
Addressing the verification challenge of SERDES-based
FPGAs: The performance/accuracy/efficiency trade-off

Chris Schalick
CTO GateRocket, Inc.

19 Crosby Drive
Suite 100

781-908-0082
cschalick@gaterocket.com

ABSTRACT
The multi-GHz line rates enabled by SERDES introduce new
design challenges in FPGAs, notably signal integrity issues which
have given rise to a number of design tools and methodologies.
But equally as demanding, if not more so, are the functional
verification challenges associated with this complex technology.

FPGA designers find that logic simulation of SERDES-based
designs is bogged down by long serial test sequences that can
extend simulation times by 1-2 orders of magnitude. In addition,
SERDES technology employs complex, hierarchical protocols,
which makes it harder to thoroughly exercise internal logic. And,
because SERDES are often incorporated via unfamiliar third-
party IP blocks, debugging the resulting system is problematic.

This paper will look at various functional verification strategies
that can be used to address the SERDES simulation bottleneck.
Experiences from multiple commercial FPGA based system
designs will be considered to examine the trade-offs of different
verification approaches for SERDES in FPGA designs. Each
method will be looked at for its impact on verification
performance, accuracy, and engineering productivity.

Among the approaches considered are:

• Removing the SERDES from the simulations and verifying
the rest of the chip using parallel communication

• Placing a second SERDES in the test bench and
connecting them back-to-back

• Verifying the SERDES portion of the design on the board
in the lab in-system

• Executing the entire device in native FPGA hardware
using an emulation-like approach

• Writing custom behavioral models of SERDES

Some familiarity with logic simulators, FPGA based system
design, design verification and SERDES serial I/O technology are
assumed in the discussion.

Categories and Subject Descriptors
Advanced Design and Verification of ASICs and FPGAs.

General Terms
This paper applies to the following designated general terms:
Performance, Design, and Verification.

Keywords
FPGA, SERDES, simulation, verification.

Some frequently used terms are defined here:

core-side: the signal connections between a SERDES

element and logic inside the FPGA design
that instantiates it

IP: Intellectual Property in the form of pre-
developed FPGA modules. These can be
hard-diffused in FPGA silicon or delivered
as pre-verified programmable elements.

target system: the physical PCB design that is built to
hold the implemented FPGA being
designed

1. INTRODUCTION
As FPGAs increase in performance and capacity, they are
being more widely used for connectivity in a broad range of
media, signal processing and communications applications. At
the same time, developers have turned to the use of higher
speed serial connections for on-chip and chip-to-chip
communications, replacing parallel buses to achieve
significantly higher data rates. SERDES (Serializer-
Deserializer) technology is the key enabler for this type of
interface as protocols based on a SERDES approach allow
higher data rates with fewer device pins.

This paper will discuss the challenges involved in SERDES-
based FPGA design, as well as the alternatives available to
address the verification bottleneck that these large complex
devices introduce.

2. SERDES MODELS
Modern FPGA devices use configurable, high performance
SERDES elements to provide access to SERDES technology
for a broad range of applications. These are commonly
delivered to end users as hard IP blocks and used in
applications ranging from simple pin-reducing chip to chip
data transfer protocols to standards-based high performance
busses that connect to modern computer motherboards.
Commonly available FPGA SERDES technology has
advanced to bit rates beyond 10 gbit/s.

2.1 Xilinx GTP_DUAL
The Xilinx Virtex5 GTP_DUAL cell is representative of modern
SERDES and has the following characteristics in its simulation
model:

8 serial I/O signals that operate from 100 mb/s to 3.75 gb/s
342 core side signals, some of which are optionally active
184 configurable parameters
9 input clocks and 5 output clocks

Without any further information, designing or verifying a design
with those characteristics suggests a substantial endeavor.

The transceiver documentation1 for this SERDES lists 17
communication standards supported by the SERDES module that
make use of 15 different reference clock frequencies. Each of
these communications standards uses a unique selection of the
configured parameters. Home grown protocols can make use of
any FPGA SERDES settings and clock frequencies, whether
overlapping standards based protocols or not.

Of the configurable parameters, 68 have two possible values, 70
are numerical with a total of 730 variable bits and 8 x are non-
numerical, multi-value. The span of available configurations by
parameter settings alone for this simulation model is greater than
2 ^ 730, an astonishingly large number. The SERDES transceiver
can clearly operate in a wide variety of modes and support an
additionally wide variety of user designs.

To accurately model the behavior of this SERDES design
element, its simulation model is understandably very complex.
Though this cannot be determined by inspection for the cited
SERDES, the apparent load on a logic simulator of designs that
use the simulation model for this SERDES is an indicator of its
complexity. As will be shown in section 4.2, FPGA SERDES
models can dominate simulation time for designs that use them.

Other FPGA vendors and device families have similarly complex
applications interfaces and associated SERDES simulation
models. It can be observed that the flexibility required to address
a broadly selectable and programmable function makes the
simulation models complex.

Standard verification practice to test an interface of any design is
to use transactors or models that couple to pins of the interface
and deliver and consume the data protocol of the interfaces.
These transactors typically abstract cycle accurate, pin level
function to less granular, more easily understood and manipulated
functions. Developing complete transactors to model FPGA
SERDES system connections requires the same level of flexibility
and functionality that the SERDES themselves deliver to fully test
designs that use them.

Modeling external interfaces for FPGA SERDES has tradeoffs
between development time, simulation time and accuracy. These
tradeoffs will be compared against example designs in section 5.

The simplest transactor implementation uses another SERDES
simulation model in the transactor. There is little development
time required for this, but the effective load on the logic simulator
of the SERDES simulation model is doubled. Alternatively, a
“quick and dirty” behavioral model can be written with fast
execution times at the expense of functional completeness and
accuracy. An option between the two extremes is to model only

the functions in use by the FPGA design and leave other
SERDES functions untested.

3. VERIFYING SYSTEM FUNCTION
Before discussing techniques for verifying SERDES based
designs, some sources of verification escapes and challenges of
identifying them will be presented. In other words, why is
functional verification of FPGA SERDES necessary?

Verification of an FPGA based system is similar in scope to
ASIC based systems of three years past. Readily available
FPGA devices are capable of implementing logic designs with
500k flip flops, multiple megabytes of on board RAM, hard
and soft microprocessor cores and a host of purpose built
communications, data processing and bus interface IP.
Verifying a system incorporating these devices requires
discipline to validate assumptions of interface behavior, sub-
system interaction and logical and implementation correctness.
Use of SERDES technology in FPGA designs contributes to
complexity in each of these areas.

3.1 Interface Behavior
One obvious source of functional escapes is in the immediate
connections to the SERDES themselves, either on the serial or
parallel sides. The serial side data is typically an encoded form
of user data, encapsulated by a stack of data manipulations
between the user’s core-side logic and electronics outside the
device being designed.

The stack of conversions on user data may be shallow or deep.
An example of a simple, shallow stack is shown in the design
in Figure 1. It is a simple conversion of 8 bit parallel data to
10 bit serial data using built in 8b10b encoding in the FPGA
SERDES device. Functional patterns to validate the user path
of this example are straightforward; an incrementing pattern
for 256 core-side cycles will verify all possible data words can
traverse the interface.

Though architecturally this is a simple conversion, in practice
there are hundreds of signals to connect and hundreds more
parameters to configure to make use of such a simple
conversion with the native FPGA SERDES devices. Mistakes
made by either misconnection, mis-configuration or
misunderstanding of device specifications can appear even
with this simple example. Thus even a simple use of SERDES
can result in functional escapes without proper verification.

More complex examples include packet based bus protocols
like Xaui, PCI Express or RapidIO. These interfaces are
commonly crafted using a combination of hardened SERDES
IP and soft (programmable logic only) IP inside the FPGA
devices. The combined FPGA IP is configured to meet system
requirements. The external serial interfaces in these examples
form connections to standard busses.

Use of pre-validated IP to implement the bus interface helps
prevent basic functional errors on the bus, but shifts the
interface verification upstream to the parallel core-side data
interfaces of the soft IP. The control and data operations on
these interfaces differ from vendor to vendor, leaving room for
misinterpretation of specifications and creating a vendor
specific design and verification task for a standard bus
interface.

Because the core-side interfaces are vendor specific and non-
standard, the logic on the core-side of the design that interfaces to
it can only be exercised by generating vendor specific unique
activity on the standard bus that results in desired events. This
testing then is not portable from IP vendor to IP vendor.

Long simulation sequences are sometimes required to activate
interface signals on the core side of the IP, extending required
simulation time to validate user logic that interconnects. For the
Xaui design in Figure 3, of the 59 seconds of simulation time 55
seconds are used to initialize the Xaui link and 4 seconds are used
to test data transfer on the link. This initialization sequence must
be repeated for any other tests.

Verifying interface behavior is complicated by the simulation
time introduced by FPGA SERDES simulation models and the
uniqueness of protocol IP core-side interfaces.

3.2 Sub-System Interaction
Another area of functional escapes common in SERDES-based
systems is interaction between sub-systems on opposite ends of a
serial link. System designs employing multiple FPGAs that use
SERDES for chip to chip communication must operate to
specifications both independently and in tandem to deliver
contemplated system function. Design assumptions for SERDES
components contribute to the sub-system verification effort.

For example, the round trip time of data from one FPGA device
to another and back across a SERDES based link involves 2 x
serialization and 2 x de-serialization times. Given that these
times can vary based on the temperature and voltage of the
device, systems built around them must be tolerant to these
variances. Models must be selectively varied to best or worst
case conditions to verify designs will behave correctly under
those conditions.

For example, consider the circuit below in Figure 1 which issues a
request each cycle to a remote device attached via serial link.
Each request when issued is stored in a FIFO until the remote
device acknowledges receipt. Variability in serialization and de-
serialization times will cause changes in the consumed depth of
this FIFO. Verifying the maximum depth occurs before FIFO
overflow requires accurate modeling of FPGA SERDES latencies.

Figure 1. Diagram of Design Susceptible to Latency
Modeling Inaccuracies

As noted previously, accurate simulation models come at the cost
of added simulation time. Using inaccurate models increases
simulation speed but introduces opportunity for escapes like the

FIFO overflow outlined. Such escapes cannot then be detected
until designs reach the lab or customer site.

3.3 Implementation and Tool Flow
Correctness
It is common knowledge that gate simulations show behavior
that RTL simulations can not. Test initialization sequences
and device simulation models frequently ignore or take for
granted initial state of the design in logic simulation. Further,
logic simulators can demonstrate behavior with valid HDL
code that, in gates, performs differently when fed with high
impedance or unknown inputs. These conditions can manifest
themselves as functional escapes from RTL simulation, only
discoverable in the lab. For these reasons, gate simulations are
done to “sanity check” initialization and gate behavior of
implemented FPGA designs. SERDES based FPGA designs
are no exception.

Working with gates in logic simulation is time consuming.
There are typically an order-of-magnitude more events for the
simulator to process with a gate level design, relative to the
original RTL design. Coupling gate level simulations with the
performance impact of SERDES simulation models can result
in excessively time-consuming work. Depending on modeling
accuracy as noted earlier, this may not even capture tolerance
issues.

As an example, the RTL portions of the example design shown
in Figure 1 operate 30 times slower in gate simulations than in
RTL.

The most common functional error escapes from
implementation and tool flow are initialization errors.
Undefined values presented to SERDES models may go
undetected in RTL where gate simulations may expose defects
clearly visible in a lab environment.

4. APROACHES TO VERIFICATION
Verifying FPGA SERDES-based designs puts the user in the
position of managing the impact of the flexibility and
complexity of the SERDES simulation models in the context of
common escapes discussed above. Simulation times balloon
and cause prolonged initialization sequences before any useful
testing can occur. The following sections detail approaches for
handling these prolonged sequences.

For the following verification approaches, consider the two
designs shown in Figure 2 and Figure 3 below. The design in
Figure 2 was described in section 3.1 and is a simple
bidirectional 8b10b serial link. The second design is a 10
gbit/s Xaui interface, which converts and transfers data
between a core-side XGMII parallel interface and the industry
standard serial Xaui interface. This example design was
generated by Xilinx Coregen using version 8.1 of the core.
The Xaui core documentation is available from Xilinx2.

The presented functional verification approaches will be
compared using the designs shown in Figure 2 and Figure 3.
All simulation runs presented were performed on the same
machine3.

Figure 2. Simple 8b10b FPGA Block Diagram

Figure 3. Xaui FPGA Block Diagram

4.1 Removing the SERDES Models
One common approach to simulating designs with FPGA
SERDES models is to eliminate the models altogether. The
models are replaced with shells that connect the parallel core-side
data directly from source to destination. This is typically done by
“scoping in” to the simulation model to drive the SERDES
model’s parallel outputs directly and monitor the SERDES
model’s parallel core-side inputs directly from transactors in the
testbench.

This has the advantage of avoiding time to develop complex serial
transactors at the expense of accuracy of dynamics and function
of the serial link. For example, any impact on the core side logic
of serialization or de-serialization time or errors occurring during
de-serialization will not be properly modeled.

For the simple 8b10b example in Figure 2, this is a
straightforward solution because the SERDES elements are used
solely to transport parallel data from end to end. There is no
control information passed through the serial link.

By contrast, using this approach with the Xaui design in Figure
3 requires substantial knowledge of the configuration and I/O
of the core-side of the SERDES. Simply looping tx data and
comma controls to the receiver is not sufficient as the Xaui
core logic expects transitions through synchronization states on
the control outputs of the GTP_DUAL SERDES elements.
This highlights the need for accurate SERDES models; core-
side circuitry can easily be built that will succeed with
simplified models which will fail when connected to the
accurate behavior of real physical devices.

It is noteworthy that creating a model that passes logic
simulations while scoping around the minimum required set of
core-side signals will not guarantee a functional device once
the FPGA is built and operating in the lab. Verifying interface
operation has two sides: 1) verifying the core-side logic and
interface and 2) verifying the SERDES operation itself. Using
the presented scoping method does nothing to verify the
configuration or implementation of the SERDES itself.

Using this approach with the design in Figure 2 results in very
fast simulations; testing completes in less than 1 second. The
same approach applied to the Xaui design in Figure 3 results in
18 second simulations. Modeling effort is trivial (minutes to
hours) for the 8b10b design and more substantial (days to
weeks) for the Xaui design.

4.2 Using a Second SERDES in the
Testbench
Another approach to functionally verifying FPGA SERDES
designs is to use an FPGA SERDES simulation model in the
testbench as a transactor. This has the benefit of rapid
development time at the expense of the time to run each
simulation since the load on the simulator from the SERDES
models doubles.

The basic approach is to instantiate the SERDES model in the
transactor exactly as it is instantiated in the design being tested.
All configuration options are preserved, and the serial transmit
outputs of the transactor are wired to the serial receive inputs
of the design being tested and vice versa in the testbench.

This approach is diagrammed in Figure 4 below.

Figure 4. Connection Diagram of Testbench SERDES

The data below in Table 1 shows the simulator profile of the
design in Figure 3 running in simulation. This testbench uses
behavioral transactors for serial side stimulus and captured
response.

Table 1. Simulation profile of Xaui core

This table shows the simulation time is dominated by the
SERDES in the Xaui design during the 59 second simulation.

Converting the testbench to use SERDES simulation models
instead of behavioral transactors in the testbench doubles the load
on the simulator from the SERDES models. In this case it nearly
doubles the entire simulation time for each simulation run; run
times with this approach increase from 59 to 101 seconds.

For the 8b10b design in Figure 2, the profile is more dramatic; the
simulator reports 100% of the time in the SERDES simulation
models. Using a second SERDES in the testbench does double
simulation time from 32 seconds to 64 seconds.

4.3 Verifying SERDES in the Lab
One solution to verifying FPGA SERDES designs is to skip
verification of the SERDES serial and core-side connections in
logic simulation and advance directly to the lab for validation of
those parts of the design.

One benefit of this approach is the volume of data that can be
transferred through the SERDES interfaces in a real-time system.
Simulation clock frequencies are commonly 5-7 orders of
magnitude slower than free-running physical FPGA devices.
Verifying with silicon in the lab thus provides many orders of
magnitude more test cycles than software based simulations.

This approach requires a hardware system to perform verification.
Waiting for the target system hardware to be available puts the
verification of the SERDES paths at the very end of verification,
guaranteeing it will be in the critical path to system verification.

Using an off the shelf FPGA evaluation board is an option for lab
verification. Unless the design of the evaluation board matches
the target system exactly the design being tested must be ported to
the evaluation board. The device pinout, synthesis and place and
route scripts must be tailored to the evaluation board. If the
device on the evaluation board is not the same size as the target
device, portions of the design may be required to be taken out to
perform this verification.

Regardless of the content of the FPGA design, a separate design
effort is necessary to tailor the design being verified to a fixed
physical platform. Any changes made to the design or
implementation can contribute or mask functional escapes leading
to false positive or negative results. The ability to debug the
FPGA design using this approach is further limited by lack of

visibility of the high frequency serial signals and the opaque
contents of the core-side logic.

4.4 Verifying With Native Hardware
A different solution to verifying FPGA SERDES designs is to
build an emulation platform that incorporates the FPGA design
and surrounding electronics to stimulate and respond to it. A
purpose built hardware platform with the FPGA being tested
can be connected to a logic simulator or software to deliver
patterns and check responses of the FPGA design.

This presents a challenge to either: 1) define and produce a
seamless interface to the simulator for existing RTL tests or 2)
to discard existing RTL testbenches in lieu of decoupling the
FPGA design from the tests and transactors.

Circuits operating within a software simulator maintain a strict
notion of synchronicity. Rigorously defined rules of HDL
language behavior and scheduling make software-only design
and simulation predictable and productive. Coupling a logic
simulator with a hardware platform and maintaining setup and
hold relationships between hardware and simulated HDL is a
non-trivial task.

Designing for verification of a decoupled design is also a
complex task. Typical FPGA verification flows build up from
simple block level functions to test full chip functionality.
Decoupling the design from the testbench is a step beyond
common FPGA verification environments.

In either case, a custom hardware platform must be constructed
to emulate the behavior of the SERDES design with this
approach. Such a platform is quickly made obsolete by any of:
design changes leading to a different device, device vendor, or
changes to the pinout requiring re-wiring of the PCB. A
hardware platform built for the design shown in Figure 2
would not be usable for the design shown in Figure 3 since
many of the SERDES serial connections in Figure 3 do not
exist in Figure 2.

Crafting a flexible, purpose-built hardware emulation solution
that is tightly coupled with a logic simulator is a substantial
undertaking and is beyond the scope of this discussion. Such
an emulation system was used to generate the results below.

Running the Xaui design in Figure 4 in an FPGA emulation
system results in silicon accurate SERDES behavior and
reduced the 59 second simulation to 18 seconds.

4.5 Writing Custom Behavioral Models
As presented in section 4.1, replacing a SERDES simulation
model with a simplified model can result in incorrect behavior.

It is common practice to write behavioral models for a specific
mode used in a design. Rather than implementing all possible
functions of a SERDES in a simulation model, only the
selected parameter settings and port connections can be
implemented. This reduces the overall scope of model
development.

Models produced in this way can be re-used when the
parameters and port connections of the SERDES model are
used again. For example, the simple 8b10b design in Figure 2
can be modeled with a simple 8b10b encoder / decoder. Any

Entity
Percent of CPU

Load
Simulation Time in

Seconds

GTP_DUALs 71% 41.8

Xaui core 11% 6.5

transactors 10.6% 6.3

testbench 7.4% 4.4

use of a SERDES with this simple operation can then re-use this
simulation model.

The usefulness of these models is limited to designs of the
specified function. When new designs or SERDES functions are
desired, new models must be written.

A good example of this approach is seen in the testbench written
out by the Xilinx Coregen tool when generating the presented
Xaui design in Figure 4. Behavioral serial transactors specific to
the Xaui protocol are implemented in the testbench. However
these cannot be re-used by other designs, including the very
simple 8b10b design shown in Figure 2.

This simulation runs in 59 seconds with accurate, vendor
provided models for SERDES in the design and purpose built
behavioral SERDES models in the transactors in the testbench.

5. Comparisons of Approaches
The following tables compare the presented approaches for both
the 8b10b and Xaui designs shown in Figures 2 and 3. Table 2
shows results for the simple 8b10b design and Table 3 shows the
Xaui results.

Table 2. Comparison of Approaches for 8b10b

Table 3. Comparison of Approaches for Xaui

Approach
Development

Time
Accuracy Simulation

Performance

remove serdes Medium Low 18 seconds

use serdes in
testbench

Short
Medium 101 seconds

Verify in the
lab

Long
High n/a

Native
hardware
emulation

Long
High 18 seconds

Write custom
behavioral
models

Medium
Low 59 seconds

Using a second SERDES is appropriate only if the SERDES
models represent a small portion of the overall simulation time
or if there are very few tests. If the simulation profile shows a
large percentage of time spent in the SERDES models, the
resulting simulation time impact is dramatic.

The presented verification approaches are sometimes used in
conjunction. For example, removing SERDES models in
simulation and verifying SERDES function in the lab.

The native hardware emulation approach gives the
performance of custom behavioral models with the accuracy of
the silicon behavior.

Accuracy of software simulation models generally comes at
the expense of simulation performance. Hardware solutions
provide higher performance and accuracy at the expense of
development time.

Extending simulation times creates pressure to reduce the
number of tests in verification cycles, which naturally leads to
functional defect escapes.

Using evaluation boards or target systems to verify SERDES
designs can create schedule risk of waiting for final article and
/ or throw away hardware and design effort.

7. REFERENCES
[1] Xilinx, Inc., Virtex-5 FPGA RocketIO GTP Transceiver,
December, 2008,
 http://
www.xilinx.com/support/documentation/user_guides/ug196.pdf

[2] Xilinx, Inc. Xaui User Guide, April 2010,
http://www.xilinx.com/support/documentation/ip_documentation/xaui_
ug150.pdf

[3] system specifications: Intel(R) Xeon(R) CPU X3363 @ 2.83GHz,
6mB cache, 16 gB DDR3 main memory PC2-5300 / 667 MHz

Approach
Development

Time
Accuracy Simulation

Performance

remove serdes Trivial Low 1 second

use serdes in
testbench

Short
Medium 64 seconds

Verify in the
lab

Medium
High n/a

Native
hardware
emulation

Long
High 1 second

Write custom
behavioral
models

Medium
Low 1 second

