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Safety critical Application

Automotive electronics cost
(% of total car cost)

e Automotive is a safety critical application

* Few safety applications include
— Air bags
— Anti-lock Brake System

35%
— Electronic stability control 30%

— Adaptive cruise control pons
— Emergency breaking assist 15%
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Verifying safety critical designs

* Key requirements for functional verification of safety critical designs
— Simulation of the unaltered design under test (DUT)
— Fault injection at random points

— Reuse of the existing functional verification environment with support for System
Verilog, Universal Verification Methodology (UVM)

— Support for multiple fault types, including single event upset (SEU), stuck-at-
0/stuck-at-1, and single event

— Log prediction to create self-checking error tests
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UVM — fastest growing methodology

* Source: Independent survey by Wilson group
— Sponsored by Mentor Graphics
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What is Go2UVM?

e SystemVerilog package
 TCL “apps” to auto-create Go2UVM files
e Package on top of Standard UVM framework

 Two primary goals:
— Simplify UVM for first-time users
— Extend standard UVM to add specific features
e Simplifying UVM adoption:
— GOo2UVM base Test from uvm_test class
— Hides phasing, objection, name-parent hook-up etc.

* Extended features Eocus of this
— Fault injection paper
— Log predictor
— Checker library
— Built-in UVCs for Registers, Low power verification etc.
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Go2UVM in a nutshell
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Directed Error injection

* Typical UVCs contain several error injection Producer
capabilities LIN Master
— Some are part of transaction D4 _E'E':EZ LIN-
asK £*
— Some are part of components/drivers Datal|| Slaye Datad Slave
. Task 1
 Consider LIN protocol Dataz|| ™ l '\
e Typical errors:
Master |
— Delimiter err Task Data Toker |]
— Checksum err — J
— PID start/stop err .
, /stop LIN Message
— Parity err
. Schedule
— Oversize err etc. : h

UVC has knobs to control these error generation

|
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LIN Error control in UVM framework

e UVM base class — 2 main class trees

. . uvm_object
— Components (Hierarchical) name q |
copy() i
— Transaction/SEQ (Not hier aware) col "vm'"?sam"
_ . print() :
e Often users need to write Virtual sequences T “"'“-“’e“';;“"e-"e'"
. uvm_report_object
to develop test scenarios e e g
: : T s
* Tweaks knobs in Driver/Agent from uvm_component
uvm_sequence::body() Eﬁiﬁ“ré.. -
get/set_config
¢ QOut-of-the-box UVM does not support this bul)
. :zgnggtglaboration()
— As sequences are not hierarchy aware sarCo_simlaton)
— uvm_root class has APl needed for this
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Go2UVM Component access feature

1//
. 2 /] Get the t t t pointed by ~ab th_to_comp~
¢ Ba se Cla SS: g 02 uvm_ Comp_ access 3// Tge paianggi tgont]ﬁgng?asgoil’nigent{fei iﬁgatarggtcgggponent's type
4 // It is importantfjto ensure dynamic casting compatibility
5//
 An OOP layer around uvm_component B/ e bsic usae of this class s
117/
* Has a static function get_comp() | oo s L )
10
. 11
¢ U ses u Vm_ ro Ot fl nd API 12 class go2uvm_comp_access #(type T=uvm_component) extends uvm_component;
13
— Makes it easy to use for end-users BE] von-coponent found_con
. . . . 16 extern static function T get_comp (string abs_path_to_comp);
— Built-in error checking for wrong hierarchy Jendctass : go2vim_conp. aceess
specification

Go2UVM component access layer
— Hides dynamic casting (Scast) from end-user
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Using Go2UVM comp access

1 cl s vw_Lin_err_seq extends uvm_seqguence (vw_1lin_xactn);
2
3 vw_lin_drwvier de;
4
5
6 task body ()H
7 d@ = goZ2uvm_comp_access #(vw_1lin_driwver)::get_comp
8 ("uvm_test_top.auto_soc_env. lin_agent_0.lin_drv_e")
9
10 d@.gen_delimiter_err = 1;
11 d@.gen_csum_err = O;
12 d@.gen_parity_err = 1; 5
13 d@.gen_oversize_err = 1 I_Ilerpath
14 d@.gen_PID_start_err g
15 d@.gen_PID_stop_err = tOdrNer
16
17
18 “Tuvm_dofl({wvw_1lin_xn) Enorgen
19 . .
20 endtask : body knobS|n$de
21 -
endclass : vw_1lin_err_seq dnver
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Directed Error injection - summary

* Errorinjection is important for safety verification in UVM

e Standard UVM sequences are “hierarchy-unaware”

* Errorinjection scenarios coded as sequences in UVM

e Typical UVC has error injection control knobs inside agent/driver

* Having access to those knobs from a sequence is very useful

e Go2UVM makes it easier to access any component from anywhere
* Built-in debug messages help with wrong usage
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Need for Fault injection in safety verification

* Consider a typical car’s Power-train
Control Module (PCM)

— Takes inputs from various sensors
— Controls several vital parts of a car

* Need to verify many fault scenarios

* Fault injection is essential to mimic real
life scenarios
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The PCM's job is to manage the powertrain. This includes the engine's ignition system, fuel injaction eystarn and
emisgion controls. The Pg receives input frorm a wide variety of sensors and ewitches.

Ford™ PCM module
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Automotive SoC example

* Has multiple interfaces to control various part of the automotive
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Automotive SoC Verif env with UVM

* Traditional UVM based flow with multiple UVCs, a verification
environment can be built as shown in Figure below.

Automotive

SoC

Verification Environment with multiple UVCs
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e Virtual SEQ

Virtual sequences for Automotive SoC
* Multiple UVCs

— Control individual interfaces
— Error generation

— Orchestrates various IP
interactions

 Well-understood, well-
deployed use model

* Adding random faults
— Tricky!
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LIN Error SEQ

fork

class vw_sfv_vseq extends uvm_sequence;
virtual task body();

‘'uvm_do_on(cfg_err_xn,

p_sequencer.p_cfg_sqr);

‘uvm_do_on( vw_lin_err_seq,

p_sequencer.p_lin_sqr);
‘uvm_do_on( vw_can_fault_seq,

p_sequencer.p_can_sqr_0);
join
CAN Fault SEQ endtask
vw_lin_env T
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LIN Driver
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Fault injection in UVM simulation

e Regular traffic (via UVM virtual
SEQ) s

# ol
# et e

* Faults ==random values on select
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Signal Access APl in Go2UVM

class go2uvm sig access extends uvm object;
"uvm_object utils(go2uvm sig access)

extern static function void g2u force (string sig name,
logic [ VW _G2U SIG MAX W-1:0] sig val,
bit verbose =1,
bit is vhdl sig = 0);

extern static function void g2u deposit (string sig name,
logic [ VW _G2U SIG MAX W-1:0] sig val,
bit verbose =1,
bit is vhdl sig = 0);

extern static function void g2u release(string sig name,
bit verbose =1,
bit is vhdl sig = 0);

endclass : go2uvm sig access
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Signal access layer Go2UVM

* Go2UVM has a signal
access layer

 Uses simulator’s
force/release API

e Works across HDL
boundary

 Handy technique for
sideband drives:

— PLL output
— QLS reset etc.
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class go2uvm sig access extends uvm object;
‘uvm_object utils(go2uvm sig access)

extern static function void g2u_ force (string sig name,
logic [ VW_G2U SIG MAX W-1:0] sig val,
bit verbose =1,
bit is vhdl sig = 0);

extern static function void g2u deposit (
string sig_name,
logic [ VW_G2U SIG MAX W-1:0] sig val,
bit verbose =1,
bit is vhdl sig = 0);

extern static function void g2u release(string sig name,
bit verbose = 1,
bit is vhdl sig = 0);

endclass : go2uvm _sig access
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Fault injection with Go2UVM

 Go2UVM’s signal access layer is extended for fault injection

* A new app named “SaFety Verification” (SFV) is developed

Lo~ n Wi

L) TGO TAUILS.S1W b~ I W WY
# Signal name (hierarchical) inside []

# gl2u_sfv_vals : [comma separated values as integers]

# g2u_sfv_times : [comma separated values as integers, relative time]

# g2u_sfv_tunit : "ns", "ps" etc. Default is "ns"

# g2u_sfv_vhdl : true/false — if target is VHDL signal, Default: false

# g2u_sfv_dbg : true/false - for verbose debug messages for every fault injection, Default: false

[sigl]

g2u_Bfv_vals : [0,22,44]
g2u_sfv_times : [0, ’ ]
g2u_sfv_tunit : ps

[sig2]

g2u_sfv_vals : [3,90, ]
g2u_sfv_times : [0, ; ]
g2u_sfv_vhdl : true
[top.dut.sig3]

g2u_sfv_vals : [99,98, ]
g2u_sfv_times : [10, ) ]
g2u_sfv_dbg : true
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Using SFV in UVM test/sequence

* SFV = Go2UVM test via an app

* Can generate a SEQ as well —to be used in a virtual sequence

task go2uvm_safety_test::g2u_sfv_drive_sigl;
#0ps g2u_force ("/sigl",9);
#100ps g2u_force ("/sigl",22);
#2000ps g2u_force ("/sigl",44);

endtask g2u_sfv_drive_sigl

task go2uvm_safety_test::g2u_sfv_drive_sig2;
#0ns g2u_force ("/sig2",3);
#222ns g2u_force ("/sig2",90);
#3333ns g2u_force ('"/sig2",121);

endtask g2u_sfv_drive_sig?2

task go2uvm_safety_test::g2u_sfv_drive_top_dut_sig3;
#10ns g2u_force ("/top/dut/sig3",99);
#333ns g2u_force ("/top/dut/sig3",98);
#4444ns g2u_force ("/top/dut/sig3",678);

endtask g2u_sfv_drive_top_dut_sig3

42 // Auto generated by VerifWorks Go2UVM Safety Verifiction app
43 //

44 import uvm_pkg: :*;

45 "include "uvm_macros.svh"

46 " include "wvw_go2uvm_macros.svh"

A7 import wvw_go2uvm_pkg: z*;

48 TG2U_TEST_BEGIN(ww_g2u_gen_safety_test)

SYSTEMS INITIATIVE

Sample Go2UVM SFV Test
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49
50
51 extern virtual task g2u_sfv_drive_sigl;
52 extern virtual task g2u_sfv_drive_sig2;
53 extern virtual task g2u_sfv_drive_top_dut_sig3;
54 extern virtual task reset;
55 extern virtual task main;
56 “G2U_TEST_END
57
58 task go2uvm_safety_test::main();
59 “g2u_display ("Starting force test")
60 fork
61 g2u_sfv_drive_sigl;
62 g2u_sfv_drive_sig2;
63 g2u_sfv_drive_top_dut_sig3;
64 join
65 *g2u_display ("End of main')
66 endtask : main
DESI (vNDBVER?FQJé ™
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Log predictors in Go2UVM

* Fault injection leads to random failures
— Expected to be caught by assertions, UVM monitors/scoreboards
— Predicting such errors is key to ensure quality

e UVM has “reg_predcitor”

* Go2UVM adds a “I dictor” o I8
0 adds a “log_predictor mockrtci;]
 Motivated by Mock frameworks in SW

€AsyMock

— Mockito, EasyMock etc. ©®Mock

— SVUnit’s uvm_report_mock
PoweTrVigék

* Ability to “predict” error/warning/info in LOG file
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Go2UVM log predictor

e Go2UVM adds a base class: go2uvm_log_predictor
e Has static method:

— go2uvm _log predict (uvm_severity SEV, string ID, string msg, time start_t =0,
time end _t =0);

* User can specify Severity, ID etc. and let the final test status account for
these

e Can also control start & end time of the prediction
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CONCLUSION

e Safety verification is challenging task

* |volves multitude of technologies & tools such as simulation, formal,
mutation based etc.

« UVM is the most adopted verification methodology for simulations.
 However, for safety verification few additional features are needed on
top of standard UVM

— Go2UVM comp_access =2 Directed error injeciton
— Go2UVM SFV - Safety Verification layer/app
— Go2UVM Log predictor = Ability to build self-checking tests
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