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Abstract – Modern system-on-chip (SOC) designs contain a high level of complexity in the reset distribution and synchronization 

circuitry. Verifying that a design can be correctly reset under all modes of operation presents a significant challenge. 

In this paper, we present the common occurring challenges that are involved in reset tree verification and solutions to 

address them. We lay out a three part approach which combines static analysis of the design structure, RTL simulation with X-

propagation and formal verification to build a complete solution. The solution was tested on a customer design. We presented the 

results.  
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I. INTRODUCTION 

Today’s SoC designs integrate many design IP blocks from various providers, each with their own 

implementation of reset. The reset architecture of a digital design can also be very complex.  Designs have multiple 

sources of reset, such as power-on reset, hardware resets, debug resets, software resets, and watchdog timer reset. 

Even the basic reset decisions [1] [2] require special attention. It’s a challenge to ensure that all sources of reset 

propagate to the intended destinations under all conditions. Errors in reset design can lead to metastability, glitches 

or other functional failure of the system.  Furthermore, complex interactions can occur with the convergence of 

multiple resets, multiple clocks and multiple power domains. In many cases, this leads to a reset tree that is larger 

and more complex than the clock tree. Many of the concerns related to clock tree synthesis and load balancing now 

apply to the reset tree as well.  

Simulation has been the primary method traditionally used to verify reset behavior, often with a heavy reliance 

on gate level simulation. However, simulation test coverage is incomplete and gate level simulation is only run late 

in the design cycle. These factors result in reset related bugs that cause costly, late-stage design changes and, in the 

worst case, silicon respins and time-to-market delays. Typically these types of bugs are of a very serious nature, 

rendering the chip completely unusable. For example, a reset bug may result in it being impossible to reset the 

design to a known good starting state, making its operation completely unpredictable. In more extreme cases, the 

design may consume too much power during assertion of reset, causing the device to overheat and be permanently 

damaged. 

The purpose of this paper is to bring the awareness the complicated reset problems. In section II, we will 

describe common reset problems. In section III we will discuss how the problems can be identified through a variety 

of different techniques including static analysis, simulation and formal verification.  Real life examples will be given 

in section IV to illustrate the problems.  

 

 

II. COMMON PROBLEMS 

In this section, we highlight some of the common problems related to reset verification. These are some of the 

problems that we have seen in our customers working on real customer products.  We will separate it into two main 

categories: reset tree correctness and reset usage. In section IIA we will discuss issues related to correctness of reset 

trees and issues commonly occurred in the generation of reset. In section IIB, we will discuss issues related to the 

usage of resets, and issues common to the reset usage.  
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A. Reset Distribution Tree  

The first set of reset problems in design is whether reset was implemented correctly. Figure 2 shows a typical 

reset tree. If the reset tree is incorrect, then the chip will not function properly.  There is a long list of potential 

problems that we have seen, and we highlight 2 common problems here.   

 

        
Figure 2 

 

 

i. Resets used with mixed (asynchronous/synchronous) types  

 

In general reset can only defined as asynchronous or synchronous to a clock. Sometimes, it’s being used as 

synchronous reset for clock1, and asynchronous for clock2.  This usually indicates a misunderstanding of the reset in 

the system. The following RTL illustrates a clock being used as an asynchronous reset on register q1 and a 

synchronous reset on register q2. 

 

  always @(posedge clk or negedge rst_n) 

      if (!rst_n) 

          q1 <= 1'b0; 

      else 

          q1 <= d;  

 

  always @(posedge clk) 

      if (!rst_n) 

          q2 <= 1'b0; 

      else 

          q2 <= d; 

 

ii. Registers with overlapping set and reset.  
 

It is generally not a good idea to allow both asynchronous reset and set exist in a register and is not common in 

synchronous designs. In fact, many technology libraries do not provide a register that has both asynchronous reset 

and set. This problem is usually only a simulation problem and not synthesis issue. The RTL below may not 

simulate correctly because of the behavior of the simulation model. When both set and reset are both active 

asynchronously, the verilog always block may miss one of the reset or set states leading to race condition and there 

will be a mismatch between simulation and synthesis.  An RTL example of overlapping set and reset is shown 

below.  

 
    always @(posedge clk or negedge rst_n or negedge set_n) 
      if (!rst_n) 

          q <= 1'b0; 

      else if(!set_n) 

          q <= 1'b1; 

      else 

          q <= d; 
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If set_n and rst_n are asserted together, there is a race condition. The resulting behavior of this register will 

depend on the physical implementation of this cell. One solution to avoid set and reset race conditions is to convert 

one of the asynchronous set or reset signals into a synchronous signal.  The following RTL avoids a race condition 

by using an asynchronous reset and a synchronous set.  

 

    always @(posedge clk or negedge rst_n) 

       if (!set_n) begin 

           q <= 1'b1; 

           if (!rst_n) q <= 1'b0; 

       end 

       else 

           q <= d; 

 

 

B. Reset Usage  

The second set of reset problems is related to reset usage. To understand it we need to first define the terms 

reset domain and clock domains.  A reset domain is characterized by the following attributes – a) Type – 

synchronous or asynchronous b) Polarity – active low or active high c) Value – set for 1 and reset for 0 and d) the 

top resetting signal.  Multiple reset domains can be grouped together. A clock domain is associated with clock 

source signal and optional polarity. Multiple clock sources can be grouped together in a single clock domain.   

In a design with multiple reset domains and clock domains, it is important to make sure resets are used properly. 

The reset tree annotates the sequential elements in the design with the reset domain information. The clock tree is 

generated and the clock domain information is annotated on every register. With every register in the design having 

a clock domain and reset domain – the usage of the resets in a particular clock domain can be determined. With this 

information, we can then identify asynchronous reset crossings across sequential elements in the same clock domain, 

as well as identify crossings between asynchronous and synchronous resets across registers in the same clock 

domain. These paths between resets are called Reset Domain Crossing (RDC) paths. 

i. Missing Synchronizer for asynchronous reset  

All asynchronous reset signals should be synchronized to the target clock domains before used. The problem of 

using raw(unsynchronized) reset is not the assertion of reset but with the de-assertion (release) of the reset. If the 

reset is de-asserted close to the next clock edge – it may violate the reset recovery time leading to metastability. 

When an asynchronous reset violates the setup and hold requirements for a register, this violation is likely to happen 

simultaneously on multiple registers and the register metastability will result in a random delayed release of reset on 

the metastable registers. Asynchronous reset synchronizers that ensure asynchronous assertion and synchronous de-

assertion provide a reliable reset mechanism. Figure 3 shows the waveform for the asynchronous reset problem. 

When the active low reset is de-asserted very close to clock, Q becomes metastable.  

  

 
Figure 3 

 

There are different ways to synchronize resets. Figure 4 shows typical reset synchronizers.  The external reset 

signal, RST1, is active low. When it is asserted, the output of the reset synchronizer will be 0 immediately. When 

RST1 is released, the output of the reset synchronizer will be high in the next or the cycle after. The release of the 

reset signal is synchronized to the clock, CLK.  The synchronizer prevents metastability to be sampled when reset is 

de-asserted.   
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Figure 4             

 
ii. Correct Polarity and Clock 

Once resets are synchronized, we need to make sure that the reset signals are used properly. Two common 

problems are that resets are used with wrong polarity or wrong clock. Figure 5a shows that the downstream register 

using reset synchronizer is clocked in a different clock (CLK2) from reset synchronizer (CLK). CDC analysis [5] 

will detect a CDC crossing and the problem would be identified during CDC verification. Figure 5b shows that the 

register reset by the synchronizer is using active high reset, while the synchronizer is an active-low reset. Since this 

is not a CDC crossing, it will not be caught by CDC tool, and cannot be caught easily.    

            

                                      Figure 5a                                                                          Figure 5b 

iii. Reset Domain Crossing   

Most modern chips employ multiple clock domains. Metastability in a design due to asynchronous clock 

domain crossing is a well-known issue [3] [4]. Advanced tools such as [5] are available to catch such structural and 

functional CDC issues.  However, even if the data path is in the same clock domain, if the reset of the source register 

is different from that of the destination register – this asynchronous crossing path can still cause metastability at the 

destination register. This crossing involves understanding the use of reset domains and their interaction with clock 

domains [6] [7]. Figure 6a shows a circuit which could have metastability problems. If RST1 is asserted while RST2 

is not asserted, DFF2 can sample asynchronous data. If the data transition is within the setup and hold window, then 

the DFF2 output will become metastable. The corresponding waveform is shown in Figure 6b.  

 

 
Figure 6a 

 



5 
 

 
Figure 6b 

 
iv. Incorrect Delay Sequences 

In general, chips partition resets, through the use of delays in phases to avoid power surges which could burn 

the chip. This could lead to another problem. Figure 7 shows a simple example. The assertion of RST will 

prematurely cause DFF2 to reset while DFF2 is still in functional state. The inconsistent reset delay between 

adjacent registers causes incorrect data at the downstream logic.  The reset structure assumes that RST is asserted for 

more than 3 cycles. If RST is only asserted 2 cycles, then when RST deasserts, DFF2 will be corrupted by DFF1 

before DFF1 gets the reset signal.    

 

 
Figure 7 

 

 
III. VERIFICATION SOLUTION 

In this section, we propose a solution to solve the reset verification challenges. The solution involves multiple 

steps: static analysis, simulation and formal verification. Each step has its strengths and weaknesses. A complete 

solution needs to involve all 3 steps.  

 
A. Static Analysis  

The first step of the verification is Static Analysis. Static Analysis only requires RTL. The tool automatically 

analyzes the design, usually synthesize the design and detect obvious design errors. The advantage is that it does not 

require any other information such as testbench stimulus or assertions.  

Determining the reset tree can be done through static analysis. Static analysis is performed on the RTL. Resets 

can be identified by through synthesis, then resets are further classified as either synchronous or asynchronous 

resets, as well as active high or active low. Top reset signals can be recognized in the design by identifying the 

structural templates for synchronous and asynchronous reset pins of a register and their respective polarities.  The 

top resets can be used to build the reset tree by propagating the reset signals through sequential logic till the 

destination registers. The top base resets can be classified into groups in the design depending on the source – the 

resets could be primary inputs, gated or soft resets or generated by a reset synchronizer. Every reset domain is 

characterized by its type – asynchronous/synchronous, polarity, its use as a set or reset. The combinational and soft 

resets need to be analyzed to resolve the participating control signals which may be constants or belong to a 

particular reset and clock domain. The designer can be allowed to group resets which are known to have the same 

source and are not asynchronous to each other. Once the reset tree is built – it can be annotated with multiple layers 

of design information including clock, power and delay levels.  
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The generation of the detailed reset tree enables structural checks on the reset architecture. Results of the static 

analysis vary from simple informative checks to complex functional checks. Some examples of informative checks 

are:  

a) Resets which are used as active low and active high in the design.  

b) Resets which are used asynchronously and synchronously which is not recommended in reset design.   

c) Conflict in usage of resets between specification and usage.  

d) Find resets used as data 

 

The static analysis also performs functional checking for many of the issues in section II above. Some examples 

are:  

a) Asynchronous reset domain crossings 

b) Reset synchronizer structures and their reconvergence  

c) Reset delay protocols 

d) Glitch detection  

 

In a complex SoC design with multiple reset sources and large number of registers – there could be millions of 

violations including all the categories of reset related problems as described above. A sophisticated debug 

methodology and environment is essential to help users manage the violations, as well as understand and debug the 

real issues.   

 

The disadvantage of static analysis is that, in many cases, it can only show that it has potential problems. To 

show that the problem actually exists in the chip, we need to rely on RTL simulation or model checking formal 

engine.  This requires users to write SVA assertions.  In some cases, industry tool can also generate the assertions to 

be used by RTL Simulation and Formal Verification.   

 
B. RTL Simulation with X-propagation  

Today, RTL simulation is still the main verification vehicle. RTL simulation with silicon-accurate X-

propagation semantics can be used to find issues related to uninitialized design elements, which cannot be found by 

static analysis. X-propagation addresses X-optimism by propagating X values forward in time. It involves if 

statements, case statements, and conditional assignments. For example, when a conditional expression has the value 

of X, the X-propagation enhanced simulator changes the language semantics to propagate X values. These values 

can be observed in simulation waveforms and the downstream logic is affect by the propagated X values. If the X’s 

are not blocked or handled correctly in the design, the simulation could fail. In particular, the design’s silicon 

implementation could be subject to random failures, which are completely missed by normal RTL simulator.  

 
C. Formal Verification 

Although simulation-based verification is capable of detecting many design bugs, it requires a proper testbench 

stimulus. Model checking technology can be used to supplement traditional simulation methods.  For example, 

formal verification can be used to verify these reset tree properties: (a) connectivity of all sources of resets to their 

intended destinations (b) X-pessimism and X-optimism (c) corruption of correctly reset storage elements with 

unknown logic values. Most of the reset problems resulted in X-states and eventually resulted in silicon bugs. Turpin 

[8] showed how X-bugs can be missed by simulation. Liu [9] discussed how Formal techniques can be applied to 

verify reset & X-state problems.  

 

IV. RESULTS 

We ran Questa
®
 Reset Check on 3 designs of varying complexities and functionalities: a prototype block, a 

functional controller and a networking design unit. Each of the designs exhibits different interactions between the 

generated clock domains and the inferred reset domains leading to domain crossing issues.  In general, users can 

customize the analysis by assigning explicit values to the control signals, or by grouping the clock and reset signals 

explicitly with directives.  Table 1 shows the properties of the designs run as well as issues found.  We found a lot of 

RDC in design 2. This was due to high number of reset domains as well as tight interactions of the data paths.  
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Design complexity Design 1 Design 2 Design 3 

Number of registers 305 47016 43622 

Number of latches 0 592 0 

Number of RAMs 2 0 64 

Number of Gate-level modules 0 88 20 

 
Reset/Clock domains information Design 1 Design 2 Design 3 

Total number of reset domains 3        36 48 

Total number of clock domains  9 5 12 

Number of clocks crossing reset domains 2 3 6 

Number of resets crossing clock domains 2 5 5 

 

Number of  (RDC) reset domain crossings  Design 1 Design 2 Design 3 

Data path across same clock domain  3 25766 225 

Data path across different clock domains  0 2618 42 

 
Results of static analysis  Design 1 Design 2 Design 3 

Missing asynchronous reset synchronizer      

Unexpected gate in reset tree       

Reset signal used as asynchronous and synchronous      

Good asynchronous reset synchronizer      

                                                                                                    

Table 1 Summary of Static reset verification 

 

Other static reset issues found in the designs included: 

 Unused user specified resets 

 Conflicts between specification and reset usage 

 Combinational logic before asynchronous reset synchronizer  

The reset domain crossing across data path registers in same clock domain is a RDC violation.  Typical 

report of such a violation indicates the start and end registers with the clock and reset domain information.  

Figure 9a shows a simple RDC violation. The start register ‘mask’  reset asynchronously by a signal ‘rst’  

driving  the end register ‘rx_masked_data’ reset asynchronously by a different signal ‘clr’. Both the registers are 

clocked by the output of a scan mode multiplexer thus belonging to the same clock domain.  

  

Figure 9a 

Figure 9b shows another example of a RDC violation. The green and pink colors indicate the different reset 

domains for the start and end registers marked in blue.  
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Figure 9b 

 

Static reset issues are also reported to users. Figure 9c illustrates a reset used synchronously and 

asynchronously in a design. The highlighted path shows the top primary reset input rst_HT_L resetting the first 

register asynchronously and the second register on the right hand side through a synchronous reset mux select.  

 

 
Figure 9c 

One of the important debug features is to understand the interaction between clock domains and reset 

domains. It can be represented in the form of a table. Figures 9d and 9e illustrate the clock and reset mapping.  

 

 
Figure 9d 

 

Figure 9e 

 

Once the static results were all validated, we identified several potential problems that needed further 

investigation. One of them is related to FIFO. We wanted to verify that FIFO was functioned correctly. We ran 
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Questa
®
 Formal [10] on the design. The entries of the FIFO were initialized to 0 after reset. By manipulating the two 

request signals, reqa & reqb, Questa
®
 Formal found a way to enqueue the FIFO with corrupted data. The X 

propagation path is shown in red in Figure 10a.  And the waveform is shown in Figure 10b.  

 

 
Figure 10a 

 

 
Figure 10b 

 

 

V. CONCLUSION 

In this paper, we presented several common reset problems, the reset verification challenges, and a proposed 

comprehensive solution to address the problems. We have also demonstrated the solution through verifying several 

customer designs, and presented the issues discovered. We showed that many of these issues are hard to catch bugs 

that cannot be caught easily with simulation or traditional verification techniques. Complete verification requires a 

full suite of methods involving static analysis, simulation and formal analysis.  
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