Array and main memory dump applies in addition here too.

Where do you turn for more difficult SOC interaction bugs?

The Solution: On-Chip Logic Analyzer

77

• On-chip IP and software

• Software tools for:
– Instrumenting design

– Run-Time Programming
• Signal observe & triggering

• Trace dump/waveform view

• For use on FPGAs and ASICs

• Why?
– Faster bug root-cause

– Shorter time-to-market

Architected for Post Silicon Debug

78

Sub-System

1

Sub-System

2

Sub-System

N

Simple

Router
Access

Controller
Tap

Controller
JTAG

API

Interface for

Customized

Access

Trigger Sync

Capture Station

79

Observation Network

Capture Station

RTL• Deep Traces

• Flexible Triggers

Certus User Flow

80

User
RTL

Synthesis
Place & Route

Insert Probes

Certus

Implementor

Synthesis
Place & Route

Synthesis
Place & Route

Synthesis
Place & Route

Partitioning

Wasga
(Optional)

Design

Lab

Debug

Cycle

FPGA Bitfile(s) /

Gate Netlist

ASIC or FPGA Prototyping

Platform

File Interchange

(.VFE)

Debug

Certus

Analyzer

Lab Bench PC

(Windows, Linux)

Instrumented Signal Selection

81

Infrastructure

82

Signal Selection

83

Set the Trigger Condition

84

Run Content

85

Post-Silicon Waveform Viewing is Key

86

Mentor Graphics Certus Solution

• SW & HW solution for FPGA & silicon validation

– Broad visibility and deep traces, minimal resource cost

– Make post-silicon easy

• Shorter back-end time-to-market & lower schedule risk

– Flexibility to meet design/business needs

– Enterprise-level EDA SW support

– Productivity efficiency

– Enables increased focus on core business

• Mentor Graphics serious about post-silicon space

87

Summary - Key Recommendations

• Find bugs as early as possible
– Before time-consuming, resource intensive regressions are

launched

• Successively refine low power verification in every
D&V phase

• Leverage new debug technologies to expedite
causality discovery

• Break down the wall between RTL and firmware
verification

• Plan ahead for post-silicon debug

88

Agenda

• Introduction – the Debug challenge

• Advanced RTL Debug Scenarios

• Debug of Complex Testbenches

• Power-aware Verification Debug

• Integrated Hardware/Software Debug

• Post-Silicon Debug Solutions

89

Thank You!

Any Questions?

90

