
Adopting UVM for safety Verification 
requirements

Srinivasan Venkatarmanan, VerifWorks Pvt.Ltd
Hemakiran Kolli, CVC Pvt.Ltd

Gurubasappa Kinagi, VerifWorks Pvt.Ltd
Satinder Paul Singh, Cogknit GmbH

© Accellera Systems Initiative 1



Agenda
• Introduction

• Safety critical application
• Verifying safety critical designs

• Introduction to Go2UVM
• Deploying Go2UVM in Safety Verification

• Directed error injection
• Random fault injection
• Using log predictors

• Conclusion

© Accellera Systems Initiative 2



Safety critical Application
• Automotive is a safety critical application  
• Few safety applications include

– Air bags
– Anti-lock Brake System
– Electronic stability control
– Adaptive cruise control
– Emergency breaking assist

© Accellera Systems Initiative 3

Source: PWC Analysis



Verifying  safety critical designs
• Key requirements for functional verification of safety critical designs

– Simulation of the unaltered design under test (DUT)
– Fault injection at random points
– Reuse of the existing functional verification environment with support for System 

Verilog, Universal Verification Methodology (UVM)
– Support for multiple fault types, including single event upset (SEU), stuck-at-

0/stuck-at-1, and single event
– Log prediction to create self-checking error tests

© Accellera Systems Initiative 4



UVM – fastest growing methodology
• Source: Independent survey by Wilson group

– Sponsored by Mentor Graphics

© Accellera Systems Initiative 5



What is Go2UVM?
• SystemVerilog package
• TCL “apps” to auto-create Go2UVM files
• Package on top of Standard UVM framework
• Two primary goals:

– Simplify UVM for first-time users
– Extend standard UVM to add specific features  

• Simplifying UVM adoption:
– Go2UVM base Test from uvm_test class
– Hides phasing, objection, name-parent hook-up etc.

• Extended features
– Fault injection
– Log predictor
– Checker library
– Built-in UVCs for Registers, Low power verification etc.

© Accellera Systems Initiative 6

Focus of this 
paper



Go2UVM in a nutshell

© Accellera Systems Initiative 7



Directed Error injection
• Typical UVCs contain several error injection 

capabilities
– Some are part of transaction
– Some are part of components/drivers

• Consider LIN protocol
• Typical errors:

– Delimiter err
– Checksum err
– PID start/stop err
– Parity err
– Oversize err etc.

• UVC has knobs to control these error generation

© Accellera Systems Initiative 8



LIN Error control in UVM framework
• UVM base class – 2 main class trees

– Components (Hierarchical)
– Transaction/SEQ (Not hier aware)

• Often users need to write Virtual sequences 
to develop test scenarios

• Tweaks knobs in Driver/Agent from 
uvm_sequence::body()

• Out-of-the-box UVM does not support this
– As sequences are not hierarchy aware
– uvm_root class has API needed for this

© Accellera Systems Initiative 9



Go2UVM Component access feature
• Base class: go2uvm_comp_access
• An OOP layer around uvm_component
• Has a static function get_comp()
• Uses uvm_root::find API

– Makes it easy to use for end-users
– Built-in error checking for wrong hierarchy 

specification 
– Hides dynamic casting ($cast) from end-user

© Accellera Systems Initiative 10

Go2UVM component access layer



Using Go2UVM comp_access

© Accellera Systems Initiative 11

LIN driver UVM SEQ

Hier path 
to driver

Go2UVM

Error gen 
knobs inside 

driver



Directed Error injection - summary
• Error injection is important for safety verification in UVM
• Standard UVM sequences are “hierarchy-unaware”
• Error injection scenarios coded as sequences in UVM 
• Typical UVC has error injection control knobs inside agent/driver
• Having access to those knobs from a sequence is very useful
• Go2UVM makes it easier to access any component from anywhere
• Built-in debug messages help with wrong usage

© Accellera Systems Initiative 12



Need for Fault injection in safety verification
• Consider a typical car’s Power-train 

Control Module (PCM)
– Takes inputs from various sensors
– Controls several vital parts of a car

• Need to verify many fault scenarios
• Fault injection is essential to mimic real 

life scenarios

© Accellera Systems Initiative 13

Ford™ PCM module



Automotive SoC example
• Has multiple interfaces to control various part of the automotive

© Accellera Systems Initiative 14



Automotive SoC Verif env with UVM
• Traditional UVM based flow with multiple UVCs, a verification 

environment can be built as shown in Figure  below.

© Accellera Systems Initiative 15

Verification Environment with multiple UVCs



Virtual sequences for Automotive SoC

• Multiple UVCs
• Virtual SEQ 

– Control individual interfaces
– Error generation
– Orchestrates various IP 

interactions
• Well-understood, well-

deployed use model
• Adding random faults

– Tricky!

© Accellera Systems Initiative 16

Virtual Sequence and Multiple Sub-sequence



Fault injection in UVM simulation
• Regular traffic (via UVM virtual 

SEQ)
• Faults == random values on select 

signals
• Typically spread across the design

– Hard to decide upfront
– Difficult to code as “SV Interface”

• Occasional occurrence
– Not very frequent

© Accellera Systems Initiative 17



Signal Access API in Go2UVM

21-02-2022Srini - VerifWorks, Krishna - Qualcomm 18

class go2uvm_sig_access extends uvm_object;
`uvm_object_utils(go2uvm_sig_access)

extern static function void g2u_force (string sig_name,
logic [`VW_G2U_SIG_MAX_W-1:0] sig_val,
bit verbose = 1,
bit is_vhdl_sig = 0);

extern static function void g2u_deposit (string sig_name,
logic [`VW_G2U_SIG_MAX_W-1:0] sig_val,
bit verbose = 1,
bit is_vhdl_sig = 0);

extern static function void g2u_release(string sig_name,
bit verbose = 1,
bit is_vhdl_sig = 0);

endclass : go2uvm_sig_access



Signal access layer Go2UVM
• Go2UVM has a signal 

access layer
• Uses simulator’s 

force/release API
• Works across HDL 

boundary
• Handy technique for 

sideband drives:
– PLL output
– GLS reset etc.

© Accellera Systems Initiative 19

class go2uvm_sig_access extends uvm_object;
`uvm_object_utils(go2uvm_sig_access)

extern static function void g2u_force (string sig_name,
logic [`VW_G2U_SIG_MAX_W-1:0] sig_val,
bit verbose = 1,
bit is_vhdl_sig = 0);

extern static function void g2u_deposit (
string sig_name,
logic [`VW_G2U_SIG_MAX_W-1:0] sig_val,
bit verbose = 1,
bit is_vhdl_sig = 0);

extern static function void g2u_release(string sig_name,
bit verbose = 1,
bit is_vhdl_sig = 0);

endclass : go2uvm_sig_access



Fault injection with Go2UVM
• Go2UVM’s signal access layer is extended for fault injection
• A new app named “SaFety Verification” (SFV) is developed

© Accellera Systems Initiative 20



Using SFV in UVM test/sequence
• SFV  Go2UVM test via an app
• Can generate a SEQ as well – to be used in a virtual sequence

© Accellera Systems Initiative 21
Sample Go2UVM SFV Test



Log predictors in Go2UVM
• Fault injection leads to random failures

– Expected to be caught by assertions, UVM monitors/scoreboards
– Predicting such errors is key to ensure quality

• UVM has “reg_predcitor”
• Go2UVM adds a “log_predictor” 
• Motivated by Mock frameworks in SW

– Mockito, EasyMock etc.
– SVUnit’s uvm_report_mock

• Ability to “predict” error/warning/info in LOG file

© Accellera Systems Initiative 22



Go2UVM log predictor
• Go2UVM adds a base class: go2uvm_log_predictor
• Has static method:

– go2uvm_log_predict (uvm_severity SEV, string ID, string msg, time start_t = 0, 
time end_t =0);

• User can specify Severity, ID etc. and let the final test status account for 
these

• Can also control start & end time of the prediction

© Accellera Systems Initiative 23



CONCLUSION

• Safety verification is challenging task
• Ivolves multitude of technologies & tools such as simulation, formal, 

mutation based etc.
• UVM is the most adopted verification methodology for simulations. 
• However, for safety verification few additional features are needed on 

top of standard UVM
– Go2UVM comp_access Directed error injeciton
– Go2UVM SFV  Safety Verification layer/app
– Go2UVM Log predictor  Ability to build self-checking tests

© Accellera Systems Initiative 24


	Adopting UVM for safety Verification requirements
	Agenda
	Safety critical Application
	Verifying  safety critical designs
	UVM – fastest growing methodology
	What is Go2UVM?
	Go2UVM in a nutshell
	Directed Error injection
	LIN Error control in UVM framework
	Go2UVM Component access feature
	Using Go2UVM comp_access 
	Directed Error injection - summary
	Need for Fault injection in safety verification
	Automotive SoC example
	Automotive SoC Verif env with UVM
	Virtual sequences for Automotive SoC
	Fault injection in UVM simulation
	Signal Access API in Go2UVM
	Signal access layer Go2UVM
	Fault injection with Go2UVM
	Using SFV in UVM test/sequence
	Log predictors in Go2UVM
	Go2UVM log predictor
	Conclusion

