Addressing the verification challenge of SERDES-based
FPGAs: The performance/accuracy/efficiency trade-off

Chris Schalick
CTO GateRocket, Inc.
19 Crosby Drive
Suite 100
781-908-0082
cschalick@gaterocket.com

ABSTRACT

The multi-GHz line rates enabled by SERDES intrednew
design challenges in FPGAs, notably signal intgdsisues which
have given rise to a number of design tools andhoauktiogies.
But equally as demanding, if not more so, are timetional
verification challenges associated with this compézhnology.

FPGA designers find that logic simulation of SERDiESed
designs is bogged down by long serial test seqsethe¢ can
extend simulation times by 1-2 orders of magnitubeaddition,
SERDES technology employs complex, hierarchicalquals,
which makes it harder to thoroughly exercise iraélogic. And,
because SERDES are often incorporated via unfartfilied-
party IP blocks, debugging the resulting systeprablematic.

This paper will look at various functional verifigan strategies
that can be used to address the SERDES simulatidiereck.
Experiences from multiple commercial FPGA basediesys
designs will be considered to examine the trads-affdifferent
verification approaches for SERDES in FPGA desidgach
method will be looked at for its impact on verificen
performance, accuracy, and engineering productivity

Among the approaches considered are:

« Removing the SERDES from the simulations and vienify
the rest of the chip using parallel communication

* Placing a second SERDES in the test bench and
connecting them back-to-back

« Verifying the SERDES portion of the design on tloautul
in the lab in-system

« Executing the entire device in native FPGA hardware
using an emulation-like approach

¢ Writing custom behavioral models of SERDES

Some familiarity with logic simulators, FPGA basagtem
design, design verification and SERDES serial #€htiology are
assumed in the discussion.

Categories and Subject Descriptors
Advanced Design and Verification of ASICs and FPGAs

General Terms
This paper applies to the following designated galrterms:
Performance, Design, and Verification.

Keywords
FPGA, SERDES, simulation, verification.
Some frequently used terms are defined here:
core-side: the signal connections between a SERDES
element and logic inside the FPGA design
that instantiates it
IP: Intellectual Property in the form of pre-
developed FPGA modules. These can be
hard-diffused in FPGA silicon or delivered
as pre-verified programmable elements.

the physical PCB design that id bwil
hold the implemented FPGA being
designed

target system:

1. INTRODUCTION

As FPGAs increase in performance and capacity, @ahey
being more widely used for connectivity in a breadge of
media, signal processing and communications agjita At
the same time, developers have turned to the usigloér
speed serial connections for on-chip and chip-ip-ch
communications, replacing parallel buses to achieve
significantly higher data rates. SERDES (Serialize
Deserializer) technology is the key enabler fos tigpe of
interface as protocols based on a SERDES apprdlagh a
higher data rates with fewer device pins.

This paper will discuss the challenges involve@#RDES-
based FPGA design, as well as the alternativesad@ito
address the verification bottleneck that theseelaamplex
devices introduce.

2. SERDESMODELS

Modern FPGA devices use configurable, high perforcea
SERDES elements to provide access to SERDES teunol
for a broad range of applications. These are contyno
delivered to end users as hard IP blocks and msed i
applications ranging from simple pin-reducing ctagchip
data transfer protocols to standards-based higbmpeance
busses that connect to modern computer motherhoards
Commonly available FPGA SERDES technology has
advanced to bit rates beyond 10 gbit/s.

2.1 Xilinx GTP_DUAL

The Xilinx Virtex5 GTP_DUAL cell is representatizé modern
SERDES and has the following characteristics isiitaulation
model:

8 serial I/O signals that operate from 100 mb/3.%® gb/s
342 core side signals, some of which are optioreitjve
184 configurable parameters

9 input clocks and 5 output clocks

Without any further information, designing or vgiifg a design
with those characteristics suggests a substamitkdae/or.

The transceiver documentatidior this SERDES lists 17
communication standards supported by the SERDESIladldat
make use of 15 different reference clock frequesncigach of
these communications standards uses a uniqueisele€the
configured parameters. Home grown protocols cakernae of
any FPGA SERDES settings and clock frequenciesthene
overlapping standards based protocols or not.

Of the configurable parameters, 68 have two possialues, 70
are numerical with a total of 730 variable bits &wlare non-
numerical, multi-value. The span of available ogufations by
parameter settings alone for this simulation maglgkeater than

2 2730, an astonishingly large number. The SERD&Sceiver

can clearly operate in a wide variety of modes suqgport an
additionally wide variety of user designs.

To accurately model the behavior of this SERDESgtes
element, its simulation model is understandably vemplex.
Though this cannot be determined by inspectiorntfercited
SERDES, the apparent load on a logic simulatoresfghs that
use the simulation model for this SERDES is andattir of its
complexity. As will be shown in section 4.2, FPGERDES
models can dominate simulation time for designstisa them.

Other FPGA vendors and device families have sityieomplex
applications interfaces and associated SERDES ationl

models. It can be observed that the flexibilitgyured to address

a broadly selectable and programmable function st
simulation models complex.

Standard verification practice to test an interfatany design is
to use transactors or models that couple to pinleointerface
and deliver and consume the data protocol of ttesfaces.
These transactors typically abstract cycle accupatelevel

function to less granular, more easily understaudimanipulated

functions. Developing complete transactors to rh&&&sA
SERDES system connections requires the same léflekibility
and functionality that the SERDES themselves deliodully test
designs that use them.

Modeling external interfaces for FPGA SERDES hadébffs
between development time, simulation time and amur These
tradeoffs will be compared against example desigisgction 5.

The simplest transactor implementation uses an@B&DES
simulation model in the transactor. There isditlevelopment

time required for this, but the effective load be togic simulator

of the SERDES simulation model is doubled. Alt¢ingy, a
“quick and dirty” behavioral model can be writteitiwfast
execution times at the expense of functional cotepkess and
accuracy. An option between the two extremes raddel only

the functions in use by the FPGA design and ledlvero
SERDES functions untested.

3. VERIFYING SYSTEM FUNCTION

Before discussing techniques for verifying SERDESdul
designs, some sources of verification escapes lzaitenges of
identifying them will be presented. In other wardsy is
functional verification of FPGA SERDES necessary?

Verification of an FPGA based system is similasdope to
ASIC based systems of three years past. Readiijahle
FPGA devices are capable of implementing logicgtesivith
500k flip flops, multiple megabytes of on board RAMrd
and soft microprocessor cores and a host of purpaite
communications, data processing and bus interface |
Verifying a system incorporating these devices iregu
discipline to validate assumptions of interfacedebr, sub-
system interaction and logical and implementatiomertness.
Use of SERDES technology in FPGA designs contribtde
complexity in each of these areas.

3.1 Interface Behavior

One obvious source of functional escapes is inrtimediate
connections to the SERDES themselves, either osdhal or
parallel sides. The serial side data is typicattyencoded form
of user data, encapsulated by a stack of data miartigpns
between the user’s core-side logic and electramitside the
device being designed.

The stack of conversions on user data may be shalla@eep.
An example of a simple, shallow stack is showrhimdesign
in Figure 1. Itis a simple conversion of 8 bitglel data to
10 bit serial data using built in 8b10b encodinghie FPGA
SERDES device. Functional patterns to validateuter path
of this example are straightforward; an incremenpattern
for 256 core-side cycles will verify all possiblatd words can
traverse the interface.

Though architecturally this is a simple conversiarpractice
there are hundreds of signals to connect and hdadnere
parameters to configure to make use of such a eimpl
conversion with the native FPGA SERDES devicesstakies
made by either misconnection, mis-configuration or
misunderstanding of device specifications can apgeen
with this simple example. Thus even a simple useERDES
can result in functional escapes without propeification.

More complex examples include packet based busqutst
like Xaui, PCI Express or RapidlO. These interfaaee
commonly crafted using a combination of hardeneRBES
IP and soft (programmable logic only) IP inside EFRGA
devices. The combined FPGA IP is configured totragstem
requirements. The external serial interfaces és¢hexamples
form connections to standard busses.

Use of pre-validated IP to implement the bus iriegfhelps
prevent basic functional errors on the bus, butsthe
interface verification upstream to the parallelezside data
interfaces of the soft IP. The control and daterafions on
these interfaces differ from vendor to vendor, iegroom for
misinterpretation of specifications and creatingeador
specific design and verification task for a staddaus
interface.

Because the core-side interfaces are vendor spacifi non-

standard, the logic on the core-side of the detighinterfaces to

it can only be exercised by generating vendor ipaaique
activity on the standard bus that results in ddsineents. This
testing then is not portable from IP vendor to #hdor.

Long simulation sequences are sometimes requiradtieate
interface signals on the core side of the IP, aitenrequired
simulation time to validate user logic that intarnects. For the
Xaui design in Figure 3, of the 59 seconds of satiah time 55

seconds are used to initialize the Xaui link arsttdonds are used
to test data transfer on the link. This initiatina sequence must

be repeated for any other tests.

Verifying interface behavior is complicated by #imulation
time introduced by FPGA SERDES simulation modets te
uniqueness of protocol IP core-side interfaces.

3.2 Sub-System Interaction

Another area of functional escapes common in SERB&®d
systems is interaction between sub-systems on @ppogls of a
serial link. System designs employing multiple F3Ghat use
SERDES for chip to chip communication must opetate
specifications both independently and in tandeeiover
contemplated system function. Design assumptionSERDES
components contribute to the sub-system verificagiffort.

For example, the round trip time of data from oR&A device
to another and back across a SERDES based linkves/@ x
serialization and 2 x de-serialization times. @iveat these
times can vary based on the temperature and vodiitpe
device, systems built around them must be toldratitese
variances. Models must be selectively varied & beworst
case conditions to verify designs will behave otttyeunder
those conditions.

For example, consider the circuit below in Figunstiich issues a

request each cycle to a remote device attacheskvial link.
Each request when issued is stored in a FIFO thatitfemote
device acknowledges receipt. Variability in sezation and de-
serialization times will cause changes in the coreidepth of
this FIFO. Verifying the maximum depth occurs bef&IFO
overflow requires accurate modeling of FPGA SERDé&&ncies.

Figure 1. Diagram of Design Susceptible to Latency
Modeling I naccuracies

FPGA#1 FPGA#2

MESSAGE SERIAL | SERIAL | MESSAGE
SOURCE TRANSMIT RECEIVE "] RECEIVE

A4

MESSAGE SERDES SERDES
FIFO

i 1
RESPONSE [¢— SERIAL | SERIAL RESPONSE
RECEIVE RECEIVE TRANSMIT SOURCE

A4

As noted previously, accurate simulation modelseairthe cost
of added simulation time. Using inaccurate modeiseases
simulation speed but introduces opportunity forapss like the

FIFO overflow outlined. Such escapes cannot treeddiected
until designs reach the lab or customer site.

3.3 Implementation and Tool Flow

Correctness

It is common knowledge that gate simulations shehevior
that RTL simulations can not. Test initializatisaquences
and device simulation models frequently ignoreasetfor
granted initial state of the design in logic sintida. Further,
logic simulators can demonstrate behavior withdvelDL
code that, in gates, performs differently whenvéth high
impedance or unknown inputs. These conditionsncanifest
themselves as functional escapes from RTL simulataly
discoverable in the lab. For these reasons, gatdations are
done to “sanity check” initialization and gate beba of
implemented FPGA designs. SERDES based FPGA design
are no exception.

Working with gates in logic simulation is time comnsing.
There are typically an order-of-magnitude more &véor the
simulator to process with a gate level designtireddo the
original RTL design. Coupling gate level simulatsowith the
performance impact of SERDES simulation modelsreanlt
in excessively time-consuming work. Depending @udeling
accuracy as noted earlier, this may not even captlerance
issues.

As an example, the RTL portions of the examplegieshown
in Figure 1 operate 30 times slower in gate sinmhatthan in
RTL.

The most common functional error escapes from
implementation and tool flow are initialization ers.
Undefined values presented to SERDES models may go
undetected in RTL where gate simulations may expesects
clearly visible in a lab environment.

4. APROACHESTO VERIFICATION
Verifying FPGA SERDES-based designs puts the ustrd
position of managing the impact of the flexibilapd
complexity of the SERDES simulation models in tbatext of
common escapes discussed above. Simulation tiele®b
and cause prolonged initialization sequences befoyaiseful
testing can occur. The following sections detppraaches for
handling these prolonged sequences.

For the following verification approaches, consitler two
designs shown in Figure 2 and Figure 3 below. désgn in
Figure 2 was described in section 3.1 and is alsimp
bidirectional 8b10b serial link. The second desgga 10
ghit/s Xaui interface, which converts and transttata
between a core-side XGMII parallel interface anelitidustry
standard serial Xaui interface. This example degigs
generated by Xilinx Coregen using version 8.1 efc¢bre.
The Xaui core documentation is available from Xfin

The presented functional verification approachdkhei
compared using the designs shown in Figure 2 aguar &i3.
All simulation runs presented were performed onsiime
machiné.

Figure 2. Simple 8b10b FPGA Block Diagram

TRANSCEIVER

1
; :
[1
! 1
8B10B i SERIAL !
e —l—.—’
ENCODER] TRANsMIT [
! H
! 1
H 1
! 1
H 1
! 1
! 1
H 1
! i
! SERDES |
i :
H 1
! 1
! 1
I 1
! 1
H 1
1
! i
8B10B i SERIAL 1
4 44—
DECODER H RECEIVE i
: :
I 1
! 1

Figure 3. Xaui FPGA Block Diagram

XAUIFPGA

> SERDES > Sams
IDLE i D E—

GENERATION

> 3125

Ly
SERDES GBIT/S

—
32BIT XGMII
DDR 4—

SYNCHRONIZE

> 3125

SYNCHRONIZE
. GBIT/S

SERIAL
7 LANE

DESKEW

SYNCHRONIZE

——» 3.125

Ly!
SERDES | GBIT/S

SYNCHRONIZE

MDIO 4—.{ MANAGEMENT INTERFACE ‘

4.1 Removing the SERDES Models
One common approach to simulating designs with FPGA
SERDES models is to eliminate the models altogetfibe

il

models are replaced with shells that connect thallphcore-side
data directly from source to destination. Thigyscally done by

“scoping in” to the simulation model to drive thEDES
model’s parallel outputs directly and monitor tHERDES
model’s parallel core-side inputs directly fromnsactors in the
testbench.

This has the advantage of avoiding time to devetopplex serial

transactors at the expense of accuracy of dynaamigdgunction

of the serial link. For example, any impact on ¢bee side logic
of serialization or de-serialization time or erroccurring during

de-serialization will not be properly modeled.

For the simple 8b10b example in Figure 2, this is a

straightforward solution because the SERDES elesremet used

solely to transport parallel data from end to eftiere is no
control information passed through the serial link.

By contrast, using this approach with the Xaui desn Figure
3 requires substantial knowledge of the configoraind 1/0
of the core-side of the SERDES. Simply loopingléta and
comma controls to the receiver is not sufficientresXaui
core logic expects transitions through synchroinastates on
the control outputs of the GTP_DUAL SERDES elements
This highlights the need for accurate SERDES model®-
side circuitry can easily be built that will sucdeeith
simplified models which will fail when connectedttee
accurate behavior of real physical devices.

It is noteworthy that creating a model that passgis
simulations while scoping around the minimum reediset of
core-side signals will not guarantee a functiorelice once
the FPGA is built and operating in the lab. Varnfyinterface
operation has two sides: 1) verifying the core-$idgc and
interface and 2) verifying the SERDES operatioalitsUsing
the presented scoping method does nothing to virfy
configuration or implementation of the SERDES ftsel

Using this approach with the design in Figure 2iltesn very
fast simulations; testing completes in less thaecdond. The
same approach applied to the Xaui design in Figuesults in
18 second simulations. Modeling effort is trivialinutes to
hours) for the 8b10b design and more substantsi(tb
weeks) for the Xaui design.

4.2 Using a Second SERDES in the

Testbench

Another approach to functionally verifying FPGA SBIRS
designs is to use an FPGA SERDES simulation modile
testbench as a transactor. This has the benefipad
development time at the expense of the time tceaatn
simulation since the load on the simulator from&t&RDES
models doubles.

The basic approach is to instantiate the SERDESehindhe
transactor exactly as it is instantiated in theégtebeing tested.
All configuration options are preserved, and thi@aséransmit
outputs of the transactor are wired to the segieg¢ive inputs
of the design being tested and vice versa in tsibéach.

This approach is diagrammed in Figure 4 below.

Figure 4. Connection Diagram of Testbench SERDES

TESTBENCH

TRANSACTOR FPGA
FPGA
> st » ecene > receve
LOGIC
DATA
GENERATE SERDES SERDES
AND SIMULATION SIMULATION
CAPTURE MODEL MODEL
FUNCTION
FPGA
SERIAL SERIAL
TRANSMIT
RECEIVE TRANSMIT LOGIC

TESTS

The data below in Table 1 shows the simulator @i the
design in Figure 3 running in simulation. Thistbench uses
behavioral transactors for serial side stimulus eaqtured
response.

Table 1. Simulation profile of Xaui core

Entit Percent of CPU Simulation Timein
Y Load Seconds
GTP_DUALs 71% 41.8
Xaui core 11% 6.5
transactors 10.6% 6.3
testbench 7.4% 4.4

This table shows the simulation time is dominatedhie
SERDES in the Xaui design during the 59 second Isitioun.

Converting the testbench to use SERDES simulatiodeats
instead of behavioral transactors in the testbelocibles the load
on the simulator from the SERDES models. In thisedt nearly
doubles the entire simulation time for each simakatun; run
times with this approach increase from 59 to 1@bsds.

For the 8b10b design in Figure 2, the profile igendramatic; the
simulator reports 100% of the time in the SERDEBuU$ation
models. Using a second SERDES in the testbenchdmeble
simulation time from 32 seconds to 64 seconds.

4.3 Verifying SERDESin theLab

One solution to verifying FPGA SERDES designs iskip
verification of the SERDES serial and core-sidensmtions in
logic simulation and advance directly to the labvialidation of
those parts of the design.

One benefit of this approach is the volume of dlag can be
transferred through the SERDES interfaces in atee system.
Simulation clock frequencies are commonly 5-7 csddr
magnitude slower than free-running physical FPGRiaks.
Verifying with silicon in the lab thus provides maarders of
magnitude more test cycles than software basedaimos.

This approach requires a hardware system to penferification.
Waiting for the target system hardware to be alblauts the
verification of the SERDES paths at the very endeffication,
guaranteeing it will be in the critical path to &y verification.

Using an off the shelf FPGA evaluation board i©ption for lab
verification. Unless the design of the evaluatioard matches
the target system exactly the design being testest be ported to
the evaluation board. The device pinout, synthasisplace and
route scripts must be tailored to the evaluatioartio If the
device on the evaluation board is not the sameasizhe target
device, portions of the design may be requiredettalzien out to
perform this verification.

Regardless of the content of the FPGA design, aragpdesign
effort is necessary to tailor the design beingfiestito a fixed
physical platform. Any changes made to the design
implementation can contribute or mask functionabpgs leading
to false positive or negative results. The abilitylebug the
FPGA design using this approach is further limibgdack of

visibility of the high frequency serial signals athe opaque
contents of the core-side logic.

4.4 Verifying With Native Hardware

A different solution to verifying FPGA SERDES desigs to
build an emulation platform that incorporates tif&A design
and surrounding electronics to stimulate and reggorit. A
purpose built hardware platform with the FPGA bediegted
can be connected to a logic simulator or softwargeliver
patterns and check responses of the FPGA design.

This presents a challenge to either: 1) definemnduce a
seamless interface to the simulator for existind. REBts or 2)
to discard existing RTL testbenches in lieu of dgtimg the
FPGA design from the tests and transactors.

Circuits operating within a software simulator main a strict
notion of synchronicity. Rigorously defined rulgisHDL
language behavior and scheduling make software-aedign
and simulation predictable and productive. Coupériogic
simulator with a hardware platform and maintainsegup and
hold relationships between hardware and simulated 4 a
non-trivial task.

Designing for verification of a decoupled desigaliso a
complex task. Typical FPGA verification flows tiiip from
simple block level functions to test full chip fuimnality.
Decoupling the design from the testbench is alsésond
common FPGA verification environments.

In either case, a custom hardware platform musbbstructed
to emulate the behavior of the SERDES design hith t
approach. Such a platform is quickly made obsdigtany of:
design changes leading to a different device, @evéndor, or
changes to the pinout requiring re-wiring of theBP G\
hardware platform built for the design shown indegy2
would not be usable for the design shown in Figusace
many of the SERDES serial connections in Figure 8at
exist in Figure 2.

Crafting a flexible, purpose-built hardware emuatsolution
that is tightly coupled with a logic simulator isabstantial
undertaking and is beyond the scope of this disonssSuch
an emulation system was used to generate thesdmitw.

Running the Xaui design in Figure 4 in an FPGA eatiah
system results in silicon accurate SERDES beharidr
reduced the 59 second simulation to 18 seconds.

4.5 Writing Custom Behavioral Models

As presented in section 4.1, replacing a SERDE8lation
model with a simplified model can result in incatrbehavior.

It is common practice to write behavioral modelsdaspecific
mode used in a design. Rather than implementingpakible
functions of a SERDES in a simulation model, ohly t
selected parameter settings and port connectionbea
implemented. This reduces the overall scope ofehod
development.

Models produced in this way can be re-used when the
parameters and port connections of the SERDES naodel
used again. For example, the simple 8b10b desifigure 2
can be modeled with a simple 8b10b encoder / decoday

use of a SERDES with this simple operation can teemse this
simulation model.

The usefulness of these models is limited to desidrthe
specified function. When new designs or SERDES$tfons are
desired, new models must be written.

A good example of this approach is seen in thééesth written
out by the Xilinx Coregen tool when generating phesented
Xaui design in Figure 4. Behavioral serial transecspecific to
the Xaui protocol are implemented in the testbertidbwever
these cannot be re-used by other designs, inclublagery
simple 8b10b design shown in Figure 2.

This simulation runs in 59 seconds with accuratéedeor
provided models for SERDES in the design and puethosit
behavioral SERDES models in the transactors irigbivench.

5. Comparisons of Approaches

The following tables compare the presented appemsfdr both
the 8b10b and Xaui designs shown in Figures 2 antieBle 2
shows results for the simple 8b10b design and Takskeows the
Xaui results.

Table 2. Comparison of Approachesfor 8b10b

Approach De\/el_opment Accuracy Simulation
Time Perfor mance

remove serdes Trivial Low 1 second

use serdes in Medium 64 seconds

Short

testbench

I\';(te)rlfy in the Medium High n/a

Native High 1 second

hardware Long

emulation

Write custom Low 1 second

behavioral Medium

models

Table 3. Comparison of Approachesfor Xaui

Approach Devel_opment Accuracy Simulation
Time Perfor mance

remove serdes Medium Low 18 seconds

use serdes in Short Medium 101 seconds

testbench

Verify in the Long High n/a

lab

Native High 18 seconds

hardware Long

emulation

Write custom Low 59 seconds

behavioral Medium

models

Using a second SERDES is appropriate only if thRBES
models represent a small portion of the overallgtion time
or if there are very few tests. If the simulatfmofile shows a
large percentage of time spent in the SERDES mptieds
resulting simulation time impact is dramatic.

The presented verification approaches are sometisesin
conjunction. For example, removing SERDES models i
simulation and verifying SERDES function in the.lab

The native hardware emulation approach gives the
performance of custom behavioral models with treieacy of
the silicon behavior.

Accuracy of software simulation models generallynes at
the expense of simulation performance. Hardwalgisos
provide higher performance and accuracy at theresgef

development time.

Extending simulation times creates pressure toaethe
number of tests in verification cycles, which natlyrleads to
functional defect escapes.

Using evaluation boards or target systems to v&HRDES
designs can create schedule risk of waiting faalfarticle and
/ or throw away hardware and design effort.

7. REFERENCES

[1] Xilinx, Inc., Virtex-5 FPGA RocketlO GTP Traacsiver,
December, 2008,

http://
www.xilinx.com/support/documentation/user_guide3R& pdf

[2] Xilinx, Inc. Xaui User Guide, April 2010,
http://www.xilinx.com/support/documentation/ip_dogentation/xaui_
ug150.pdf

[3] system specifications: Intel(R) Xeon(R) CPU %33@ 2.83GHz,
6mB cache, 16 gB DDR3 main memory PC2-5300 / 667%zMH

