

1

Advance Approach for Formal Verification of

Configurable Pulse Width Modulation Controller

Sumit K. Kulshreshtha, Intel Technology India Pvt Ltd, Bengaluru, India

(sumit.kumar.kulshreshtha@intel.com)

Raghavendra J N, Intel Technology India Pvt Ltd, Bengaluru, India

(Raghavendra.Jn@intel.com)

Abstract— Artificial Intelligence (AI) based systems require intelligent and configurable hardware which can

support AI applications. This leads to the development of smart hardware designs which can support a wide variety of

AI applications. One of such designs is a smart Configurable Pulse Width Modulation (CPWM) controller which is

very critical for proper system functionality as it controls LASER falling on human eye. With latest competitive trends,

it becomes essential to deliver such designs in much lesser time to have better time to market (TTM). One of the major

time-consuming process is verification of these hardware designs. This paper describes usage of advance and effective

formal verification techniques to verify such hardware designs in much lesser time with higher efficiency.

Keywords— Formal verification, overlapping checkers, coverage, exhaustive verification.

I. INTRODUCTION

Rising demand for Artificial Intelligence (AI) and Machine Learning (ML) based systems have revolutionized

the VLSI industry. These AI/ML based systems require complex system on chips (SoCs) and these complex SoCs

need innovative configurable hardware designs to support the required functionality. Few of the design blocks are

very critical for proper functioning of a system and need to consider the human safety as well based on the

application area. One of such complex hardware designs is a Configurable Pulse Width Modulation (CPWM)

controller. A CPWM controller can be used in many critical applications such as flash triggering, laser power

control, sensor synchronization and scheduling. One of the possible use cases of CPWM controller is controlling

LASER falling on human eye. All these applications are critical for human safety and require the designs to be

working exactly as expected without compromise else even a small design error may turn fatal. Hence it becomes

essential to make sure that these designs have been tested for all the possible scenario and have no bug. This poses

two different verification challenges as listed below:

Exhaustive verification – Due to the critical applications of CPWM controller, it becomes essential to verify such

designs exhaustively for all possible configurations.

Verification time – Now-a-days, the product development time is very short due to huge competitions. Due to

smaller product development cycle, the time allotted for verification is very less.

Using simulation-based verification and exercising directed or constrained random tests is not feasible due to

large configuration space. Covering all the possible scenario with directed or constrained random tests is not

possible when the configuration space is large. Using random tests is also not a good approach due to limited time

to market and random tests don’t guarantee for complete coverage in limited time. Hence due to very high degree

of configurability and limited time to market, it is practically impossible to completely verify CPWM controller

using simulation-based verification approach.

In order to overcome above limitations of simulation-based verification, Formal Verification (FV) can be

adopted which provides exhaustive verification. But tradition formal verification suffers a problem of convergence

for complex designs. Dealing with FV convergence is a time-consuming process. This paper describes a proven

formal verification approach to exhaustively verify a complex configurable design. Formal verification can

mailto:sumit.kumar.kulshreshtha@intel.com
mailto:Raghavendra.Jn@intel.com

2

effectively be used to verify such designs for all the possible configurations and for all the data values in much

lesser time.

II. DESIGN OVERVIEW

The design considered in this paper is a configurable pulse width modulation controller as shown in Figure 1.

It is having an input interface for design configuration and various input events which trigger the output waveforms

as per the configurations. The input events go through a cross bar and based on the configuration; they trigger

different waveform controllers. These waveform controllers act on these triggers based on their current state. The

output of each waveform controller is connected to different output pins. The window qualifier controls the shape

or the duty cycle of the output waveform. The output pins drive the General-Purpose Input Output (GPIO) pins of

the SoC. These GPIOs drive LASER beams which may be directed to human eye for few of the applications. Based

on the incoming event and current waveform controller state, interrupt controller generates different types of

interrupts. Details of various internal design blocks are described as below.

Configuration Registers: This is the system configuration space which controls the design functionality and

update the system behavior based on the inputs on configuration bus.

XBAR: This block does the routing of input events based on the design configuration. It redirects input events

to various waveform controllers.

Waveform Controller: This design part receives a waveform trigger from XBAR and based on this trigger

type and system configuration, it generates an output waveform. The duty cycle, pulse width and number of cycles

are calculated based on the system configuration.

Int Ctrl: This is an interrupt generating block. It generates an interrupt based on the waveform trigger from

xbar and the waveform controller state. The interrupt controller works as per the system configuration.

Figure 1: Configurable Pulse Width Modulation Controllers

3

III. CPWM CONTROLLER VERIFICATION STRATEGY

This section explains various techniques which were used to reduce the verification time and provided complete

coverage. The fundamental verification strategy used was Formal Property Verification (FPV). We used FPV along

with few of the latest techniques and closed the verification early. The techniques adopted in verification of this

design are explained in following sub sections.

A. One cycle design configuration: This is a method of reducing the time consumed in design configuration. A

design is configured by writing to the configuration registers using a standard (or customized) bus protocol.

Writing to these registers generally takes few cycles. If we want to configure the design in different ways, we

will end up wasting many cycles. This section shows how we can save these cycles and accelerate the

verification or a property convergence in lesser time using a method called “one cycle design configuration”.

The technique of “one cycle design configuration” helps in three different aspects as

• Reduce the design complexity.

• Explore all the possible configurations in much lesser time.

• No need of constraints to drive correct values on the configuration bus.

Typically, the configuration registers are pre verified shared devices. If they are new designs and big enough,

they can be taken out and verified separately. In the given Design Under Test (DUT), we black boxed the

configuration registers and put constraints at their outputs to avoid any illegal stimuli. This saved a lot of time which

is otherwise used in writing or updating these registers. With black boxed version, the design complexity was

reduced. These registers were left to assume any random (conditionally constant) values so that the design is tested

or verified for all possible values of system configurations in zero time. This avoids effort in writing set of

constraints to drive correct values on the configuration bus. As soon as the system comes out of reset the design is

ready to be tested for a specific configuration set.

Figure 2: Black boxed CPWM Controller

bboxed registers

4

B. Using overlapping checkers:

The CPWM controller was a complex design hence getting full convergence for end-to-end checkers was not

so easy. We had a checker C1 which checks if an input event generates expected waveform at the GPIO output pin

or not. After long runs, the checker C1 was inconclusive and the bound was also not good. After that we applied

various deep bug hunting methods still the bounds were not very good. Hence, we decided to use the overlapping

checkers concept [1]. The CPWM controller was logically partitioned into two smaller parts and then end to end

checkers were written for each of these partitions as shown in Figure 3. First part covers the design from primary

input events to waveform triggers. We wrote an end to end checker C2 for this part which checks if input events

cause correct waveform triggers or not. Second part covers the design from waveform triggers to GPIO outputs.

An end to end checker C3 was written for this part which checks if these waveform triggers are generating the

expected waveforms at the GPIO pins or not. Both the checkers C2 and C3 were converged which provided much

more confidence for signoff than single checker C1 for end to end functionality.

Figure 3: Overlapping Checkers with logical partitioning of CPWM Controller

C. Overall Verification Strategy

The expected time for simulation-based verification of this design was 20 days and the expected time using

FPV was 10 days. We planned in such a way that the overall verification was completed in less than the expected

time. While developing the verification plan for CPWM controller, we focused on the three areas of formal property

verification Constraints, Checkers, Coverage.

Constraints: In the beginning, there was a need to write constraints to drive correct set of values on the

configuration bus using a standard bus protocol which was a time-consuming process, and which could also increase

5

the complexity. Hence, we decided the zero-cycle design configuration method as explained above. With this

method, there was no need to writing this constraint set. Instead we just had very few (4) constraints to have correct

values in different registers. We left the input events unconstrained to have all the possible scenario.

Checkers: The checkers were divided into two different parts of the DUT. First one is local checkers and the

second one is end to end checkers.

• Local Checkers: We decided to target the internal components (waveform controller, XBAR, int ctrl) of

the DUT first and wrote local checkers focused on these components. We developed different sets of local

checkers each set targeting one component. Each set had 10-15 checkers based on the component. Getting

convergence on these local checkers was very easy as the cone of influence was much smaller for these

checkers.

• End to end Checkers: We planned for an end to end checker but along with this we also planned for

overlapping checkers as we had the opinion of bounded proofs due to design complexity. We had an end

to end checker C1 and two overlapping checkers C2 and C3 as shown in Figure 3.

Coverage: With minimum constraints and conclusive checkers, we got good coverage numbers. The only unhit

cover points were the expected once due to illegal combination of register values. After waving off these cover

points, we got 100% coverage.

IV. RESULTS

The techniques as explained in this paper proved to be very helpful and we closed the verification in less than

the expected time. The verification time expected using FPV was 50% less than the time expected using simulation-

based verification. We were able to get 100% coverage without any issue. And the full convergence of the

overlapping checkers proved to be stronger than end to end checkers. The number of bugs was high as can be seen

in the Table 1. Finally, a bug free design was signed off using advance FPV (Traditional FPV + New Techniques).

The advance FPV approach helped a lot to left shift the overall verification. The benefits of using the advance

techniques are summarized in the table 2.

Table 1. Design and Verification Details

DUT

Configuration/

Complexity

Simulation

Verification Effort

(Proposed)

Formal

Verification

Effort (Actual)

Bugs

Found

Comments

Number of

possible

configurations =

22500

20 Days 7 Days 20 Formal:

100% Coverage

Less Time

Simulation:

No guarantee for

100% coverage and

more time

6

Table 2. Benefits of advance FPV

Parameter Impact of advance

FPV

Checker Writing

Effort

Reduced by 20%

Checker

Convergence Effort

Reduced by 30%

Signoff Quality Improved due to full

convergence

V. CONCLUSION

This paper introduces advance FPV techniques which we have used to exhaustively verify a complex design in

limited time. The main idea of advance FPV techniques is to divide and concur the DUT which provides better

coverage and converged checkers. The key takeaways of this paper are

• Best possible usage of overlapping checkers.

• Technique of one cycle design configuration.

These techniques are proven useful in left shifting the overall verification with 100% coverage.

REFERENCES

[1] Sumit K. Kulshreshtha, Raghavendra J.N., “A Novel Approach to Verify CNN Based

Image Processing Unit,” DVCON US, 2021

[2] Theo A. Drane, George A. Constantinides, “Leap in the Formal Verification of Datapath,” DAC47, 2010

[3] Priyank Kalla, “Formal verification of arithmetic datapaths using algebraic geometry and symbolic computation,” Formal Methods in

Computer-Aided Design (FMCAD) 2015

[4] Daniel Kroening, Sanjit A. Seshia, “Formal Verification at Higher Levels of Abstraction,” IEEE/ACM International Conference on

Computer-Aided Design, 2007

https://ieeexplore.ieee.org/author/37295651300

