Adopting UVM for safety Verification
requirements

Srinivasan Venkatarmanan, VerifWorks Pvt.Ltd
Hemakiran Kolli, CVC Pvt.Ltd
Gurubasappa Kinagi, VerifWorks Pvt.Ltd
Satinder Paul Singh, Cogknit GmbH

DESIGN AND VERIFICATION™
CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Agenda

* Introduction
e Safety critical application
* Verifying safety critical designs
* Introduction to Go2UVM
* Deploying Go2UVM in Safety Verification

* Directed error injection
 Random fault injection
* Using log predictors

e Conclusion

2017
accellera - VT
© Accellera Systems Initiative 2 conERERcE D B TIoN

SYSTEMS INITIATIVE

Safety critical Application

Automotive electronics cost
(% of total car cost)

e Automotive is a safety critical application

* Few safety applications include
— Air bags
— Anti-lock Brake System

35%
— Electronic stability control 30%

— Adaptive cruise control pons
— Emergency breaking assist 15%

10%

1%

1950 1960 1970 1980 1990 2000 2010 2020 2030

Source: PWC Analysis
2017

accellera - V]
© Accellera Systems Initiative 3 conrERERcE D eI TN

SYSTEMS INITIATIVE

Verifying safety critical designs

* Key requirements for functional verification of safety critical designs
— Simulation of the unaltered design under test (DUT)
— Fault injection at random points

— Reuse of the existing functional verification environment with support for System
Verilog, Universal Verification Methodology (UVM)

— Support for multiple fault types, including single event upset (SEU), stuck-at-
0/stuck-at-1, and single event

— Log prediction to create self-checking error tests

accellera - Vi
© Accellera Systems Initiative 4 . CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

UVM — fastest growing methodology

* Source: Independent survey by Wilson group
— Sponsored by Mentor Graphics

ASIC/IC Testbench Methodology Adoption Trends

Design Projects
= . £ '

LI LR
LR
L R

m Rl Tear

h_ni__

Plerior AT Syropsys VMM Synopsys Ry Cadenos afM Cadence UEM

ASIC/IC H-athun-d-:lﬂ-uiﬂ nd Testbench Base-Class Libraries

SYSTEMS INITIATIVE

© Accellera Systems Initiative

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

What is Go2UVM?

e SystemVerilog package
 TCL “apps” to auto-create Go2UVM files
e Package on top of Standard UVM framework

 Two primary goals:
— Simplify UVM for first-time users
— Extend standard UVM to add specific features
e Simplifying UVM adoption:
— GOo2UVM base Test from uvm_test class
— Hides phasing, objection, name-parent hook-up etc.

* Extended features Eocus of this
— Fault injection paper
— Log predictor
— Checker library
— Built-in UVCs for Registers, Low power verification etc.

oo 217
accellera Y]

© Accellera Systems Initiative G e e

SYSTEMS INITIATIVE

Go2UVM in a nutshell

SYSTEMS INITIATIVE

x| 2l sl R
: Register
Signal : 7 Log
Verification :
st isyeh Access layer Predictor apps
layer
I
RO Temp!ate Waves2UVM
fault creation S
injection apps P
DESIGN AND VE%QJTZON"
DVLCCIN
© Accellera Systems Initiative 7 CONFERENCE AND EXHIBITION

Directed Error injection

* Typical UVCs contain several error injection Producer
capabilities LIN Master
— Some are part of transaction D4 _E'E':EZ LIN-
asK £*
— Some are part of components/drivers Datal|| Slaye Datad Slave
. Task 1
 Consider LIN protocol Dataz|| ™ l '\
e Typical errors:
Master |
— Delimiter err Task Data Toker |]
— Checksum err — J
— PID start/stop err .
, /stop LIN Message
— Parity err
. Schedule
— Oversize err etc. : h

UVC has knobs to control these error generation

|

2017
accellera - VT
© Accellera Systems Initiative 8 . conERERcEAND BHIeTIoN

SYSTEMS INITIATIVE

LIN Error control in UVM framework

e UVM base class — 2 main class trees

. . uvm_object
— Components (Hierarchical) name q |
copy() i
— Transaction/SEQ (Not hier aware) col "vm'"?sam"
_ . print() :
e Often users need to write Virtual sequences T “"'“-“’e“';;“"e-"e'"
. uvm_report_object
to develop test scenarios e e g
: : T s
* Tweaks knobs in Driver/Agent from uvm_component
uvm_sequence::body() Eﬁiﬁ“ré.. -
get/set_config
¢ QOut-of-the-box UVM does not support this bul)
. :zgnggtglaboration()
— As sequences are not hierarchy aware sarCo_simlaton)
— uvm_root class has APl needed for this

2017

accellera - Vi
© Accellera Systems Initiative O . CONFERENCEANDEXHBITION

SYSTEMS INITIATIVE

Go2UVM Component access feature

1//
. 2 /] Get the t t t pointed by ~ab th_to_comp~
¢ Ba se Cla SS: g 02 uvm_ Comp_ access 3// Tge paianggi tgont]ﬁgng?asgoil’nigent{fei iﬁgatarggtcgggponent's type
4 // It is importantfjto ensure dynamic casting compatibility
5//
 An OOP layer around uvm_component B/ e bsic usae of this class s
117/
* Has a static function get_comp() | oo s L)
10
. 11
¢ U ses u Vm_ ro Ot fl nd API 12 class go2uvm_comp_access #(type T=uvm_component) extends uvm_component;
13
— Makes it easy to use for end-users BE] von-coponent found_con
. . . . 16 extern static function T get_comp (string abs_path_to_comp);
— Built-in error checking for wrong hierarchy Jendctass : go2vim_conp. aceess
specification

Go2UVM component access layer
— Hides dynamic casting (Scast) from end-user

2017
accellera - V]
© Accellera Systems Initiative 10 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Using Go2UVM comp access

1 cl s vw_Lin_err_seq extends uvm_seqguence (vw_1lin_xactn);
2
3 vw_lin_drwvier de;
4
5
6 task body ()H
7 d@ = goZ2uvm_comp_access #(vw_1lin_driwver)::get_comp
8 ("uvm_test_top.auto_soc_env. lin_agent_0.lin_drv_e")
9
10 d@.gen_delimiter_err = 1;
11 d@.gen_csum_err = O;
12 d@.gen_parity_err = 1; 5
13 d@.gen_oversize_err = 1 I_Ilerpath
14 d@.gen_PID_start_err g
15 d@.gen_PID_stop_err = tOdrNer
16
17
18 “Tuvm_dofl({wvw_1lin_xn) Enorgen
19 . .
20 endtask : body knobS|n$de
21 -
endclass : vw_1lin_err_seq dnver

2017
accellera . Vi
© Accellera Systems Initiative 11 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

Directed Error injection - summary

* Errorinjection is important for safety verification in UVM

e Standard UVM sequences are “hierarchy-unaware”

* Errorinjection scenarios coded as sequences in UVM

e Typical UVC has error injection control knobs inside agent/driver

* Having access to those knobs from a sequence is very useful

e Go2UVM makes it easier to access any component from anywhere
* Built-in debug messages help with wrong usage

accellera - Vi
© Accellera Systems Initiative i2 . CONFERENCEAND EXHIBITION

IIIIIIIIIIIIIIIII

Need for Fault injection in safety verification

* Consider a typical car’s Power-train
Control Module (PCM)

— Takes inputs from various sensors
— Controls several vital parts of a car

* Need to verify many fault scenarios

* Fault injection is essential to mimic real
life scenarios

accellera
- © Accellera Systems Initiative 13

SYSTEMS INITIATIVE

The PCM's job is to manage the powertrain. This includes the engine's ignition system, fuel injaction eystarn and
emisgion controls. The Pg receives input frorm a wide variety of sensors and ewitches.

Ford™ PCM module

2017

DESIGN AND VI ICATION™

HYI=1J

Automotive SoC example

* Has multiple interfaces to control various part of the automotive

220 =

A A '1':1!

MOST
FlexRay 5 |

1M

bit's

2.42M 7 D2B . Automotive
CAN-C

SoC
CAN-B

=
|

Bit Fate

128k —

20k —

LIN

f

Cost ‘

accellera - Vi
© Accellera Systems Initiative 14 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Automotive SoC Verif env with UVM

* Traditional UVM based flow with multiple UVCs, a verification
environment can be built as shown in Figure below.

Automotive

SoC

Verification Environment with multiple UVCs

accellera - V]
: © Accellera Systems Initiative 15 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

e Virtual SEQ

Virtual sequences for Automotive SoC
* Multiple UVCs

— Control individual interfaces
— Error generation

— Orchestrates various IP
interactions

 Well-understood, well-
deployed use model

* Adding random faults
— Tricky!

SYSTEMS INITIATIVE

© Accellera Systems Initiative

vw_asoc_e

4
Virtual SQR

vw_sfv_vseq

p_can_sqr_0

/,‘ Config Errors

p_lin_sqr S /
T~

LIN Error SEQ

fork

class vw_sfv_vseq extends uvm_sequence;
virtual task body();

‘'uvm_do_on(cfg_err_xn,

p_sequencer.p_cfg_sqr);

‘uvm_do_on(vw_lin_err_seq,

p_sequencer.p_lin_sqr);
‘uvm_do_on(vw_can_fault_seq,

p_sequencer.p_can_sqr_0);
join
CAN Fault SEQ endtask
vw_lin_env T

LIN SEQ

LIN Driver

16

\c

\
1
1
1
1

1
W

vw_can_env

CAN_SEQ

CAN Driver ¥

Virtual Sequence and Multiple Sub-sequence

DESIGN AND VER%:QJT?ON"
DV O

CONFERENCE AND EXHIBITION

Fault injection in UVM simulation

e Regular traffic (via UVM virtual
SEQ) s

ol
et e

* Faults ==random values on select

i Pt st
54 st pregLACLRENT STATE 1P

signals v

L
1

|

Eg?

* Typically spread across the design |

FTTT R

3 il AT

— Hard to decide upfront RN y—

|

|

— Difficult to code as “SV Interface” 4

]

i
1

e (QOccasional occurrence R
— Not very frequent

2017
accellera . Vi
© Accellera Systems Initiative 17 . conrERsRcEAND SmemON

SYSTEMS INITIATIVE

Signal Access APl in Go2UVM

class go2uvm sig access extends uvm object;
"uvm_object utils(go2uvm sig access)

extern static function void g2u force (string sig name,
logic [VW _G2U SIG MAX W-1:0] sig val,
bit verbose =1,
bit is vhdl sig = 0);

extern static function void g2u deposit (string sig name,
logic [VW _G2U SIG MAX W-1:0] sig val,
bit verbose =1,
bit is vhdl sig = 0);

extern static function void g2u release(string sig name,
bit verbose =1,
bit is vhdl sig = 0);

endclass : go2uvm sig access

ll DESIGN AND VER%’QJ'IZON"
/e DV
ageoieid Srini - VerifWorks, Krishna - Qualcomm 18 21-02-2022 =11

SYSTEMS INITIATIVE

Signal access layer Go2UVM

* Go2UVM has a signal
access layer

 Uses simulator’s
force/release API

e Works across HDL
boundary

 Handy technique for
sideband drives:

— PLL output
— QLS reset etc.

30081181'3 © Accellera Systems Initiative

SYSTEMS INITIATIVE

class go2uvm sig access extends uvm object;
‘uvm_object utils(go2uvm sig access)

extern static function void g2u_ force (string sig name,
logic [VW_G2U SIG MAX W-1:0] sig val,
bit verbose =1,
bit is vhdl sig = 0);

extern static function void g2u deposit (
string sig_name,
logic [VW_G2U SIG MAX W-1:0] sig val,
bit verbose =1,
bit is vhdl sig = 0);

extern static function void g2u release(string sig name,
bit verbose = 1,
bit is vhdl sig = 0);

endclass : go2uvm _sig access

2017

DESIGN AND VERIFICATION™

19 NNNNNNNNNNNNNNNNNNNNNNN

Fault injection with Go2UVM

 Go2UVM’s signal access layer is extended for fault injection

* A new app named “SaFety Verification” (SFV) is developed

Lo~ n Wi

L) TGO TAUILS.S1W b~ I W WY
Signal name (hierarchical) inside []

gl2u_sfv_vals : [comma separated values as integers]

g2u_sfv_times : [comma separated values as integers, relative time]

g2u_sfv_tunit : "ns", "ps" etc. Default is "ns"

g2u_sfv_vhdl : true/false — if target is VHDL signal, Default: false

g2u_sfv_dbg : true/false - for verbose debug messages for every fault injection, Default: false

[sigl]

g2u_Bfv_vals : [0,22,44]
g2u_sfv_times : [0, ’]
g2u_sfv_tunit : ps

[sig2]

g2u_sfv_vals : [3,90,]
g2u_sfv_times : [0, ;]
g2u_sfv_vhdl : true
[top.dut.sig3]

g2u_sfv_vals : [99,98,]
g2u_sfv_times : [10,)]
g2u_sfv_dbg : true

SYSTEMS INITIATIVE

© Accellera Systems Initiative 20

2017

DESIGN AND VERIFICATION™

DV O

CONFERENCE AND EXHIBITION

78
79
80
81
82
83
84
85
86
87
88
89
1%
91
92
93
9S4
95
96
97

Using SFV in UVM test/sequence

* SFV = Go2UVM test via an app

* Can generate a SEQ as well —to be used in a virtual sequence

task go2uvm_safety_test::g2u_sfv_drive_sigl;
#0ps g2u_force ("/sigl",9);
#100ps g2u_force ("/sigl",22);
#2000ps g2u_force ("/sigl",44);

endtask g2u_sfv_drive_sigl

task go2uvm_safety_test::g2u_sfv_drive_sig2;
#0ns g2u_force ("/sig2",3);
#222ns g2u_force ("/sig2",90);
#3333ns g2u_force ('"/sig2",121);

endtask g2u_sfv_drive_sig?2

task go2uvm_safety_test::g2u_sfv_drive_top_dut_sig3;
#10ns g2u_force ("/top/dut/sig3",99);
#333ns g2u_force ("/top/dut/sig3",98);
#4444ns g2u_force ("/top/dut/sig3",678);

endtask g2u_sfv_drive_top_dut_sig3

42 // Auto generated by VerifWorks Go2UVM Safety Verifiction app
43 //

44 import uvm_pkg: :*;

45 "include "uvm_macros.svh"

46 " include "wvw_go2uvm_macros.svh"

A7 import wvw_go2uvm_pkg: z*;

48 TG2U_TEST_BEGIN(ww_g2u_gen_safety_test)

SYSTEMS INITIATIVE

Sample Go2UVM SFV Test

© Accellera Systems Initiative 21

49
50
51 extern virtual task g2u_sfv_drive_sigl;
52 extern virtual task g2u_sfv_drive_sig2;
53 extern virtual task g2u_sfv_drive_top_dut_sig3;
54 extern virtual task reset;
55 extern virtual task main;
56 “G2U_TEST_END
57
58 task go2uvm_safety_test::main();
59 “g2u_display ("Starting force test")
60 fork
61 g2u_sfv_drive_sigl;
62 g2u_sfv_drive_sig2;
63 g2u_sfv_drive_top_dut_sig3;
64 join
65 *g2u_display ("End of main')
66 endtask : main
DESI (vNDBVER?FQJé ™

CONFERENCE AND EXHIBITION

Log predictors in Go2UVM

* Fault injection leads to random failures
— Expected to be caught by assertions, UVM monitors/scoreboards
— Predicting such errors is key to ensure quality

e UVM has “reg_predcitor”

* Go2UVM adds a “I dictor” o I8
0 adds a “log_predictor mockrtci;]
 Motivated by Mock frameworks in SW

€AsyMock

— Mockito, EasyMock etc. ©®Mock

— SVUnit’s uvm_report_mock
PoweTrVigék

* Ability to “predict” error/warning/info in LOG file

accellera - Vi
© Accellera Systems Initiative 22 . CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

Go2UVM log predictor

e Go2UVM adds a base class: go2uvm_log_predictor
e Has static method:

— go2uvm _log predict (uvm_severity SEV, string ID, string msg, time start_t =0,
time end _t =0);

* User can specify Severity, ID etc. and let the final test status account for
these

e Can also control start & end time of the prediction

accellera - N E TN
© Accellera Systems Initiative 23 . CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

CONCLUSION

e Safety verification is challenging task

* |volves multitude of technologies & tools such as simulation, formal,
mutation based etc.

« UVM is the most adopted verification methodology for simulations.
 However, for safety verification few additional features are needed on
top of standard UVM

— Go2UVM comp_access =2 Directed error injeciton
— Go2UVM SFV - Safety Verification layer/app
— Go2UVM Log predictor = Ability to build self-checking tests

2017
accellera - Vi
© Accellera Systems Initiative 24 .. CONFERENCEAND EXHIBITION

SYSTEMS INITIATIVE

	Adopting UVM for safety Verification requirements
	Agenda
	Safety critical Application
	Verifying safety critical designs
	UVM – fastest growing methodology
	What is Go2UVM?
	Go2UVM in a nutshell
	Directed Error injection
	LIN Error control in UVM framework
	Go2UVM Component access feature
	Using Go2UVM comp_access
	Directed Error injection - summary
	Need for Fault injection in safety verification
	Automotive SoC example
	Automotive SoC Verif env with UVM
	Virtual sequences for Automotive SoC
	Fault injection in UVM simulation
	Signal Access API in Go2UVM
	Signal access layer Go2UVM
	Fault injection with Go2UVM
	Using SFV in UVM test/sequence
	Log predictors in Go2UVM
	Go2UVM log predictor
	Conclusion

