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ABSTRACT  
The multi-GHz line rates enabled by SERDES introduce new 
design challenges in FPGAs, notably signal integrity issues which 
have given rise to a number of design tools and methodologies.  
But equally as demanding, if not more so, are the functional 
verification challenges associated with this complex technology.  
 
FPGA designers find that logic simulation of SERDES-based 
designs is bogged down by long serial test sequences that can 
extend simulation times by 1-2 orders of magnitude.  In addition, 
SERDES technology employs complex, hierarchical protocols, 
which makes it harder to thoroughly exercise internal logic.  And, 
because SERDES are often incorporated via unfamiliar third-
party IP blocks, debugging the resulting system is problematic. 
  
This paper will look at various functional verification strategies 
that can be used to address the SERDES simulation bottleneck.  
Experiences from multiple commercial FPGA based system 
designs will be considered to examine the trade-offs of different 
verification approaches for SERDES in FPGA designs.  Each 
method will be looked at for its impact on verification 
performance, accuracy, and engineering productivity.   
 
Among the approaches considered are: 
 

• Removing the SERDES from the simulations and verifying 
the rest of the chip using parallel communication 

• Placing a second SERDES in the test bench and 
connecting them back-to-back 

• Verifying the SERDES portion of the design on the board 
in the lab in-system 

• Executing the entire device in native FPGA hardware 
using an emulation-like approach 

• Writing custom behavioral models of SERDES  
 
Some familiarity with logic simulators, FPGA based system 
design, design verification and SERDES serial I/O technology are 
assumed in the discussion. 
 

Categories and Subject Descriptors  
Advanced Design and Verification of ASICs and FPGAs.  
 

General Terms  
This paper applies to the following designated general terms: 
Performance, Design, and Verification.  
 

 

Keywords  
FPGA, SERDES, simulation, verification.  
 
Some frequently used terms are defined here: 
 
core-side: the signal connections between a SERDES 

element and logic inside the FPGA design 
that instantiates it 

IP: Intellectual Property in the form of pre-
developed FPGA modules.  These can be 
hard-diffused in FPGA silicon or delivered 
as pre-verified programmable elements. 

target system: the physical PCB design that is built to 
hold the implemented FPGA being 
designed 

 
1. INTRODUCTION  
As FPGAs increase in performance and capacity, they are 
being more widely used for connectivity in a broad range of 
media, signal processing and communications applications.  At 
the same time, developers have turned to the use of higher 
speed serial connections for on-chip and chip-to-chip 
communications, replacing parallel buses to achieve 
significantly higher data rates.  SERDES (Serializer-
Deserializer) technology is the key enabler for this type of 
interface as protocols based on a SERDES approach allow 
higher data rates with fewer device pins. 
  
This paper will discuss the challenges involved in SERDES-
based FPGA design, as well as the alternatives available to 
address the verification bottleneck that these large complex 
devices introduce. 
 

2. SERDES MODELS  
Modern FPGA devices use configurable, high performance 
SERDES elements to provide access to SERDES technology 
for a broad range of applications.  These are commonly 
delivered to end users as hard IP blocks and used in 
applications ranging from simple pin-reducing chip to chip 
data transfer protocols to standards-based high performance 
busses that connect to modern computer motherboards.  
Commonly available FPGA SERDES technology has 
advanced to bit rates beyond 10 gbit/s. 
 

 
 
 



2.1 Xilinx GTP_DUAL  
The Xilinx Virtex5 GTP_DUAL cell is representative of modern 
SERDES and has the following characteristics in its simulation 
model: 
 

8 serial I/O signals that operate from 100 mb/s to 3.75 gb/s 
342 core side signals, some of which are optionally active 
184 configurable parameters  
9 input clocks and 5 output clocks 

 
Without any further information, designing or verifying a design 
with those characteristics suggests a substantial endeavor.  
 
The transceiver documentation1 for this SERDES lists 17 
communication standards supported by the SERDES module that 
make use of 15 different reference clock frequencies.  Each of 
these communications standards uses a unique selection of the 
configured parameters.  Home grown protocols can make use of 
any FPGA SERDES settings and clock frequencies, whether 
overlapping standards based protocols or not. 
 
Of the configurable parameters, 68 have two possible values, 70 
are numerical with a total of 730 variable bits and 8 x are non-
numerical, multi-value.  The span of available configurations by 
parameter settings alone for this simulation model is greater than 
2 ^ 730, an astonishingly large number.  The SERDES transceiver 
can clearly operate in a wide variety of modes and support an 
additionally wide variety of user designs.   
 
To accurately model the behavior of this SERDES design 
element, its simulation model is understandably very complex.  
Though this cannot be determined by inspection for the cited 
SERDES, the apparent load on a logic simulator of designs that 
use the simulation model for this SERDES is an indicator of its 
complexity.  As will be shown in section 4.2, FPGA SERDES 
models can dominate simulation time for designs that use them. 
 
Other FPGA vendors and device families have similarly complex 
applications interfaces and associated SERDES simulation 
models.  It can be observed that the flexibility required to address 
a broadly selectable and programmable function makes the 
simulation models complex. 
 
Standard verification practice to test an interface of any design is 
to use transactors or models that couple to pins of the interface 
and deliver and consume the data protocol of the interfaces.  
These transactors typically abstract cycle accurate, pin level 
function to less granular, more easily understood and manipulated 
functions.  Developing complete transactors to model FPGA 
SERDES system connections requires the same level of flexibility 
and functionality that the SERDES themselves deliver to fully test 
designs that use them. 
 
Modeling external interfaces for FPGA SERDES has tradeoffs 
between development time, simulation time and accuracy.  These 
tradeoffs will be compared against example designs in section 5.   
 
The simplest transactor implementation uses another SERDES 
simulation model in the transactor.  There is little development 
time required for this, but the effective load on the logic simulator 
of the SERDES simulation model is doubled.  Alternatively, a 
“quick and dirty” behavioral model can be written with fast 
execution times at the expense of functional completeness and 
accuracy.  An option between the two extremes is to model only 

the functions in use by the FPGA design and leave other 
SERDES functions untested. 
 

3. VERIFYING SYSTEM FUNCTION 
Before discussing techniques for verifying SERDES based 
designs, some sources of verification escapes and challenges of 
identifying them will be presented.  In other words, why is 
functional verification of FPGA SERDES necessary? 
 
Verification of an FPGA based system is similar in scope to 
ASIC based systems of three years past.  Readily available 
FPGA devices are capable of implementing logic designs with 
500k flip flops, multiple megabytes of on board RAM, hard 
and soft microprocessor cores and a host of purpose built 
communications, data processing and bus interface IP.  
Verifying a system incorporating these devices requires 
discipline to validate assumptions of interface behavior, sub-
system interaction and logical and implementation correctness. 
Use of SERDES technology in FPGA designs contributes to 
complexity in each of these areas. 
 

3.1 Interface Behavior  
One obvious source of functional escapes is in the immediate 
connections to the SERDES themselves, either on the serial or 
parallel sides.  The serial side data is typically an encoded form 
of user data, encapsulated by a stack of data manipulations 
between the user’s core-side logic and electronics outside the 
device being designed.   
 
The stack of conversions on user data may be shallow or deep.  
An example of a simple, shallow stack is shown in the design 
in Figure 1.  It is a simple conversion of 8 bit parallel data to 
10 bit serial data using built in 8b10b encoding in the FPGA 
SERDES device.  Functional patterns to validate the user path 
of this example are straightforward; an incrementing pattern 
for 256 core-side cycles will verify all possible data words can 
traverse the interface. 
 
Though architecturally this is a simple conversion, in practice 
there are hundreds of signals to connect and hundreds more 
parameters to configure to make use of such a simple 
conversion with the native FPGA SERDES devices.  Mistakes 
made by either misconnection, mis-configuration or 
misunderstanding of device specifications can appear even 
with this simple example. Thus even a simple use of SERDES 
can result in functional escapes without proper verification. 
 
More complex examples include packet based bus protocols 
like Xaui, PCI Express or RapidIO.  These interfaces are 
commonly crafted using a combination of hardened SERDES 
IP and soft (programmable logic only) IP inside the FPGA 
devices.  The combined FPGA IP is configured to meet system 
requirements.  The external serial interfaces in these examples 
form connections to standard busses.   
 
Use of pre-validated IP to implement the bus interface helps 
prevent basic functional errors on the bus, but shifts the 
interface verification upstream to the parallel core-side data 
interfaces of the soft IP.  The control and data operations on 
these interfaces differ from vendor to vendor, leaving room for 
misinterpretation of specifications and creating a vendor 
specific design and verification task for a standard bus 
interface.   
 



Because the core-side interfaces are vendor specific and non-
standard, the logic on the core-side of the design that interfaces to 
it can only be exercised by generating vendor specific unique 
activity on the standard bus that results in desired events.  This 
testing then is not portable from IP vendor to IP vendor.   
 
Long simulation sequences are sometimes required to activate 
interface signals on the core side of the IP, extending required 
simulation time to validate user logic that interconnects.  For the 
Xaui design in Figure 3, of the 59 seconds of simulation time 55 
seconds are used to initialize the Xaui link and 4 seconds are used 
to test data transfer on the link.  This initialization sequence must 
be repeated for any other tests. 
  
Verifying interface behavior is complicated by the simulation 
time introduced by FPGA SERDES simulation models and the 
uniqueness of protocol IP core-side interfaces. 
 

3.2 Sub-System Interaction 
Another area of functional escapes common in SERDES-based 
systems is interaction between sub-systems on opposite ends of a 
serial link.  System designs employing multiple FPGAs that use 
SERDES for chip to chip communication must operate to 
specifications both independently and in tandem to deliver 
contemplated system function.  Design assumptions for SERDES 
components contribute to the sub-system verification effort. 
 
For example, the round trip time of data from one FPGA device 
to another and back across a SERDES based link involves 2 x 
serialization and 2 x de-serialization times.  Given that these 
times can vary based on the temperature and voltage of the 
device, systems built around them must be tolerant to these 
variances.  Models must be selectively varied to best or worst 
case conditions to verify designs will behave correctly under 
those conditions. 
 
For example, consider the circuit below in Figure 1 which issues a 
request each cycle to a remote device attached via serial link.  
Each request when issued is stored in a FIFO until the remote 
device acknowledges receipt.  Variability in serialization and de-
serialization times will cause changes in the consumed depth of 
this FIFO.  Verifying the maximum depth occurs before FIFO 
overflow requires accurate modeling of FPGA SERDES latencies.   
 

Figure 1. Diagram of Design Susceptible to Latency 
Modeling Inaccuracies 

 

 
 
As noted previously, accurate simulation models come at the cost 
of added simulation time.  Using inaccurate models increases 
simulation speed but introduces opportunity for escapes like the 

FIFO overflow outlined.  Such escapes cannot then be detected 
until designs reach the lab or customer site. 
 

3.3 Implementation and Tool Flow 
Correctness 
It is common knowledge that gate simulations show behavior 
that RTL simulations can not.  Test initialization sequences 
and device simulation models frequently ignore or take for 
granted initial state of the design in logic simulation.  Further, 
logic simulators can demonstrate behavior with valid HDL 
code that, in gates, performs differently when fed with high 
impedance or unknown inputs.  These conditions can manifest 
themselves as functional escapes from RTL simulation, only 
discoverable in the lab.  For these reasons, gate simulations are 
done to “sanity check” initialization and gate behavior of 
implemented FPGA designs.  SERDES based FPGA designs 
are no exception. 
 
Working with gates in logic simulation is time consuming.  
There are typically an order-of-magnitude more events for the 
simulator to process with a gate level design, relative to the 
original RTL design.  Coupling gate level simulations with the 
performance impact of SERDES simulation models can result 
in excessively time-consuming work.  Depending on modeling 
accuracy as noted earlier, this may not even capture tolerance 
issues. 
 
As an example, the RTL portions of the example design shown 
in Figure 1 operate 30 times slower in gate simulations than in 
RTL. 
 
The most common functional error escapes from 
implementation and tool flow are initialization errors.  
Undefined values presented to SERDES models may go 
undetected in RTL where gate simulations may expose defects 
clearly visible in a lab environment. 
 

4. APROACHES TO VERIFICATION 
Verifying FPGA SERDES-based designs puts the user in the 
position of managing the impact of the flexibility and 
complexity of the SERDES simulation models in the context of 
common escapes discussed above.  Simulation times balloon 
and cause prolonged initialization sequences before any useful 
testing can occur.  The following sections detail approaches for 
handling these prolonged sequences.  
 
For the following verification approaches, consider the two 
designs shown in Figure 2 and Figure 3 below.  The design in 
Figure 2 was described in section 3.1 and is a simple 
bidirectional 8b10b serial link.  The second design is a 10 
gbit/s Xaui interface, which converts and transfers data 
between a core-side XGMII parallel interface and the industry 
standard serial Xaui interface.  This example design was 
generated by Xilinx Coregen using version 8.1 of the core.  
The Xaui core documentation is available from Xilinx2. 
 
The presented functional verification approaches will be 
compared using the designs shown in Figure 2 and Figure 3.  
All simulation runs presented were performed on the same 
machine3. 
 
 
 



Figure 2. Simple 8b10b FPGA Block Diagram 
 

 
 

Figure 3. Xaui FPGA Block Diagram 
 

 
 
4.1 Removing the SERDES Models 
One common approach to simulating designs with FPGA 
SERDES models is to eliminate the models altogether.  The 
models are replaced with shells that connect the parallel core-side 
data directly from source to destination.  This is typically done by 
“scoping in” to the simulation model to drive the SERDES 
model’s parallel outputs directly and monitor the SERDES 
model’s parallel core-side inputs directly from transactors in the 
testbench. 
 
This has the advantage of avoiding time to develop complex serial 
transactors at the expense of accuracy of dynamics and function 
of the serial link.  For example, any impact on the core side logic 
of serialization or de-serialization time or errors occurring during 
de-serialization will not be properly modeled. 
 
For the simple 8b10b example in Figure 2, this is a 
straightforward solution because the SERDES elements are used 
solely to transport parallel data from end to end.  There is no 
control information passed through the serial link. 
 

By contrast, using this approach with the Xaui design in Figure 
3 requires substantial knowledge of the configuration and I/O 
of the core-side of the SERDES.  Simply looping tx data and 
comma controls to the receiver is not sufficient as the Xaui 
core logic expects transitions through synchronization states on 
the control outputs of the GTP_DUAL SERDES elements.  
This highlights the need for accurate SERDES models; core-
side circuitry can easily be built that will succeed with 
simplified models which will fail when connected to the 
accurate behavior of real physical devices. 
 
It is noteworthy that creating a model that passes logic 
simulations while scoping around the minimum required set of 
core-side signals will not guarantee a functional device once 
the FPGA is built and operating in the lab.  Verifying interface 
operation has two sides: 1) verifying the core-side logic and 
interface and 2) verifying the SERDES operation itself.  Using 
the presented scoping method does nothing to verify the 
configuration or implementation of the SERDES itself. 
 
Using this approach with the design in Figure 2 results in very 
fast simulations; testing completes in less than 1 second.  The 
same approach applied to the Xaui design in Figure 3 results in 
18 second simulations.  Modeling effort is trivial (minutes to 
hours) for the 8b10b design and more substantial (days to 
weeks) for the Xaui design. 
 

4.2 Using a Second SERDES in the 
Testbench 
Another approach to functionally verifying FPGA SERDES 
designs is to use an FPGA SERDES simulation model in the 
testbench as a transactor.  This has the benefit of rapid 
development time at the expense of the time to run each 
simulation since the load on the simulator from the SERDES 
models doubles. 
 
The basic approach is to instantiate the SERDES model in the 
transactor exactly as it is instantiated in the design being tested.  
All configuration options are preserved, and the serial transmit 
outputs of the transactor are wired to the serial receive inputs 
of the design being tested and vice versa in the testbench. 
 
This approach is diagrammed in Figure 4 below. 
 
Figure 4. Connection Diagram of Testbench SERDES 
 

 
 
 



The data below in Table 1 shows the simulator profile of the 
design in Figure 3 running in simulation.  This testbench uses 
behavioral transactors for serial side stimulus and captured 
response.   
 

Table 1. Simulation profile of Xaui core 
 

 
This table shows the simulation time is dominated by the 
SERDES in the Xaui design during the 59 second simulation.   
 
Converting the testbench to use SERDES simulation models 
instead of behavioral transactors in the testbench doubles the load 
on the simulator from the SERDES models.  In this case it nearly 
doubles the entire simulation time for each simulation run; run 
times with this approach increase from 59 to 101 seconds. 
 
For the 8b10b design in Figure 2, the profile is more dramatic; the 
simulator reports 100% of the time in the SERDES simulation 
models.  Using a second SERDES in the testbench does double 
simulation time from 32 seconds to 64 seconds. 
 

4.3 Verifying SERDES in the Lab 
One solution to verifying FPGA SERDES designs is to skip 
verification of the SERDES serial and core-side connections in 
logic simulation and advance directly to the lab for validation of 
those parts of the design. 
 
One benefit of this approach is the volume of data that can be 
transferred through the SERDES interfaces in a real-time system.  
Simulation clock frequencies are commonly 5-7 orders of 
magnitude slower than free-running physical FPGA devices.  
Verifying with silicon in the lab thus provides many orders of 
magnitude more test cycles than software based simulations. 
 
This approach requires a hardware system to perform verification.  
Waiting for the target system hardware to be available puts the 
verification of the SERDES paths at the very end of verification, 
guaranteeing it will be in the critical path to system verification. 
 
Using an off the shelf FPGA evaluation board is an option for lab 
verification.  Unless the design of the evaluation board matches 
the target system exactly the design being tested must be ported to 
the evaluation board.  The device pinout, synthesis and place and 
route scripts must be tailored to the evaluation board.  If the 
device on the evaluation board is not the same size as the target 
device, portions of the design may be required to be taken out to 
perform this verification.   
 
Regardless of the content of the FPGA design, a separate design 
effort is necessary to tailor the design being verified to a fixed 
physical platform.  Any changes made to the design or 
implementation can contribute or mask functional escapes leading 
to false positive or negative results.  The ability to debug the 
FPGA design using this approach is further limited by lack of 

visibility of the high frequency serial signals and the opaque 
contents of the core-side logic. 
 

4.4 Verifying With Native Hardware 
A different solution to verifying FPGA SERDES designs is to 
build an emulation platform that incorporates the FPGA design 
and surrounding electronics to stimulate and respond to it.  A 
purpose built hardware platform with the FPGA being tested 
can be connected to a logic simulator or software to deliver 
patterns and check responses of the FPGA design. 
 
This presents a challenge to either: 1) define and produce a 
seamless interface to the simulator for existing RTL tests or 2) 
to discard existing RTL testbenches in lieu of decoupling the 
FPGA design from the tests and transactors.   
 
Circuits operating within a software simulator maintain a strict 
notion of synchronicity.  Rigorously defined rules of HDL 
language behavior and scheduling make software-only design 
and simulation predictable and productive.  Coupling a logic 
simulator with a hardware platform and maintaining setup and 
hold relationships between hardware and simulated HDL is a 
non-trivial task.   
 
Designing for verification of a decoupled design is also a 
complex task.  Typical FPGA verification flows build up from 
simple block level functions to test full chip functionality.  
Decoupling the design from the testbench is a step beyond 
common FPGA verification environments. 
 
In either case, a custom hardware platform must be constructed 
to emulate the behavior of the SERDES design with this 
approach.  Such a platform is quickly made obsolete by any of: 
design changes leading to a different device, device vendor, or 
changes to the pinout requiring re-wiring of the PCB.  A 
hardware platform built for the design shown in Figure 2 
would not be usable for the design shown in Figure 3 since 
many of the SERDES serial connections in Figure 3 do not 
exist in Figure 2. 
 
Crafting a flexible, purpose-built hardware emulation solution 
that is tightly coupled with a logic simulator is a substantial 
undertaking and is beyond the scope of this discussion.  Such 
an emulation system was used to generate the results below. 
 
Running the Xaui design in Figure 4 in an FPGA emulation 
system results in silicon accurate SERDES behavior and 
reduced the 59 second simulation to 18 seconds. 
 

4.5 Writing Custom Behavioral Models 
As presented in section 4.1, replacing a SERDES simulation 
model with a simplified model can result in incorrect behavior. 
 
It is common practice to write behavioral models for a specific 
mode used in a design.  Rather than implementing all possible 
functions of a SERDES in a simulation model, only the 
selected parameter settings and port connections can be 
implemented.  This reduces the overall scope of model 
development. 
 
Models produced in this way can be re-used when the 
parameters and port connections of the SERDES model are 
used again.  For example, the simple 8b10b design in Figure 2 
can be modeled with a simple 8b10b encoder / decoder.  Any 

Entity 
Percent of CPU 

Load 
Simulation Time in 

Seconds 

GTP_DUALs 71% 41.8 

Xaui core 11%  6.5 

transactors 10.6% 6.3 

testbench 7.4% 4.4 



use of a SERDES with this simple operation can then re-use this 
simulation model. 
 
The usefulness of these models is limited to designs of the 
specified function.  When new designs or SERDES functions are 
desired, new models must be written. 
 
A good example of this approach is seen in the testbench written 
out by the Xilinx Coregen tool when generating the presented 
Xaui design in Figure 4.  Behavioral serial transactors specific to 
the Xaui protocol are implemented in the testbench.  However 
these cannot be re-used by other designs, including the very 
simple 8b10b design shown in Figure 2. 
 
This simulation runs in 59 seconds with accurate, vendor 
provided models for SERDES in the design and purpose built 
behavioral SERDES models in the transactors in the testbench. 

 
5. Comparisons of Approaches 
The following tables compare the presented approaches for both 
the 8b10b and Xaui designs shown in Figures 2 and 3.  Table 2 
shows results for the simple 8b10b design and Table 3 shows the 
Xaui results. 
 
 

Table 2. Comparison of Approaches for 8b10b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Comparison of Approaches for Xaui 
 

Approach 
Development 

Time 
Accuracy Simulation 

Performance 

remove serdes Medium Low 18 seconds 

use serdes in 
testbench 

Short 
Medium 101 seconds 

Verify in the 
lab 

Long  
High n/a 

Native 
hardware 
emulation 

Long 
High 18 seconds 

Write custom 
behavioral 
models 

Medium  
Low 59 seconds 

 
 
Using a second SERDES is appropriate only if the SERDES 
models represent a small portion of the overall simulation time 
or if there are very few tests.  If the simulation profile shows a 
large percentage of time spent in the SERDES models, the 
resulting simulation time impact is dramatic. 
 
The presented verification approaches are sometimes used in 
conjunction.  For example, removing SERDES models in 
simulation and verifying SERDES function in the lab. 
 
The native hardware emulation approach gives the 
performance of custom behavioral models with the accuracy of 
the silicon behavior. 
 
Accuracy of software simulation models generally comes at 
the expense of simulation performance.  Hardware solutions 
provide higher performance and accuracy at the expense of 
development time. 
 
Extending simulation times creates pressure to reduce the 
number of tests in verification cycles, which naturally leads to 
functional defect escapes. 
 
Using evaluation boards or target systems to verify SERDES 
designs can create schedule risk of waiting for final article and 
/ or throw away hardware and design effort. 
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Approach 
Development 

Time 
Accuracy Simulation 

Performance 

remove serdes Trivial Low 1 second 

use serdes in 
testbench 

Short 
Medium 64 seconds 

Verify in the 
lab 

Medium  
High n/a 

Native 
hardware 
emulation 

Long 
High 1 second 

Write custom 
behavioral 
models 

Medium  
Low 1 second 


