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Safety critical Application
• Automotive is a safety critical application  
• Few safety applications include

– Air bags
– Anti-lock Brake System
– Electronic stability control
– Adaptive cruise control
– Emergency breaking assist
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Verifying  safety critical designs
• Key requirements for functional verification of safety critical designs

– Simulation of the unaltered design under test (DUT)
– Fault injection at random points
– Reuse of the existing functional verification environment with support for System 

Verilog, Universal Verification Methodology (UVM)
– Support for multiple fault types, including single event upset (SEU), stuck-at-

0/stuck-at-1, and single event
– Log prediction to create self-checking error tests
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UVM – fastest growing methodology
• Source: Independent survey by Wilson group

– Sponsored by Mentor Graphics
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What is Go2UVM?
• SystemVerilog package
• TCL “apps” to auto-create Go2UVM files
• Package on top of Standard UVM framework
• Two primary goals:

– Simplify UVM for first-time users
– Extend standard UVM to add specific features  

• Simplifying UVM adoption:
– Go2UVM base Test from uvm_test class
– Hides phasing, objection, name-parent hook-up etc.

• Extended features
– Fault injection
– Log predictor
– Checker library
– Built-in UVCs for Registers, Low power verification etc.
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Go2UVM in a nutshell
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Directed Error injection
• Typical UVCs contain several error injection 

capabilities
– Some are part of transaction
– Some are part of components/drivers

• Consider LIN protocol
• Typical errors:

– Delimiter err
– Checksum err
– PID start/stop err
– Parity err
– Oversize err etc.

• UVC has knobs to control these error generation
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LIN Error control in UVM framework
• UVM base class – 2 main class trees

– Components (Hierarchical)
– Transaction/SEQ (Not hier aware)

• Often users need to write Virtual sequences 
to develop test scenarios

• Tweaks knobs in Driver/Agent from 
uvm_sequence::body()

• Out-of-the-box UVM does not support this
– As sequences are not hierarchy aware
– uvm_root class has API needed for this
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Go2UVM Component access feature
• Base class: go2uvm_comp_access
• An OOP layer around uvm_component
• Has a static function get_comp()
• Uses uvm_root::find API

– Makes it easy to use for end-users
– Built-in error checking for wrong hierarchy 

specification 
– Hides dynamic casting ($cast) from end-user
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Using Go2UVM comp_access
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Directed Error injection - summary
• Error injection is important for safety verification in UVM
• Standard UVM sequences are “hierarchy-unaware”
• Error injection scenarios coded as sequences in UVM 
• Typical UVC has error injection control knobs inside agent/driver
• Having access to those knobs from a sequence is very useful
• Go2UVM makes it easier to access any component from anywhere
• Built-in debug messages help with wrong usage
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Need for Fault injection in safety verification
• Consider a typical car’s Power-train 

Control Module (PCM)
– Takes inputs from various sensors
– Controls several vital parts of a car

• Need to verify many fault scenarios
• Fault injection is essential to mimic real 

life scenarios
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Automotive SoC example
• Has multiple interfaces to control various part of the automotive
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Automotive SoC Verif env with UVM
• Traditional UVM based flow with multiple UVCs, a verification 

environment can be built as shown in Figure  below.
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Verification Environment with multiple UVCs



Virtual sequences for Automotive SoC

• Multiple UVCs
• Virtual SEQ 

– Control individual interfaces
– Error generation
– Orchestrates various IP 

interactions
• Well-understood, well-

deployed use model
• Adding random faults

– Tricky!
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Fault injection in UVM simulation
• Regular traffic (via UVM virtual 

SEQ)
• Faults == random values on select 

signals
• Typically spread across the design

– Hard to decide upfront
– Difficult to code as “SV Interface”

• Occasional occurrence
– Not very frequent
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Signal Access API in Go2UVM
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class go2uvm_sig_access extends uvm_object;
`uvm_object_utils(go2uvm_sig_access)

extern static function void g2u_force (string sig_name,
logic [`VW_G2U_SIG_MAX_W-1:0] sig_val,
bit verbose = 1,
bit is_vhdl_sig = 0);

extern static function void g2u_deposit (string sig_name,
logic [`VW_G2U_SIG_MAX_W-1:0] sig_val,
bit verbose = 1,
bit is_vhdl_sig = 0);

extern static function void g2u_release(string sig_name,
bit verbose = 1,
bit is_vhdl_sig = 0);

endclass : go2uvm_sig_access



Signal access layer Go2UVM
• Go2UVM has a signal 

access layer
• Uses simulator’s 

force/release API
• Works across HDL 

boundary
• Handy technique for 

sideband drives:
– PLL output
– GLS reset etc.
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class go2uvm_sig_access extends uvm_object;
`uvm_object_utils(go2uvm_sig_access)

extern static function void g2u_force (string sig_name,
logic [`VW_G2U_SIG_MAX_W-1:0] sig_val,
bit verbose = 1,
bit is_vhdl_sig = 0);

extern static function void g2u_deposit (
string sig_name,
logic [`VW_G2U_SIG_MAX_W-1:0] sig_val,
bit verbose = 1,
bit is_vhdl_sig = 0);

extern static function void g2u_release(string sig_name,
bit verbose = 1,
bit is_vhdl_sig = 0);

endclass : go2uvm_sig_access



Fault injection with Go2UVM
• Go2UVM’s signal access layer is extended for fault injection
• A new app named “SaFety Verification” (SFV) is developed
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Using SFV in UVM test/sequence
• SFV  Go2UVM test via an app
• Can generate a SEQ as well – to be used in a virtual sequence
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Log predictors in Go2UVM
• Fault injection leads to random failures

– Expected to be caught by assertions, UVM monitors/scoreboards
– Predicting such errors is key to ensure quality

• UVM has “reg_predcitor”
• Go2UVM adds a “log_predictor” 
• Motivated by Mock frameworks in SW

– Mockito, EasyMock etc.
– SVUnit’s uvm_report_mock

• Ability to “predict” error/warning/info in LOG file
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Go2UVM log predictor
• Go2UVM adds a base class: go2uvm_log_predictor
• Has static method:

– go2uvm_log_predict (uvm_severity SEV, string ID, string msg, time start_t = 0, 
time end_t =0);

• User can specify Severity, ID etc. and let the final test status account for 
these

• Can also control start & end time of the prediction
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CONCLUSION

• Safety verification is challenging task
• Ivolves multitude of technologies & tools such as simulation, formal, 

mutation based etc.
• UVM is the most adopted verification methodology for simulations. 
• However, for safety verification few additional features are needed on 

top of standard UVM
– Go2UVM comp_access Directed error injeciton
– Go2UVM SFV  Safety Verification layer/app
– Go2UVM Log predictor  Ability to build self-checking tests
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