

Addressing the Challenges of Reset Verification in SoC Designs

Chris Kwok Priya Viswanathan Ping Yeung

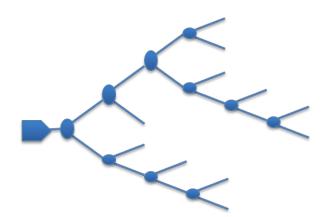
The Reset Problem

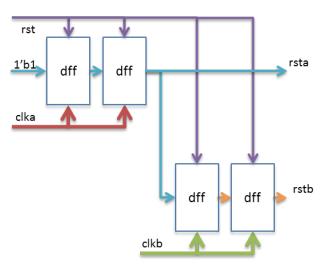
- There are many types of resets:
 - Power-on resets, software resets, hardware resets, debug reset, etc.
- Errors in reset can lead to metastability, glitches, corrupt simulation with X or even failure to power on

Current Methods

- Simulation, simulation, simulation
- Issues usually found at late-stage, after long gatelevel simulation

- Bring awareness of the reset problem
- What kind of reset problems exist
- What kind of solutions available


Common Problems


- Reset Distribution Tree
 - Reset tree construction issues
- Reset Usage
 - Issues with how reset is used

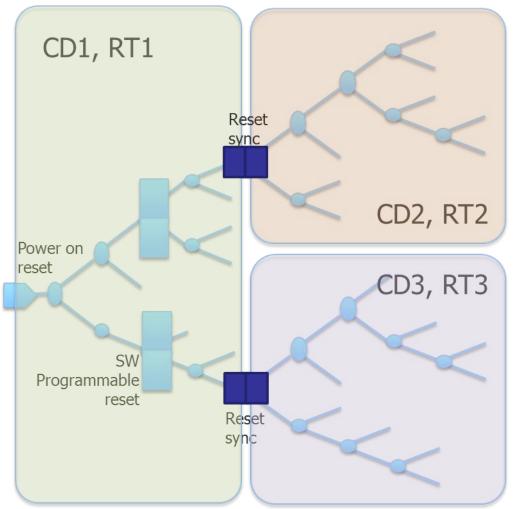
Reset Tree Problem

- Mixed asynchronous/synchronous types
- Overlapping set and reset
- Reset crossing clock domains

Reset with mixed types

- Signal 'rst_n' is used as asynchronous to 'q1' and synchronous to 'q2'
- Usually indicates a misunderstanding of the reset

```
always @(posedge clk or negedge rst_n)
    if (!rst_n)
        q1 <= 1'b0;
    else
        q1 <= d;
always @(posedge clk)
    if (!rst_n)
        q2 <= 1'b0;
    else
        q2 <= d;</pre>
```



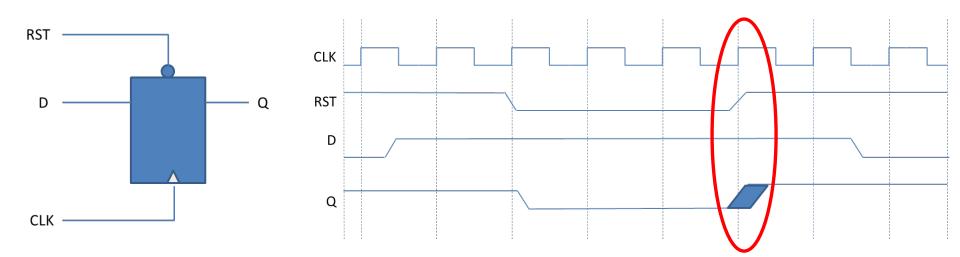
Overlapping set and reset

- Register has both asynchronous set and reset signals
- If both set & reset are active, lead to mismatch between simulation & synthesis
- Some technology libraries do not have register with both asynchronous set & reset

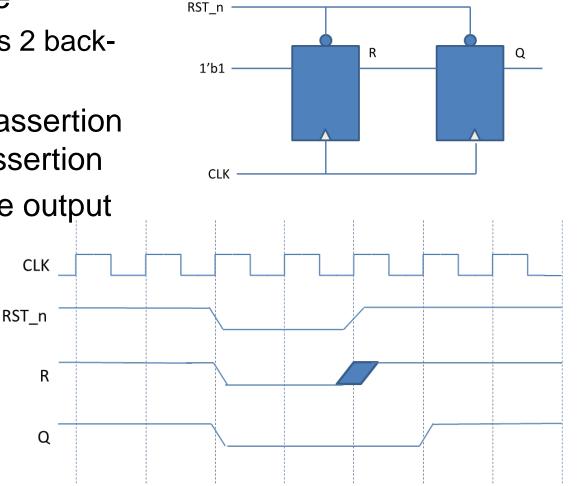
```
always @(posedge clk or negedge rst_n or negedge set_n)
if (!rst_n)
q1 <= 1'b0;
else if (!set_n)
q1 <= 1'b1;
else
q1 <= d;</pre>
```

Reset crossing clock

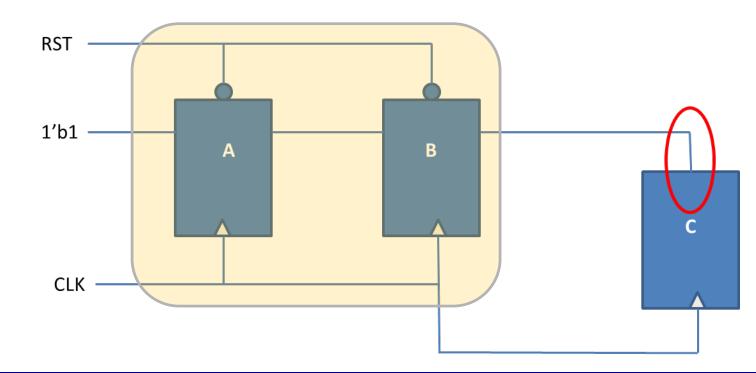
- The reset tree spans multiple clock domains
- Reset signals need to be synchronized to the target clock domain before used.


Reset Synchronizer

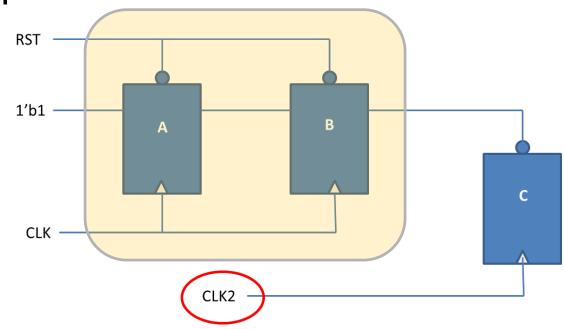
- Why do we need reset synchronizer?
- How is reset synchronizer used?
- What other problems related to reset synchronizer?


Asynchronous Reset

- Asynchronous reset signal can change anytime
- If reset 'RST' is de-asserted close to the clock edge
 - Violates the recovery time
 - Leads to metastability

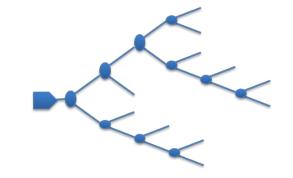

- Synchronize before use
 - Typical synchronizer is 2 backto-back flops
- Ensure asynchronous assertion and synchronous de-assertion
- X will not be seen at the output of the synchronizer

Reset Synchronizer used wrong polarity


 Register reset by the synchronizer is using active high reset, while the synchronizer is an active-low reset.

Reset Synchronizer used with wrong clock

- Downstream register using reset synchronizer is clocked in a different clock (CLK2) from reset synchronizer (CLK)
- Caught by CDC tool

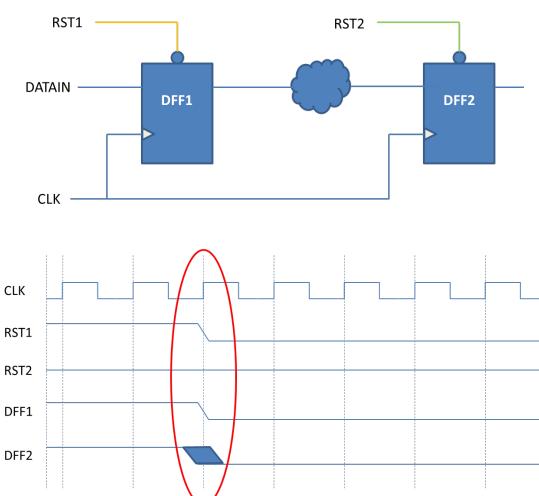


Reset Domain Crossing

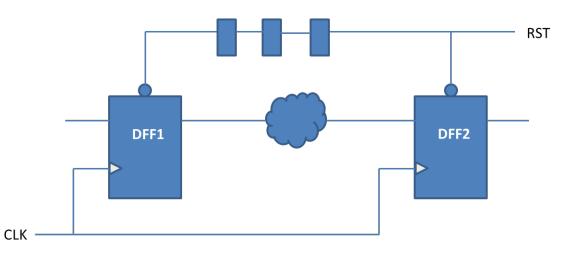
- What is reset domain?
- What is reset domain crossing (RDC) ?

What is a Reset Domain?

- What constitute a reset domain?
 - Type: Synchronous / Asynchronous
 - Polarity : Active-high / Active-low
 - Value : 1 (set) / 0 (reset)



 Registers reset by reset of the same attributes are considered to be in the same reset domain



What is Reset Domain Crossing (RDC)?

 If RST1 is asserted while RST2 is not asserted, DFF2 can sample corrupted data.

- Assertion of RST will prematurely cause DFF2 to reset while DFF2 is still in functional state.
 - Causes incorrect data at the downstream logic
- If RST is only asserted 2 cycles, then when RST deasserts, DFF2 will be corrupted by DFF1 before DFF1 gets the reset signal.

Proposed Verification Solution

- Static Analysis
 - Automatically analyzes the design and report obvious errors
- Simulation with X-propagation
 - Propagate X values to cause testbench failure
- Formal Verification
 - Exhaustive Analysis on special properties

Design Blocks

Design Complexity	Block 1	Block 2	Block 3
Number of registers	305	47016	43622
Number of latches	0	592	0
Number of RAMs	2	0	64
Number of Gate-level modules	0	88	20

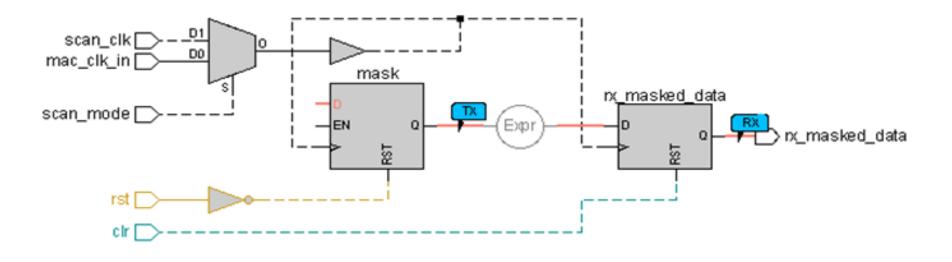
Reset/Clock domains information	Block 1	Block 2	Block 3
Number of reset domains	3	36	48
Number of clock domains	9	5	12
Number of clocks crossing reset domains	2	3	6
Number of resets crossing clock domains	2	5	5

- Verilog RTL design blocks
- FIFO Controller, Functional Controller, Networking Unit

Reset/Clock Relationship

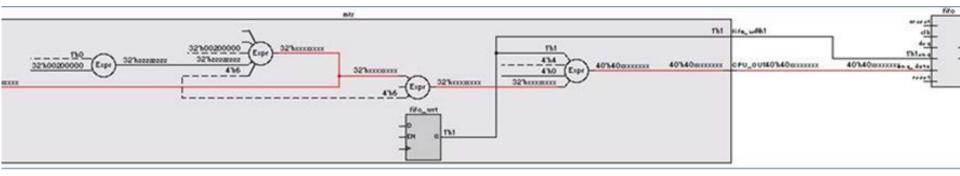
Questa Reset Check was used

Name	IdtReWinkCik	txcikx2p	IdtTxWinkClk	h_extracikin	h_exttxcikin	h_mde	0r_200	_pcb
t_inloop.inlp_rxenable			R: 3, L: 0					
loop.rst_inip_rxenable	R: 1, L: 0							
mux.htext_ldtRxSync				R: 1, L: 0				
ht.ht_mux.nsync_det				R: 6, L: 0				
SYNC_ACTL_0.reset_N							R: 23, L: 0	
RxWinkRstPreAsync_N	R: 644, L: 0							
0.idtRxWinkSyncSized	R: 7, L: 0						R: 17, L: 0	
SIZER_0.resetAsync_N	R: 151, L: 0						-	
TXSYNC_RESET_0.rst			R: 87, L: 0					
chUDP_U_DFFR_51.q	R: 3, L: 0							
RESET kitRxSyncAm								


Static Analysis Results

Results of static analysis	Block 1	Block 2	Block 3
Missing asynchronous reset synchronizer		V	
Unexpected gate in reset tree	V	V	
Reset signal used as asynchronous and synchronous			V
Good asynchronous reset synchronizer		V	

Number of RDCs	Block 1	Block 2	Block 3
Across same clock domain	3	25966	225
Across different clock domains	0	2618	42


Sample RDC Violation

- Signals "mask" and "rx_masked_data" are in the same clock domain
- "rst" and "clr" are of different reset domain

- To validate a FIFO is functioning properly
- Questa Formal was used

Formal Results

necks_a.X_check_aw	id14 - Default 🖂				9	WM)			
	Msgs								
CONTRACTOR AND AND STOLEN	1'h0	(Primary Cloc	ks)						
Property Signals	1'60	(Property Sig		IIIII	4	uuun	nnn		5
	40'h40xxxxxxx 1'h1	40'h00000	00000		40'h 40	'h0000000000		000000000000000000000000000000000000000	040'h40
top/fifo/fifo[5]	1250 g (1150 g (100 h (40'h0000000	Color Statements						40'h4o)
top/fifo/fifo[6] rol Point Signals	40'n40XXXX	40'h0000000 (Control Poin							40'h
	64'h000000	64'h0000	2		64'h0000.	. 64'h0000		000000000000000000000000000000000000000	00000
🥠 /cpu_top/reqb	4'h0 1'b0 1'b0 1'b0	4'h0		3	4'h0		(4'h0 	(4'h0	

- As SoC designs get complex, reset problems become harder to catch
 - Traditional solution no longer sufficient
- We discussed:
 - Several common reset problems presented
 - Proposed solution discussed
 - Using the method, results were presented