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Abstract—Safety in electronic circuits is taking a central stage with growing automotive and IoT systems. In the 

world of hardware designs using ASIC and/or FPGA, the Accellera UVM [1] has become the de-facto approach to 

verify the functionality of these designs at the pre-silicon stage. The complexity of UVM at times is overwhelming for 

smaller design teams especially in IoT domain (as the teams are very small usually). In this paper, we describe some 

of the easy-to-use layers we have developed on top of standard UVM such as random fault injection, easy error 

scenario creation, ability to predict log file contents based on injected errors etc.  
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I. INTRODUCTION 

A. SAFETY CRITICAL APPLICATIONS 

 

Automotive is a safety critical application. The complexity of electronics systems for the automotive industry 

is increasing. These systems are characterized by having close interaction between software (SW), hardware 

(HW) and analog components. Automotive systems are a heterogeneous system, since it contains digital, analog 

low-voltage and high-voltage electronics, combined with software running on an embedded processor. 

Furthermore, automotive systems are safety critical systems, and as a consequence, verification of all related 

requirements is mandatory. Therefore, to design these safety-critical systems, the engineers more often require a 

dynamic and versatile functional verification environment of the hardware architecture. Few safety applications 

include  

 Air bags 

 Anti-lock Brake System 

 Electronic stability control 

 Adaptive cruise control 

 Emergency braking assist 

 Blind-spot monitoring 

 Lane-departure warning 

 Rear cross-traffic detection 

 Pedestrian detection 

 Traffic sign recognition 
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B. VERIFYING SAFETY CRITICAL DESIGNS 

Seamless reuse of functional and mixed-signal verification environments is key to accelerate the time to develop 

safety verification. Hence using standard verification approaches like UVM is the preferred approach even for 

simple block level verification by designers of these systems. Below are key requirements for easy verification of 

safety critical designs from a functional verification point of view.  

 Fault injection at random points 

 Reuse of the existing functional verification environment (with support for SystemVerilog, Universal 

Verification Methodology (UVM), and e).  

 Simulation of the unaltered design under test (DUT).  

 Support for multiple fault types, including single event upset (SEU), stuck-at-0/stuck-at-1, and single 

event. 

 Quick creation of corner cases in simulation 

 Log prediction to create self-checking error tests 

Safety verification is a complex process with many different requirements. Usually, it requires a multitude of 

technologies and tools to thoroughly verify safety critical designs. We share some of our experience in achieving 

a partial set of such requirements using a Go2UVM layer on top of standard UVM. We would like to 

acknowledge that complete safety verification cannot be achieved using these techniques alone. 

C. UNIVERSAL VERIFICATION METHODOLOGY (UVM) 

Universal Verification Methodology (UVM), as defined by the IEEE 1800.2, is getting adopted widely across 

ASIC design teams. UVM is also getting its flavor in SystemC [2] so that the Electronic System Level (ESL) 

community can move to UVM-based approach for verifying models. Given the standard way of information flow, 

well-defined test sequencing (in terms of phasing for instance), UVM is attractive to almost all electronics design 

teams. 

Given the technical commonalities across many design verification tasks, one could imagine that some 

portions of UVM are applicable to these tasks, while some advanced UVM features may not be so appealing to 

them. In this paper, we present our experience in adopting UVM for safety verification and being able to deploy 

UVM via a convenience layer around the standard UVM named Go2UVM. Go2UVM is not a script to generate a 

set of files that users can fill-in, rather it is an OOP layer around standard UVM hiding all the glory details of 

UVM and providing the first-time UVM users an easy to use procedural interface to UVM. Go2UVM is open-

sourced, sits on top of standard UVM and hence is 100% in-line with UVM philosophy of test creation. There are 

also several “apps” being developed to speed up the process of creating templates for Go2UVM to make the 

industry move to UVM the fastest way! 

 

II. STANDARD UVM USE MODEL 

A. Brief introduction to UVM  

UVM is a methodology for the functional verification of digital hardware, primarily using simulation. The 

hardware or system to be verified would typically be described using Verilog, SystemVerilog, VHDL or 

SystemC at any appropriate abstraction level. This could be behavioral, register transfer level, or gate level. 

UVM is explicitly simulation-oriented, but UVM can also be used alongside assertion-based verification, 

hardware acceleration or emulation. 
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UVM test benches are more than traditional HDL test benches, which might wiggle a few pins on the design-

under-test (DUT) and rely on the designer to inspect a waveform diagram to verify correct operation. UVM test 

benches are complete verification environments composed of reusable verification components, and used as part 

of a complete methodology of constrained random, coverage-driven, verification. 

B. Challenges with adopting UVM for smaller teams  

However, the full-fledged UVM can be perceived as an overkill for some specific tasks and in certain classes 

of designs. There are also smaller teams with no formal training on advanced, software centric approach being 

promoted by UVM. The other group of electronic designs includes FPGA designs with the majority of them using 

simpler, linear and procedural test bench styles. Also, FPGA teams often look for template creation tools as add-

ons to their EDA tools to speed up their test bench creation process. There are also cases in ASIC design flow, 

wherein the test inputs come as a stream of structured data (such as DFT patterns) wherein teams are finding it 

difficult to leverage on well-defined UVM approach. Last but not the least, various university students across the 

globe are looking for a quick start into industry standard UVM and they do not have access to all the 

sophisticated training and hand-holding needed to get started. Given that the future DV engineers emerge from 

these universities, it is imperative for the industry to get the students started UVM as early as possible 

C. Adopting UVM for safety applications    

As noted earlier, standard UVM makes first-timers feel bit out-of-place. And with safety applications on the 

rise, many teams need additional layers on top of standard UVM to make some tasks easier. There are three key 

areas that we have adopted UVM to ease safety verification challenges.  

 Random fault injection in a UVM simulation 

 Flexible control of UVCs/VIPs to inject pre-defined errors 

 Log predictors to control UVM error messaging mechanism during such error simulations 

II. MAKING UVM EASY-TO-USE  

 

A. Introduction to Go2UVM      

 

In simple words, Go2UVM is an open-source, SystemVerilog package around Accellera UVM base class 

library. It provides a test layer around standard UVM to hide the common complexities such as: 

 Phasing (reset_phase, main_phase etc.) 

 Objection mechanism (A must in UVM to get even a simple stimulus through to the DUT) 

 Multiple layers of components, that at times, smaller designs may not require 

 Hierarchical component hook-ups via UVM’s preferred uvm_component :: new (string name, 

uvm_component parent) pattern 

 

An overview of various layers and apps associated with Go2UVM is shown below in Figure – 1. 
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Figure-1 Various layers and apps in Go2UVM 

B. Test layer 

As mentioned earlier, Go2UVM is a SystemVerilog package around standard UVM. It extends the uvm_test 

base class as shown in UML diagram below: 

 

 
    

Figure-2 Go2UVM UML diagram  

 

 

Following the general idea of standard object-oriented paradigm Go2UVM base test contains common code that 

needs to be repeated by every test/user. It is declared as virtual class indicating that it is an abstract class and 

shall be extended by the user with a concrete class. In UVM even to add a simple trace (a series of input signal 

wiggling is generally called a “trace”), the following needs to be done: 

 Use uvm_test (and typically more UVM components, for now, focus on test) 

 Hierarchically connect to the UVM framework via parent argument of the constructor 

 Create a task that performs a reset of the given DUT (consider that all hardware designs typically 

require reset and the reset is a time-consuming task).  

 Create a task that performs the intended DUT signal wiggling (more sophisticated transaction based 

approach is next step in UVM) 

 Invoke the above 2 tasks to perform reset and the main functionality inside standard UVM phasing (So 

that UVM BCL can invoke these tasks at appropriate time in simulation) 

 While performing any time-consuming action within UVM framework, make sure to raise and drop 

objections. 

The above steps are done using a base class named go2uvm_base_test. The prototypes of relevant methods are 

shown in the code snippet below: 
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Figure-3 Go2UVM base test code snippet 

 

 

 

From an end user perspective (read it as UVM unaware engineer), this class adds 2 methods: reset() and main() 

– both of them are user extendable methods. The go2uvm_base_test invokes these methods inside standard 

UVM phasing with proper objection raising and dropping under-the-hood.  

 

This is one of the very common mistakes a first-time UVM user gets and Go2UVM takes care of this. The other 

common mistake is to declare a task and not calling it. While UVM handles this cleverly with standard phrasing, 

the code to declare any phase is little more than what a first-timer would like it to be. It is augmented by the fact 

that all UVM phases take uvm_phase phase as argument and majority of them don’t use this argument – this is 

confusing to many users indeed. In Go2UVM we simplify this by hiding the phases from user code and instead 

requiring them to fill-in two simple tasks reset & main and the base class invokes them inside the correct phase 

as shown below: 

 

 
Figure-4 Go2UVM test main phase 

 

What if a user forgets to fill-in task main() in derived class? Well, this is why Go2UVM package declares this 

method as pure virtual. The standard definition: 

 
A pure virtual function or pure virtual method is a virtual function that is required to be 
implemented by a concrete, derived class 

 

Hence with Go2UVM if one forgets to implement task main() in derived class, a compiler would flag this almost 

instantaneously: 

 

../unit_test_src/vw_ahb_lite_cip_go2uvm_test.svi : (22, 27): Cannot declare class  

vw_ahb_lite_cip_test as non abstract class due to not implemented pure virtual methods:main() 

Figure-5 Go2UVM test Compilation Error 

 

It takes care of the standard UVM requirement of component hierarchy hook-up via name & parent under the 

hood so that first-time users do not need to bother about it. More details with the full source code can be found 

at Go2UVM on GitHub.  

 

The idea is to provide the fastest way for an engineer to get started with UVM. Since it is 100% IEEE 1800 

(SystemVerilog) and IEEE 1800.2 (UVM) compatible, users can easily start with Go2UVM and move to a full-

fledged UVM environment, as they get mature with the technology. Go2UVM is well tested on all major 

simulators from popular EDA vendors. 
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C. Arbitrary Signal Access Layer 

UVM defines a structured approach to signal accesses and recommends to restrict them to driver and monitor 

layer typically. While this is very useful for reusable pieces of verification such as the agent, environment etc. at 

test layer occasionally needs to access a set of DUT signals at-ease. This could be to test certain corner cases 

(such as setting a large FIFO with almost-empty level quickly), the complex interaction of signals etc. This is 

also a preferred approach for RTL designers trying to quickly augment verification and/or trying to verify their 

designs for a set of “known-worry states” before handing their RTL to full-fledged Design-Verification (DV) 

team. Strictly speaking, UVM does not prevent this explicitly via a rule/guideline. Such tests are usually not 

intended for reuse and are usually done to avoid long simulation cycles etc.  

 

While the above requirements are quite common across design teams, SystemVerilog language (IEEE 1800-

2015) has certain restrictions on hierarchical accesses, especially when done from classes enclosed inside a 

package. Hence if a UVM sequence (made available as part of a SystemVerilog package) wants to access an 

arbitrary set of signals inside the DUT, it is prohibited as per the language semantics. There are also scenarios 

wherein the design is in mixed HDLs such as Verilog, SystemVerilog & VHDL.  

 

A robust workaround for this problem is to use VPI/VHPI and special APIs provided by EDA vendors. Some of 

the common APIs for this purpose are provided below in Table. 

 

 

 

Vendor API name(s) 

Aldec $signal_agent, $force 

Cadence $nc_force, $nc_release 

Mentor $signal_force, $signa_spy 

Synopsys $hdl_xmr 

  

Table-1 Vendor and API Names 

 

Detailed usage of each API is beyond the scope of this paper and readers are encouraged to refer to their tool 

manuals for the same. In general, these APIs are harder (than what an average engineer would look for) to use. 

Also, many a times users prefer to keep their code vendor neutral as much as possible. 

 

Go2UVM library has a set of handy APIs and a base class for this purpose. It provides a base class named 

go2uvm_sig_access that has necessary APIs to wrap the vendor specific APIs listed in Table above. These APIs 

inside go2uvm_sig_access are declared static and hence can be accessed without having to create a handle and 

an object. This class contains support for various vendor APIs and manages to switch between tools via built-in 

text macros (such as `ifdef VCS, `ifdef INCA etc.). This keeps user code portable across tools, yet provides the 

necessary APIs to allow arbitrary signal access from anywhere in the testbench code (UVM test, UVM sequence 

etc.).  

To make things even more convenient for a typical RTL engineer, a convenience API is provided as shown in 

Table-2 below.  

API Description Example 

g2u_force Forces given value on a target 

signal (Overrides any other 

existing driver for that signal) 

g2u_force 

("/sprot_go2uvm/sprot_0/byte_val", 

 22); 

 

g2u_release Releases an existing force on a 

target signal 

g2u_release 

("/sprot_go2uvm/sprot_0/byte_val"); 
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g2u_deposit Deposits given value on a target 

signal (Without overriding 

any existing drivers) 

g2u_deposit 

("/sprot_go2uvm/sprot_0/byte_val", 

 22); 

 

 Table-2 Go2UVM APIs  

 

III.  DEPLOYING GO2UVM IN SAFETY VERIFICATION 

Safety verification is a complex process with many different requirements. Usually, it requires a multitude of 

technologies and tools to thoroughly verify safety critical designs. We share some of our experience in achieving 

a partial set of such requirements using a Go2UVM layer on top of standard UVM. We would like to 

acknowledge that complete safety verification cannot be achieved using these techniques alone. 

 

A. Directed Error injection 

Most of the safety critical designs are error tolerant in the sense that they should be able to detect a set of well-

defined error scenarios and be able to recover from such error scenarios as soon as the normal scenarios 

reappear. This is critical for the verification process to ensure this sequence of normal  Error  Normal is 

tested (and other similar sequences). In a typical IoT system, there are several peripherals all connected via a 

system bus and interact. Individual peripherals support various error scenarios and have individual recovery 

mechanisms built-in to the design. From a verification perspective (using UVM), each of these peripherals has a 

UVC and the individual UVCs support error injection through configurations. In a well-architected UVC, such 

error injection shall be supported per transaction (or frame) than just being a one-time configuration. However, 

reaching out to each of these UVC agent/drivers at times becomes a challenge from a typical UVM sequence. In 

UVM, components are hierarchically connected with an unambiguous hierarchical name to each instance of 

every component (agent/sequencer/driver etc.). However, UVM sequences are not hierarchy aware. Hence 

injecting errors from a virtual sequence on various peripherals becomes a challenge.  

 

We used UVM’s hierarchy APIs to solve this problem. Go2UVM provides a convenience layer to access any 

component instance through its hierarchical path. It is a parameterized class with the parameter indicating the 

target component type. Basic usage and the class API is shown in Figure-6 below. 

 

 

 
Figure-6 Go2UVM component access layer 

 

Using the go2uvm_comp_access #(comp)::get_comp API, given the complete hierarchical path to a component, 

we can get a handle to that component during the simulation. Once a handle to the target component is found, its 

configurations can be changed to inject errors from a UVM sequence. Figure-7 below shows a typical use case 

of this API for a LIN peripheral UVC error generation scenario.  
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Figure-7 Go2UVM component access API use case 

 

B. Random fault injection 

 

One of the common requirements in safety verification is an injection of random faults across critical parts of 

the design and observe the behavior under such scenarios. The word “fault” is loosely used in this context and 

does not refer to the classical fault-model based testability aspects (though there are some similarities between 

them). In a typical UVM framework, this can be interpreted as “random value injection” on “arbitrary signals”. 

In a more stringent random fault injection for safety verification, mutation based techniques are used along with 

formal verification techniques to choose relevant parts to inject the fault ([4], [5]).  

 

Consider a sample automotive SoC as shown in Figure-8 below.  

 

 
Figure-8 Sample Automotive SOC 

 

At a pure UVM based simulation level, we could narrow it down to injecting random values for a set of safety 

critical signals inside the design. With traditional UVM based flow with multiple UVCs, a verification 

environment can be built as shown in Figure-9 below.  
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Figure-9 Verification Environment with multiple UVCs 

A typical random fault spreads across interfaces and deep inside the design. To stick to standard UVM and still 

be able to inject these errors one has to create a virtual sequence and multiple sub-sequences and spawn them on 

corresponding sequencers as shown in Figure-10 below. 

 

 

 

 

 

Figure-10 Virtual Sequence and Multiple Sub-sequences  

 

 

The above is just an indicative setup and can get very complex should the number of fault injected signals were 

to rise. Also given that such faults are random in nature, one has to create a flexible framework to be able to 

somehow randomly generate such virtual sequences and hope that the corresponding driver indeed has access to 
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those signals of interest. A typical UVM setup accesses only primary input, outputs signals and not the internal 

signals/state elements. 

 

 

In our setup, this is achieved by building on the basic Go2UVM’s signal access layer (see section III-B above). 

A plain text file with fault information is created. This file is referred to as SFV (SaFety Verification) file. The 

user is expected to provide a set of signals that are of interest to random fault injection.  

 

A sample SFV file is shown below in Figure-11. 

 

 

 
    Figure-11 Sample SFV File 

 

A Python app developed on top of Go2UVM converts SFV file to a typical Go2UVM test as shown in Figure-

12 below. 

 

 

 
Figure-12 Sample Go2UVM SFV Test 

 

As can be seen in Figure-12 above, a separate task is generated per safety critical signal listed in the input SFV 

file. The timescale can also be modified as per design requirement in the SFV file. 

 

Go2UVM test’s entry point is a task named main() as explained in Section III-A. This SFV app injects faults on 

each identified signal in parallel with main() task spawning all these tasks as shown in Figure-13 below. 
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Figure-13 Go2UVM main() task for SFV app 

 

 

 

The key advantage of this Go2UVM layer on top of standard UVM is the ease-of-use and quick fault injection 

for a given set of arbitrary signals. In a traditional, strict UVM flow, this would require multiple interfaces, 

drivers, sequencers, sequences and virtual sequences. Instead with Go2UVM, this becomes a single component 

that injects faults at arbitrary design locations. 

 

 

C. Using log predictors  

 

UVM provides a way to consistently log/report messages during the simulation. Each message can be classified 

with a severity and is associated with an ID. UVM also provides a set of APIs to control and configure messages 

based on severity, ID etc. In a typical UVM test run, at the end of the simulation, a summary of these messages 

is printed. It is grouped under two headings viz: 

 

1. Severity based summary 

2. ID based summary 

 

The severity based summary is intended to serve as an indication of a successful test run – i.e. a test is 

considered a PASS if there are no ERRORs and FATALs, and is considered a FAILURE otherwise. In this 

context, we refer to UVM_ERROR and UVM_FATAL severities specifically.  

 

In a safety critical verification flow, the above interpretation needs an extension. It is so because, by definition, 

in a safety verification error injection is included and is a MUST (unlike in many other classes of designs 

wherein error injection is considered as negative testing and is not as critical as the positive tests). Also in some 

of the safety verification flows, requirement tracing is a must and some of the requirements are on the error 

injection, recovery etc. So, in a safety verification with UVM the following interpretation is adopted: 

 

- A test is considered PASS: 

o If there are NO ERRORs (and FATALs) <or> 

o If the errors are as expected (as in error injection tests) 

- A test is considered FAIL: 

o If there are ERRORs (and FATALs) <or> 

o If there are NO ERRORs, but it is an error injection test 
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Go2UVM provides a special base class named go2uvm_log_predcitor. It provides relevant APIs for users to be 

able to specify what errors are to be predicted/expected. Some of the features of this API are listed in Table-3 

below: 

 

 

 

API Description Features 

g2u_log_predict  Predicts a message from UVM 

reporting with given ID, 

Message and SEVERITY 

Wildcard support 

Time window selection 

 

 Table-3 go2uvm_log_predict API Features 

 

Consider AHB protocol requirement [6] on htrans signal as shown in Figure-14 below: 

 

 

 
Figure-14 AHB htrans requirement   

 

 

In an error injection scenario, we might inject an error as shown in Figure-15 below: 

 

 
 

Figure-15 AHB htrans invalid transition (error injection test) 

 

 

At clock tick 6, we would expect the assertion to fire. If we run the trace as-is, it reports a UVM_ERROR like 

shown below: 

 

 
Figure-16 Sample UVM ERROR due to FAIL trace (error injection test) 

 

 

Without the go2uvm_log_predictor the above error injection test shall be classified as FAILURE. However, that 

would be a false alarm as the test indeed injected this specific error. Hence the absence of such UVM_ERROR 

in this simulation run should be considered a FAILURE.  
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 Figure-17 Sample Pass Trace 

      

    Figure-18 Sample Fail Trace 

 

IV. CONCLUSION    

Safety verification is a challenging task. It involves a multitude of technologies and tools such as simulation, 

formal, mutation based etc. UVM is the most adopted verification methodology for simulations. However, for 

safety verification, few additional features are needed on top of standard UVM. In this paper, we shared our 

experience of using Go2UVM for safety verification challenges in a simulation context.  
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